首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex I (EC 1.6.99.3) of the bacterium Escherichia coli is considered to be the minimal form of the type I NADH dehydrogenase, the first enzyme complex in the respiratory chain. Because of its small size and relative simplicity, the E. coli enzyme has become a model used to identify and characterize the mechanism(s) by which cells regulate the synthesis and assembly of this large respiratory complex. To begin dissecting the processes by which E. coli cells regulate the expression of nuo and the assembly of complex I, we undertook a genetic analysis of the nuo locus, which encodes the 14 Nuo subunits comprising E. coli complex I. Here we present the results of studies, performed on an isogenic collection of nuo mutants, that focus on the physiological, biochemical, and molecular consequences caused by the lack of or defects in several Nuo subunits. In particular, we present evidence that NuoG, a peripheral subunit, is essential for complex I function and that it plays a role in the regulation of nuo expression and/or the assembly of complex I.

Complex I (NADH:ubiquinone oxidoreductase; EC 1.6.99.3), a type I NADH dehydrogenase that couples the oxidation of NADH to the generation of a proton motive force, is the first enzyme complex of the respiratory chain (2, 35, 47). The Escherichia coli enzyme, considered to be the minimal form of complex I, consists of 14 subunits instead of the 40 to 50 subunits associated with the homologous eukaryotic mitochondrial enzyme (17, 29, 30, 4850). E. coli also possesses a second NADH dehydrogenase, NDH-II, which does not generate a proton motive force (31). E. coli complex I resembles eukaryotic complex I in many ways (16, 17, 30, 49): it performs the same enzymatic reaction and is sensitive to a number of the same inhibitors, it consists of subunits homologous to those found in all proton-translocating NADH:ubiquinone oxidoreductases studied thus far, it is comprised of a large number of subunits relative to the number that comprise other respiratory enzymes, and it contains flavin mononucleotide and FeS center prosthetic groups. Additionally, it possesses an L-shaped topology (14, 22) like that of its Neurospora crassa homolog (27), and it consists of distinct fragments or subcomplexes. Whereas eukaryotic complex I can be dissected into a peripheral arm and a membrane arm, the E. coli enzyme consists of three subcomplexes referred to as the peripheral, connecting, and membrane fragments (29) (Fig. (Fig.1A).1A). The subunit composition of these three fragments correlates approximately with the organization of the 14 structural genes (nuoA to nuoN) (49) of the nuo (for NADH:ubiquinone oxidoreductase) locus (Fig. (Fig.1B),1B), an organization that is conserved in several other bacteria, including Salmonella typhimurium (3), Paracoccus denitrificans (53), Rhodobacter capsulatus (12), and Thermus thermophilus (54). The 5′ half of the locus contains a promoter (nuoP), previously identified and located upstream of nuoA (8, 49), and the majority of genes that encode subunits homologous to the nucleus-encoded subunits of eukaryotic complex I and to subunits of the Alcaligenes eutrophus NAD-reducing hydrogenase (17, 29, 30, 49). In contrast, the 3′ half contains the majority of the genes that encode subunits homologous to the mitochondrion-encoded subunits of eukaryotic complex I and to subunits of the E. coli formate-hydrogen lyase complex (17, 29, 30, 49). Whereas the nuclear homologs NuoE, NuoF, and NuoG constitute the peripheral fragment (also referred to as the NADH dehydrogenase fragment [NDF]), the nuclear homologs NuoB, NuoC, NuoD, and NuoI constitute the connecting fragment. The mitochondrial homologs NuoA, NuoH, NuoJ, NuoK, NuoL, NuoM, and NuoN constitute the membrane fragment (29). E. coli complex I likely evolved by fusion of preexisting protein assemblies constituting modules for electron transfer and proton translocation (1719, 30). Open in a separate windowFIG. 1Schematic of E. coli complex I and the nuo locus. Adapted with permission of the publisher (17, 29, 30, 49). (A) E. coli complex I is comprised of three distinct fragments: the peripheral (light gray), connecting (white), and membrane (dark gray) fragments (17, 29). The peripheral fragment (NDF) is comprised of the nuclear homologs NuoE, -F, and -G and exhibits NADH dehydrogenase activity that oxidizes NADH to NAD+; the connecting fragment is comprised of the nuclear homologs NuoB, -C, -D, and -I; and the membrane fragment is comprised of the mitochondrial homologs NuoA, -H, and -J to -N and catalyzes ubiquinone (Q) to its reduced form (QH2). FMN, flavin mononucleotide. (B) The E. coli nuo locus encodes the 14 Nuo subunits that constitute complex I. The 5′ half of the locus contains a previously identified promoter (nuoP) and the majority of genes that encode the peripheral and connecting subunits (light gray and white, respectively). The 3′ half of the locus contains the majority of the genes encoding the membrane subunits (dark gray). The 3′ end of nuoG encodes a C-Terminal region (CTR) of the NuoG subunit (hatched).Because of its smaller size and relative simplicity, researchers recently have begun to utilize complex I of E. coli, and that of its close relative S. typhimurium, to identify and characterize the mechanism(s) by which cells regulate the synthesis and assembly of this large respiratory complex (3, 8, 46) and to investigate the diverse physiological consequences caused by defects in this enzyme (4, 6, 10, 40, 59). Such defects affect the ability of cells to perform chemotaxis (40), to grow on certain carbon sources (4, 6, 10, 40, 57), to survive stationary phase (59), to perform energy-dependent proteolysis (4), to regulate the expression of at least one gene (32), and to maintain virulence (5).To begin dissecting the processes by which E. coli cells regulate the expression of nuo and the assembly of complex I, we undertook a genetic analysis of the nuo locus. Here, we present the results of studies, performed on an isogenic collection of nuo mutants, that focus on the physiological, biochemical, and molecular consequences caused by the lack of or defects in several Nuo subunits. In particular, we present evidence that NuoG, a peripheral subunit, is essential for complex I function and that it plays a role in the regulation of nuo expression and/or the assembly of complex I.  相似文献   

2.
3.
Folding and stability are parameters that control protein behavior. The possibility of conferring additional stability on proteins has implications for their use in vivo and for their structural analysis in the laboratory. Cyclic polypeptides ranging in size from 14 to 78 amino acids occur naturally and often show enhanced resistance toward denaturation and proteolysis when compared with their linear counterparts. Native chemical ligation and intein-based methods allow production of circular derivatives of larger proteins, resulting in improved stability and refolding properties. Here we show that circular proteins can be made reversibly with excellent efficiency by means of a sortase-catalyzed cyclization reaction, requiring only minimal modification of the protein to be circularized.Sortases are bacterial enzymes that predominantly catalyze the attachment of surface proteins to the bacterial cell wall (1, 2). Other sortases polymerize pilin subunits for the construction of the covalently stabilized and covalently anchored pilus of the Gram-positive bacterium (35). The reaction catalyzed by sortase involves the recognition of short 5-residue sequence motifs, which are cleaved by the enzyme with the concomitant formation of an acyl enzyme intermediate between the active site cysteine of sortase and the carboxylate at the newly generated C terminus of the substrate (1, 68). In many bacteria, this covalent intermediate can be resolved by nucleophilic attack from the pentaglycine side chain in a peptidoglycan precursor, resulting in the formation of an amide bond between the pentaglycine side chain and the carboxylate at the cleavage site in the substrate (9, 10). In pilus construction, alternative nucleophiles such as lysine residues or diaminopimelic acid participate in the transpeptidation reaction (3, 4).When appended near the C terminus of proteins that are not natural sortase substrates, the recognition sequence of Staphylococcus aureus sortase A (LPXTG) can be used to effectuate a sortase-catalyzed transpeptidation reaction using a diverse array of artificial glycine-based nucleophiles (Fig. 1). The result is efficient installation of a diverse set of moieties, including lipids (11), carbohydrates (12), peptide nucleic acids (13), biotin (14), fluorophores (14, 15), polymers (16), solid supports (1618), or peptides (15, 19) at the C terminus of the protein substrate. During the course of our studies to further expand sortase-based protein engineering, we were struck by the frequency and relative ease with which intramolecular transpeptidation reactions were occurring. Specifically, proteins equipped with not only the LPXTG motif but also N-terminal glycine residues yielded covalently closed circular polypeptides (Fig. 1). Similar reactivity using sortase has been described in two previous cases; however, rigorous characterization of the circular polypeptides was absent (16, 20). The circular proteins in these reports were observed as minor components of more complex reaction mixtures, and the cyclization reaction itself was not optimized.Open in a separate windowFIGURE 1.Protein substrates equipped with a sortase A recognition sequence (LPXTG) can participate in intermolecular transpeptidation with synthetic oligoglycine nucleophiles (left) or intramolecular transpeptidation if an N-terminal glycine residue is present (right).Here we describe our efforts toward applying sortase-catalyzed transpeptidation to the synthesis of circular and oligomeric proteins. This method has general applicability, as illustrated by successful intramolecular reactions with three structurally unrelated proteins. In addition to circularization of individual protein units, the multiprotein complex AAA-ATPase p97/VCP/CDC48, with six identical subunits containing the LPXTG motif and an N-terminal glycine, was found to preferentially react in daisy chain fashion to yield linear protein fusions. The reaction exploited here shows remarkable similarities to the mechanisms proposed for circularization of cyclotides, small circular proteins that have been isolated from plants (2123).  相似文献   

4.
Four class IIa bacteriocins (pediocin PA-1, enterocin A, sakacin P, and curvacin A) were purified to homogeneity and tested for activity toward a variety of indicator strains. Pediocin PA-1 and enterocin A inhibited more strains and had generally lower MICs than sakacin P and curvacin A. The antagonistic activity of pediocin-PA1 and enterocin A was much more sensitive to reduction of disulfide bonds than the antagonistic activity of sakacin P and curvacin A, suggesting that an extra disulfide bond that is present in the former two may contribute to their high levels of activity. The food pathogen Listeria monocytogenes was among the most sensitive indicator strains for all four bacteriocins. Enterocin A was most effective in inhibiting Listeria, having MICs in the range of 0.1 to 1 ng/ml. Sakacin P had the interesting property of being very active toward Listeria but not having concomitant high levels of activity toward lactic acid bacteria. Strains producing class IIa bacteriocins displayed various degrees of resistance toward noncognate class IIa bacteriocins; for the sakacin P producer, it was shown that this resistance is correlated with the expression of immunity genes. It is hypothesized that variation in the presence and/or expression of such immunity genes accounts in part for the remarkably large variation in bacteriocin sensitivity displayed by lactic acid bacteria.Many lactic acid bacteria (LAB), including members of the genera Lactococcus, Lactobacillus, Carnobacterium, Enterococcus, and Pediococcus, are known to secrete small, ribosomally synthesized antimicrobial peptides called bacteriocins (26, 29, 34). Some of these peptides undergo posttranslational modifications (class I bacteriocins), whereas others are not modified (class II bacteriocins) (29, 34). Class II bacteriocins contain between 30 and 60 residues and are usually positively charged at a neutral pH. Studies of a large number of class II bacteriocins have led to subgrouping of these compounds (29, 34). One of the subgroups, class IIa, contains bacteriocins that are characterized by the presence of YGNG and CXXXXCXV sequence motifs in their N-terminal halves as well as by their strong inhibitory effect on Listeria (e.g., 3, 4, 22, 23, 27, 28, 31, 38, 45) (Fig. (Fig.1).1). Because of their effectiveness against the food pathogen Listeria, class IIa bacteriocins have potential as antimicrobial agents in food and feed. Open in a separate windowFIG. 1Sequence alignment of class IIa bacteriocins. Residue numbering is according to the sequence of pediocin PA-1. Cysteine residues are printed in boldface; the two known class IIa bacteriocins with four cysteine residues are in the upper group. No attempt was made to optimize the alignment in the C-terminal halves of the peptides. Piscicolin 126 is identical to piscicocin V1a (4). Carnobacteriocin BM1 most probably is identical to piscicocin V1b (4). Sakacin P most probably is identical to bavaricin A (30). Curvacin A is identical to sakacin A (2). The consensus sequence includes residues conserved in at least 8 of the 12 sequences shown; 100% conserved residues are underlined.Class IIa bacteriocins act by permeabilizing the membrane of their target cells (1, 5, 6, 9, 10, 26, 28). The most recent studies on the mode of action of these bacteriocins indicate that antimicrobial activity does not require a specific receptor and is enhanced by (but not fully dependent on) a membrane potential (9, 28). Little is known about bacteriocin structure, and unravelling the relationships between structure and function is one of the great challenges in current bacteriocin research. A logical starting point for structure-function studies is a thorough study of the differences in activity and target cell specificity between naturally occurring homologous bacteriocins. A few such studies have been described, but these suffer from either a very limited number of tested indicator strains or the use of culture supernatants instead of purified bacteriocins (3, 4, 17, 45). The use of purified bacteriocins for comparative analyses is absolutely essential, since it is becoming increasingly evident that bacteriocin producers produce more than one bacteriocin (4, 8, 38, 48; this study).In the present study, the activities of four pure class IIa bacteriocins (pediocin PA-1, enterocin A, curvacin A, and sakacin P) (Fig. (Fig.1)1) were tested against a large number of LAB as well as several strains of the food pathogen Listeria monocytogenes. The bacteriocins were purified from their respective producer strains by use of an optimized purification protocol yielding highly pure samples. The contribution of disulfide formation was assessed and found to be important for activity. The effects of the purified bacteriocins on (noncognate) class IIa bacteriocin-producing strains are described, and the implications of our findings for immunity and resistance are discussed.  相似文献   

5.
6.
Hyperhomocysteinemia has long been associated with atherosclerosis and thrombosis and is an independent risk factor for cardiovascular disease. Its causes include both genetic and environmental factors. Although homocysteine is produced in every cell as an intermediate of the methionine cycle, the liver contributes the major portion found in circulation, and fatty liver is a common finding in homocystinuric patients. To understand the spectrum of proteins and associated pathways affected by hyperhomocysteinemia, we analyzed the mouse liver proteome of gene-induced (cystathionine β-synthase (CBS)) and diet-induced (high methionine) hyperhomocysteinemic mice using two-dimensional difference gel electrophoresis and Ingenuity Pathway Analysis. Nine proteins were identified whose expression was significantly changed by 2-fold (p ≤ 0.05) as a result of genotype, 27 proteins were changed as a result of diet, and 14 proteins were changed in response to genotype and diet. Importantly, three enzymes of the methionine cycle were up-regulated. S-Adenosylhomocysteine hydrolase increased in response to genotype and/or diet, whereas glycine N-methyltransferase and betaine-homocysteine methyltransferase only increased in response to diet. The antioxidant proteins peroxiredoxins 1 and 2 increased in wild-type mice fed the high methionine diet but not in the CBS mutants, suggesting a dysregulation in the antioxidant capacity of those animals. Furthermore, thioredoxin 1 decreased in both wild-type and CBS mutants on the diet but not in the mutants fed a control diet. Several urea cycle proteins increased in both diet groups; however, arginase 1 decreased in the CBS+/− mice fed the control diet. Pathway analysis identified the retinoid X receptor signaling pathway as the top ranked network associated with the CBS+/− genotype, whereas xenobiotic metabolism and the NRF2-mediated oxidative stress response were associated with the high methionine diet. Our results show that hyperhomocysteinemia, whether caused by a genetic mutation or diet, alters the abundance of several liver proteins involved in homocysteine/methionine metabolism, the urea cycle, and antioxidant defense.Homocysteine (Hcy)1 is a thiol-containing amino acid that is produced in every cell of the body as an intermediate of the methionine cycle (Fig. 1, Reactions 1–5) (1). Once formed, the catabolism of homocysteine occurs via three enzymatic pathways. 1) Hcy is remethylated back to methionine using vitamin B12-dependent methionine synthase (Fig. 1, Reaction 4) and/or 2) betaine-homocysteine methyltransferase (BHMT) (Fig. 1, Reaction 5), and 3) Hcy is converted to cysteine via the transsulfuration pathway using CBS and γ-cystathionase (Fig. 1, Reactions 6 and 7). Under normal conditions ∼40–50% of the Hcy that is produced in the liver is remethylated, ∼40–50% is converted to cysteine, and a small amount is exported (13). However, when Hcy production is increased (i.e. increased dietary methionine/protein intake) or when Hcy catabolism is decreased (i.e. CBS deficiency or B vitamin deficiencies), excess Hcy is exported into the extracellular space, resulting in hyperhomocysteinemia (15).Open in a separate windowFig. 1.Homocysteine metabolism in liver and kidney. In classical homocystinuria, the initial enzyme of the transsulfuration pathway, CBS (Reaction 6), is deficient. MTHF, methylenetetrahydrofolate; THF, tetrahydrofolate; DHF, dihydrofolate; MeCbl, methylcobalamin; DMG, dimethylglycine; PLP, pyridoxal 5′-phosphate.Homocystinuria was first described in the 1960s by Carson et al. (6): they observed 10 pediatric patients with severely elevated levels of Hcy in the urine and hypermethioninemia. Normal concentrations of plasma total homocysteine (tHcy) range from 5 to 12 μm (7); however, in homocystinuria, tHcy levels can exceed 100 μm. Homocystinuric patients present with mental retardation, abnormal bone growth, fine hair, malar flush, and dislocation of the lens of the eye, and most die from premature cardiovascular disease (6, 8). Autopsy findings indicate widespread thromboembolism, arteriosclerosis, and fatty livers (6, 8). Mudd et al. (9, 10) identified the cause of homocystinuria as a defect in the enzyme cystathionine β-synthase. A recent study of newborn infants in Denmark estimated the birth prevalence for CBS heterozygosity to be about 1:20,000 (11).Plasma tHcy concentrations are also directly correlated with dietary methionine/protein intake (12, 13). Guttormsen et al. (13) demonstrated that a protein-rich meal affected tHcy for at least 8–24 h. When normal subjects were fed a low protein-containing breakfast (12–15 g), plasma methionine levels increased slightly after 2 h (22.5–27.5 μm), but tHcy levels did not change significantly. However, when these same subjects were fed a high protein meal (52 g), plasma methionine levels peaked after 4 h (38 μm), and tHcy rose steadily until a maximum level was reached 8 h postmeal (7.6 versus 8.5 μm) (13). Thus, the following questions can be raised. How does the hepatic proteome respond to a hyperhomocysteinemic diet, and are the changes that accompany such a diet the same as or different from those that may be observed in gene-induced hyperhomocysteinemia?Because hyperhomocysteinemia is a strong independent risk factor for cardiovascular, cerebrovascular, and peripheral vascular disease, most of the current research has focused on the mechanisms involved in Hcy-induced endothelial dysfunction (1424). The results of those studies have concluded that Hcy induces intracellular oxidative stress by generating ROS, which in turn lead to decreased bioavailable nitric oxide (NO), altered gene expression, increased endoplasmic reticulum stress, and activation of cholesterol biosynthesis. Also, several studies have examined the association between hyperhomocysteinemia and alcoholic liver disease, but few have looked at the effect of Hcy on the non-alcoholic liver even though fatty liver is a constant finding in homocystinuria (6, 8), and the liver is the major source of circulating Hcy (4, 5, 10). We hypothesize that 1) the liver proteome will respond to hyperhomocysteinemia by altering the expression of proteins involved in methionine/homocysteine metabolism and antioxidant defense and that 2) the set of proteins that are expressed when hyperhomocysteinemia is induced by CBS deficiency will differ from those expressed as a result of a high methionine diet. In the present study, we use a well established mouse model of CBS deficiency to study the early changes in the liver proteome that accompany hyperhomocysteinemia (25).  相似文献   

7.
8.
9.
An epoxide hydrolase from Rhodococcus erythropolis DCL14 catalyzes the hydrolysis of limonene-1,2-epoxide to limonene-1,2-diol. The enzyme is induced when R. erythropolis is grown on monoterpenes, reflecting its role in the limonene degradation pathway of this microorganism. Limonene-1,2-epoxide hydrolase was purified to homogeneity. It is a monomeric cytoplasmic enzyme of 17 kDa, and its N-terminal amino acid sequence was determined. No cofactor was required for activity of this colorless enzyme. Maximal enzyme activity was measured at pH 7 and 50°C. None of the tested inhibitors or metal ions inhibited limonene-1,2-epoxide hydrolase activity. Limonene-1,2-epoxide hydrolase has a narrow substrate range. Of the compounds tested, only limonene-1,2-epoxide, 1-methylcyclohexene oxide, cyclohexene oxide, and indene oxide were substrates. This report shows that limonene-1,2-epoxide hydrolase belongs to a new class of epoxide hydrolases based on (i) its low molecular mass, (ii) the absence of any significant homology between the partial amino acid sequence of limonene-1,2-epoxide hydrolase and amino acid sequences of known epoxide hydrolases, (iii) its pH profile, and (iv) the inability of 2-bromo-4′-nitroacetophenone, diethylpyrocarbonate, 4-fluorochalcone oxide, and 1,10-phenanthroline to inhibit limonene-1,2-epoxide hydrolase activity.Epoxides are highly reactive compounds which readily react with numerous biological compounds, including proteins and nucleic acids. Consequently, epoxides are cytotoxic, mutagenic, and potentially carcinogenic, and there is considerable interest in biological degradation mechanisms for these compounds.In bacteria, epoxides are formed during the metabolism of alkenes (23) and halohydrins (15, 26, 34, 49). Enzymes belonging to a large number of enzyme classes, including dehydrogenases (17), lyases (21), carboxylases (1, 43), glutathione S-transferases (6, 8), isomerases (24), and hydrolases (7, 19, 44), are involved in the microbial degradation of epoxides.Epoxide hydrolases are enzymes catalyzing the addition of water to epoxides forming the corresponding diol. This group of enzymes has been extensively studied in mammals, while only limited information is available on bacterial epoxide hydrolases. Three functions for epoxide hydrolases are recognized (42). In bacteria, epoxide hydrolases are involved in the degradation of several hydrocarbons, including 1,3-dihalo-2-propanol (34), 2,3-dihalo-1-propanol (15, 26), epichlorohydrin (46), propylene oxide (16), 9,10-epoxy fatty acids (30, 36), trans-2,3-epoxysuccinate (2), and cyclohexene oxide (14). Other epoxide hydrolases, such as microsomal and cytosolic epoxide hydrolase from mammals (for reviews, see references 4, 8, and 44), are involved in the detoxification of epoxides formed due to the action of P-450-dependent monooxygenases (8). Epoxide hydrolases are also involved in biosynthesis of hormones, such as leukotrienes and juvenile hormone (40, 45), and plant cuticular elements (11). Remarkably, the bacterial and eukaryotic epoxide hydrolases described so far form a homogeneous group of enzymes belonging to the α/β-hydrolase fold superfamily (10, 38).Rhodococcus erythropolis DCL14, a gram-positive bacterium, is able to grow on both (+)- and (−)-limonene as the sole source of carbon and energy (47). Cells grown on limonene contained a novel epoxide hydrolase that does not belong to the α/β-hydrolase fold superfamily. This limonene-1,2-epoxide hydrolase converts limonene-1,2-epoxide to limonene-1,2-diol (p-menth-8-ene-1,2-diol [Fig. 1]). In this report, we describe the purification and characterization of this enzyme and show that limonene-1,2-epoxide hydrolase belongs to a novel class of epoxide hydrolases. Open in a separate windowFIG. 1Reaction catalyzed by limonene-1,2-epoxide hydrolase.  相似文献   

10.
11.
12.
Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD.We urgently need to pioneer game-changing solutions to remedy a number of increasingly prevalent and fatal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD; Cushman et al., 2010 ; Jackrel and Shorter, 2015 ). These disorders relentlessly erode our morale and economic resources. Aging is the major risk factor for all of these diseases, which threaten public health on a global scale and represent a severe impediment to living longer lives. A number of promising drugs have emerged to treat cancer and heart disease, but, distressingly, this is not the case for these and other neurodegenerative diseases, for which drug pipelines lie dormant and empty. This situation is unacceptable, and an impending healthcare crisis looms worldwide as population demographics inexorably shift toward older age groups.ALS, PD, AD, and related neurodegenerative disorders are unified by a common underlying theme: the misfolding and aggregation of specific proteins (characteristic for each disease) in the CNS (Cushman et al., 2010 ; Eisele et al., 2015 ). Thus, in ALS, typically an RNA-binding protein with a prion-like domain, TDP-43, mislocalizes from the nucleus to cytoplasmic inclusions in degenerating motor neurons (Neumann et al., 2006 ; Gitler and Shorter, 2011 ; King et al., 2012 ; Robberecht and Philips, 2013 ; March et al., 2016 ). In PD, α-synuclein forms toxic soluble oligomers and cytoplasmic aggregates, termed Lewy bodies, in degenerating dopaminergic neurons (Dehay et al., 2015 ). By contrast, in AD, amyloid-β (Aβ) peptides form extracellular plaques and the microtubule-binding protein, tau, forms cytoplasmic neurofibrillary tangles in afflicted brain regions (Jucker and Walker, 2011 ). Typically, these disorders are categorized into ∼80–90% sporadic cases and ∼10–20% familial cases. Familial forms of disease often have clear genetic causes, which might one day be amenable to gene editing via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 therapeutics if critical safety and ethical concerns can be successfully addressed and respected (Doudna and Charpentier, 2014 ; Baltimore et al., 2015 ; Rahdar et al., 2015 ; Callaway, 2016 ). However, the more common sporadic forms of disease often have no clear underlying genetics, and wild-type proteins misfold (Cushman et al., 2010 ; Jucker and Walker, 2011 ; Robberecht and Philips, 2013 ; Dehay et al., 2015 ). Consequently, therapeutic agents that directly target and safely reverse deleterious protein misfolding are likely to have broad utility (Eisele et al., 2015 ).There are no treatments that directly target the reversal of the protein-misfolding phenomena that underlie these disorders (Jackrel and Shorter, 2015 ). Strategies that directly reverse protein misfolding and restore proteins to native form and function could, in principle, eradicate any severely damaging loss-of-function or toxic gain-of-function phenotypes caused by misfolded conformers (Figure 1; Jackrel and Shorter, 2015 ). Moreover, therapeutic disaggregases would dismantle self-templating amyloid or prion structures, which spread pathology and nucleate formation of neurotoxic, soluble oligomers (Figure 1; Cushman et al., 2010 ; Cohen et al., 2013 ; Guo and Lee, 2014 ; Jackrel and Shorter, 2015 ). My group has endeavored to engineer and evolve Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast (DeSantis and Shorter, 2012 ; Sweeny and Shorter, 2015 ), to more effectively disaggregate misfolded proteins connected with various neurodegenerative disorders, including ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). Although wild-type Hsp104 can disaggregate diverse amyloid and prion conformers, as well as toxic soluble oligomers (Lo Bianco et al., 2008 ; DeSantis et al., 2012 ), its activity against human neurodegenerative disease proteins is suboptimal. Is it even possible to improve on existing Hsp104 disaggregase activity, which has been wrought over the course of millions of years of evolution?Open in a separate windowFIGURE 1:Therapeutic protein disaggregases. Two malicious problems are commonly associated with protein misfolding into disordered aggregates, toxic oligomers, and cross–β amyloid or prion fibrils: 1) a toxic gain of function of the protein in various misfolded states; and 2) a loss of function of the protein in the various misfolded states. These problems can contribute to the etiology of diverse neurodegenerative diseases in a combinatorial or mutually exclusive manner. A therapeutic protein disaggregase would reverse protein misfolding and recover natively folded functional proteins from disordered aggregates, toxic oligomers, and cross–β amyloid or prion fibrils. In this way, any toxic gain of function or toxic loss of function caused by protein misfolding would be simultaneously reversed. Ideally, all toxic misfolded conformers would be purged. Therapeutic protein disaggregases could thus have broad utility for various fatal neurodegenerative diseases.Remarkably, the answer to this question is yes! We used nimble yeast models of neurodegenerative proteinopathies (Outeiro and Lindquist, 2003 ; Gitler, 2008 ; Johnson et al., 2008 ; Sun et al., 2011 ; Khurana et al., 2015 ) as a platform to isolate enhanced disaggregases from large libraries of Hsp104 variants generated by error-prone PCR (Jackrel et al., 2014b ). In this way, we reprogrammed Hsp104 to yield the first disaggregases that reverse TDP-43, FUS (another RNA-binding protein with a prion-like domain connected to ALS), and α-synuclein (connected to PD) aggregation and proteotoxicity (Jackrel et al., 2014a , 2015 ; Jackrel and Shorter, 2015 ; Torrente et al., 2016 ). Remarkably, a therapeutic gain of Hsp104 function could be elicited by a single missense mutation (Jackrel et al., 2014a , 2015 ; Jackrel and Shorter, 2015 ). Under conditions in which Hsp104 was ineffective, potentiated Hsp104 variants dissolved protein inclusions, restored protein localization (e.g., TDP-43 returned to the nucleus from cytoplasmic inclusions), suppressed proteotoxicity, and attenuated dopaminergic neurodegeneration in a Caenorhabditis elegans PD model (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). Remarkably, these therapeutic modalities originated from degenerate loss of amino acid identity at select positions of Hsp104 rather than specific mutation (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). Some of these changes were remarkably small (Jackrel et al., 2014a , 2015 ; Jackrel and Shorter, 2015 ). Thus, potentiated Hsp104 variants could be generated by removal of a methyl group from a single side chain or addition or removal of a single methylene bridge from a single side chain (Jackrel et al., 2014a , 2015 ; Jackrel and Shorter, 2015 ). Thus, small molecules that bind in accessible regions of Hsp104 rich in potentiating mutations might also be able to enhance activity. However, a small-scale screen for small-molecule modulators of Hsp104 revealed only inhibitors (Torrente et al., 2014 ). Nonetheless, our work has established that disease-associated aggregates and amyloid are tractable targets and that enhanced artificial disaggregases can restore proteostasis and mitigate neurodegeneration (Jackrel and Shorter, 2015 ).One surprising aspect of this work is just how many Hsp104 variants we could isolate with potentiated activity. We now have hundreds (Jackrel et al., 2014a ; Jackrel et al., 2015 ). Typically, potentiated Hsp104 variants displayed enhanced activity against several neurodegenerative disease proteins. For example, Hsp104A503S rescued the aggregation and toxicity of TDP-43, FUS, TAF15, and α-synuclein (Jackrel et al., 2014a ; Jackrel and Shorter, 2014 ). By contrast, some potentiated Hsp104 variants rescued only the aggregation and toxicity of a subset of disease proteins. For example, Hsp104D498V rescued only the aggregation and toxicity of FUS and α-synuclein (Jackrel et al., 2014a ). A challenge that lies ahead is to engineer potentiated Hsp104 variants that are highly substrate specific to mitigate any potential off-target effects, should they arise (Jackrel and Shorter, 2015 ).Very small changes in primary sequence yield potentiated Hsp104 variants. However, Hsp104 has no metazoan homologue (Erives and Fassler, 2015 ). Now comes the important point. Neuroprotection could be broadly achieved by making very subtle modifications to existing human chaperones with newly appreciated disaggregase activity—for example, Hsp110, Hsp70, and Hsp40 (Torrente and Shorter, 2013 ) and HtrA1 (Poepsel et al., 2015 ).Whether Metazoa even possess a powerful protein disaggregation and reactivation machinery had been a long-standing enigma (Torrente and Shorter, 2013 ). However, it has recently emerged that two metazoan chaperone systems—1) Hsp110, Hsp70, and Hsp40 (Torrente and Shorter, 2013 ) and 2) HtrA1 (Poepsel et al., 2015 )—possess disaggregase activity that could be therapeutically harnessed or stimulated to reverse deleterious protein misfolding in neurodegenerative disease. I suspect that Metazoa harbor additional disaggregase systems that remain to be identified (Guo et al., 2014 ). Whether due to vicissitudes of aging, environment, or genetic background, these disaggregase systems fail in the context of ALS, PD, and AD. Based on the surprising precedent of our potentiated versions of Hsp104 (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ), I hypothesize that it is possible to engineer and evolve potentiated variants of these human protein disaggregases to more effectively counter deleterious misfolding events in ALS, PD, and AD (Torrente and Shorter, 2013 ; Mack and Shorter, 2016 ).Using classical biochemical reconstitution, it was discovered that one mammalian protein-disaggregase system comprises three molecular chaperones—Hsp110, Hsp70, and Hsp40—which synergize to dissolve and reactivate model proteins trapped in disordered aggregates and can even depolymerize amyloid fibrils formed by α-synuclein from their ends (Shorter, 2011 ; Duennwald et al., 2012 ; Torrente and Shorter, 2013 ). Hsp110, Hsp70, and Hsp40 isoforms are found in the cytoplasm, nucleus, and endoplasmic reticulum, which suggest that protein disaggregation and reactivation can occur in several compartments (Finka et al., 2015 ). Subsequent studies suggest that this system may be more powerful than initially anticipated (Rampelt et al., 2012 ; Mattoo et al., 2013 ; Gao et al., 2015 ; Nillegoda et al., 2015 ). Nonetheless, this system must become overwhelmed in neurodegenerative disorders. Perhaps selectively vulnerable neurons display particular deficits in this machinery. Hence, potentiating the activity of this system via engineering could be extremely valuable. It is promising that directed evolution studies yielded DnaK (Hsp70 in Escherichia coli) variants with improved ability to refold specific substrates (Aponte et al., 2010 ; Schweizer et al., 2011 ; Mack and Shorter, 2016 ), but whether this can be extended to human Hsp70 and the disaggregation of neurodegenerative disease proteins is uncertain.It is exciting that recent studies have revealed that HtrA1, a homo-oligomeric PDZ serine protease, can dissolve and degrade AD-linked tau and Aβ42 fibrils in an ATP-independent manner (Tennstaedt et al., 2012 ; Poepsel et al., 2015 ). HtrA1 first dissolves tau and Aβ42 fibrils and then degrades them, as protease-defective HtrA1 variants dissolve fibrils without degrading them (Poepsel et al., 2015 ). HtrA1 is found in the cytoplasm (∼30%) but is also secreted (∼70%; Poepsel et al., 2015 ). Indeed, HtrA1 is known to degrade substrates in both the extracellular space and the cytoplasm (Chien et al., 2009 ; Campioni et al., 2010 ; Tiaden and Richards, 2013 ). Thus HtrA1 could dissolve Aβ42 fibrils in the extracellular space and tau fibrils in the cytoplasm and simultaneously destroy the two cardinal features of AD (Poepsel et al., 2015 ). I suspect that this system becomes overwhelmed or is insufficient in AD, and thus potentiating and tailoring HtrA1 disaggregase activity could be a valuable therapeutic strategy. For example, it might be advantageous to simply degrade Aβ42 after disaggregation if the peptide has no beneficial function. Thus HtrA1 variants with enhanced disaggregation and degradation activity against Aβ42 could be extremely useful. However, Aβ42 (and related Aβ peptides) may have physiological functions that are presently underappreciated (Soscia et al., 2010 ; Fedele et al., 2015 ), in which case HtrA1 variants with enhanced disaggregase activity but reduced proteolytic activity could be vital. HtrA1 variants with enhanced disaggregase activity but reduced proteolytic activity may also be particularly important to recover functional tau from neurofibrillary tangles to reverse loss of tau function in AD and various tauopathies (Santacruz et al., 2005 ; Trojanowski and Lee, 2005 ; Dixit et al., 2008 ).I suggest that relatively small changes in primary sequence will yield large increases in disaggregase activity for these systems as they do for Hsp104 (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). If true, this would further suggest that small molecules that bind in the appropriate regions of Hsp110, Hsp70, Hsp40, or HtrA1 might also enhance disaggregase activity. Thus, isolating small-molecule enhancers of the Hsp110, Hsp70, and Hsp40 or HtrA1 disaggregase systems could yield important therapeutics. Indeed, I hypothesize that enhancing the activity of the Hsp110, Hsp70, and Hsp40 or HtrA1 disaggregase system with specific small molecules will enable dissolution of toxic oligomeric and amyloid forms of various disease proteins and confer therapeutic benefits in ALS, PD, AD, and potentially other neurodegenerative disorders.It is intriguing that several small molecules are already known to enhance various aspects of Hsp70 chaperone activity (Pratt et al., 2015 ; Shrestha et al., 2016 ). These include MKT-077, JG-98, YM-1, YM-8, and 115-7c (Wisen et al., 2010 ; Pratt et al., 2015 ). It is not known whether any of these stimulates the disaggregase activity of the Hsp110, Hsp70, and Hsp40 system. MKT-077, JG-98, YM-1, and YM-8 are rhodocyanines that bind with low micromolar affinity to the nucleotide-binding domain of ADP- but not ATP-bound Hsp70, stabilizing the ADP-bound state (Pratt et al., 2015 ). The ADP-bound state of Hsp70 engages clients with higher affinity, and consequently MKT-077, JG-98, and YM-1 activate binding of Hsp70 to misfolded proteins (Wang et al., 2013 ; Pratt et al., 2015 ). Thus, under some conditions, these small molecules can promote folding of certain Hsp70 clients (Morishima et al., 2011 ; Pratt et al., 2015 ). However, prolonged interaction of clients with Hsp70 promotes their CHIP-dependent ubiquitylation and degradation in vivo (Morishima et al., 2011 ; Wang et al., 2013 ; Pratt et al., 2015 ). Intriguingly, YM-1 promotes clearance of polyglutamine oligomers and aggregates in cells (Wang et al., 2013 ; Pratt et al., 2015 ). MKT-0777, YM-1, JG-98, and YM-8 also promote clearance of tau and confer therapeutic benefit in tauopathy models (Abisambra et al., 2013 ; Miyata et al., 2013 ; Fontaine et al., 2015 ). Of importance, YM-8 is long lived in vivo and crosses the blood–brain barrier (Miyata et al., 2013 ). The dihydropyrimidine 115-7c activates Hsp70 ATPase turnover rate, promotes Hsp70 substrate refolding, and reduces α-synuclein aggregation in cell culture (Wisen et al., 2010 ; Kilpatrick et al., 2013 ). It binds to the IIA subdomain of Hsp70 and promotes the active Hsp70–Hsp40 complex (Wisen et al., 2010 ). Small-molecule enhancers of HtrA1 protease activity have also emerged (Jo et al., 2014 ). Thus it will be important to assess whether these small molecules enhance the activity of their respective disaggregases against various neurodegenerative substrates.Although small molecules that enhance disaggregase activity of endogenous human proteins might be the most immediately translatable, gene-, mRNA-, or protein-based therapies can also be envisioned. For example, adeno-associated viruses expressing enhanced disaggregases might be used to target degenerating neurons (Dong et al., 2005 ; Lo Bianco et al., 2008 ; Deverman et al., 2016 ). Alternatively, if viral vectors are undesirable, modified mRNAs might serve as an alternative to DNA-based gene therapy (Kormann et al., 2011 ). Protein-based therapeutics could also be explored. For example, intraperitoneal injection of human Hsp70 increased lifespan, delayed symptom onset, preserved motor function, and prolonged motor neuron viability in a mouse model of ALS (Gifondorwa et al., 2007 ; Gifondorwa et al., 2012 ). Several other studies suggest that exogenous delivery of Hsp70 can have beneficial, neuroprotective effects in mice (Nagel et al., 2008 ; Bobkova et al., 2014 ; Bobkova et al., 2015 ).Ultimately, if safety and ethical concerns can be overcome in a circumspect, risk-averse manner, CRISPR-Cas9–based therapeutics might even be used to genetically alter the underlying disaggregase to a potentiated form in selectively vulnerable neuronal populations. This approach might be particularly valuable if enhanced disaggregase activity is not detrimental in the long term. Moreover, stem cell–based therapies for replacing lost neurons could also be fortified to express enhanced disaggregase systems. Thus they would be endowed with resistance to potential infection by prion-like conformers that might have accumulated during disease progression (Cushman et al., 2010 ).Enhanced disaggregase activity is likely to be highly advantageous to neurons under circumstances in which protein misfolding has overwhelmed the system (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). However, inappropriate hyperactivity of protein disaggregases might also have detrimental, off-target effects under regular conditions in which protein misfolding is not an overwhelming issue (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). Thus it may be advantageous to engineer enhanced protein disaggregases to be highly substrate specific. In this way, off-target effects would be readily avoided. There is strong precedent for directed evolution or engineering of specialized chaperone or protein activity from a generalist antecedent (Wang et al., 2002 ; Farrell et al., 2007 ; Smith et al., 2015 ). Thus, engineering specialist disaggregases for each disease substrate could be achieved. Alternatively, transient or intermittent doses of enhanced disaggregases at specific times or places where they are most needed would also minimize potentially toxic side effects. For example, enhanced disaggregase activity might be applied ephemerally to clear existing misfolded conformers and then be withdrawn once the endogenous proteostasis network regains control. Similarly, it is straightforward to envision administration of small-molecule enhancers of disaggregase activity in intermittent protocols that enable facile recovery from potential side effects (Fontaine et al., 2015 ). In this way, any adverse effects of enhanced protein-disaggregase activity under normal physiological conditions would be avoided. Many barriers will need to be safely overcome to implement a successful therapeutic disaggregase, including how to deliver enhanced disaggregase activity to exactly where it is needed. However, these obstacles are not a reason to be pessimistic. On the contrary, the isolation of engineered disaggregases that efficaciously reverse deleterious misfolding of neurodegenerative disease proteins directs our attention to considerably expand the environs in which they should be sought. My closing sentences, therefore, are intended to be provocative.I suspect that neuroprotection could be broadly actualized via precise but subtle alterations to existing protein-disaggregase modalities. The engineering and evolution of protein disaggregases could yield important solutions to avert an imminent plague of neurodegenerative disorders that promises to devastate our society. I strongly suspect that cures for various neurodegenerative disorders will be realized by pioneering as-yet-uncharted regions of disaggregase sequence space or chemical space to elucidate small-molecule enhancers of disaggregase activity.  相似文献   

13.
Mithramycin is an antitumor polyketide drug produced by Streptomyces argillaceus that contains two deoxysugar chains, a disaccharide consisting of two d-olivoses and a trisaccharide consisting of a d-olivose, a d-oliose, and a d-mycarose. From a cosmid clone (cosAR3) which confers resistance to mithramycin in streptomycetes, a 3-kb PstI-XhoI fragment was sequenced, and two divergent genes (mtmGI and mtmGII) were identified. Comparison of the deduced products of both genes with proteins in databases showed similarities with glycosyltransferases and glucuronosyltransferases from different sources, including several glycosyltransferases involved in sugar transfer during antibiotic biosynthesis. Both genes were independently inactivated by gene replacement, and the mutants generated (M3G1 and M3G2) did not produce mithramycin. High-performance liquid chromatography analysis of ethyl acetate extracts of culture supernatants of both mutants showed the presence of several peaks with the characteristic spectra of mithramycin biosynthetic intermediates. Four compounds were isolated from both mutants by preparative high-performance liquid chromatography, and their structures were elucidated by physicochemical methods. The structures of these compounds were identical in both mutants, and the compounds are suggested to be glycosylated intermediates of mithramycin biosynthesis with different numbers of sugar moieties attached to C-12a-O of a tetracyclic mithramycin precursor and to C-2-O of mithramycinone: three tetracyclic intermediates containing one sugar (premithramycin A1), two sugars (premithramycin A2), or three sugars (premithramycin A3) and one tricyclic intermediate containing a trisaccharide chain (premithramycin A4). It is proposed that the glycosyltransferases encoded by mtmGI and mtmGII are responsible for forming and transferring the disaccharide during mithramycin biosynthesis. From the structures of the new metabolites, a new biosynthetic sequence regarding late steps of mithramycin biosynthesis can be suggested, a sequence which includes glycosyl transfer steps prior to the final shaping of the aglycone moiety of mithramycin.

Many bioactive drugs contain sugars attached to their aglycones which are usually important or, in some cases, essential for bioactivity. Most of these sugars belong to the family of the 6-deoxyhexoses (6-DOH) (18, 20, 27) and are transferred to the different aglycones as late steps in biosynthesis. Genes involved in the biosynthesis of different 6-DOH have been reported elsewhere and participate in the biosynthesis of erythromycin (9, 12, 31, 38, 39), daunorubicin (13, 26, 36), mithramycin (22), granaticin (2), streptomycin (10, 28), and tylosin (14, 23). However, information about the glycosyltransferases (GTFs) responsible for the transfer of the sugars to the respective aglycones is quite scarce. So far, only two GTFs from antibiotic producers have been biochemically characterized in detail, and they are involved in macrolide inactivation: Mgt, from Streptomyces lividans, a nonmacrolide producer (7, 17); and OleD, from the oleandomycin producer Streptomyces antibioticus (15, 29), which inactivates oleandomycin by addition of glucose to the 2′-OH group of the desosamine attached to the macrolactone ring (40). In the last several years, a few genes have been proposed to encode GTFs involved in the transfer of sugars to various aglycones during biosynthesis: dnrS and dnrH, from Streptomyces peucetius, involved in daunorubicin (26) and baumycin (36) biosynthesis, respectively; gra-orf5, involved in granaticin biosynthesis (2); eryCIII and eryBV, involved in the transfer of desosamine and mycarose, respectively, in erythromycin biosynthesis (12, 32, 38); and tylM2, from Streptomyces fradiae, involved in sugar transfer during tylosin biosynthesis (14).Mithramycin (Fig. (Fig.1)1) is an aromatic polyketide which shows antibacterial activity against gram-positive bacteria and also antitumor activity (30, 37). Together with the chromomycins and the olivomycins, mithramycin constitutes the so-called aureolic acid group of antitumor drugs. The polyketide moiety of mithramycin is derived from the condensation of 10 acetate building blocks in a series of reactions catalyzed by a type II polyketide synthase (5, 21). The mithramycin aglycone is glycosylated at positions 6 and 2 with disaccharide (d-olivose- d-olivose) and trisaccharide (d-olivose-d-oliose-d-mycarose) moieties, respectively. All of these sugars belong to the 6-DOH family. In the mithramycin pathway, two genes (mtmD and mtmE) encoding two enzymes (glucose-1-phosphate:TTP thymidylyl transferase and dTDP-4,6-dehydratase, respectively) involved in the biosynthesis of the mithramycin 6-DOH have been cloned, and their participation in mithramycin biosynthesis has been demonstrated by insertional inactivation (22). Here we report the characterization of two Streptomyces argillaceus genes (mtmGI and mtmGII) that encode two putative GTFs responsible for the formation and transfer of the disaccharide chain. Inactivation of these genes by gene replacement showed identical accumulated compounds and allowed the isolation of four glycosylated compounds which are likely to be intermediates in mithramycin biosynthesis. Open in a separate windowFIG. 1Structures of mithramycin, premithramycinone, and the new premithramycins.  相似文献   

14.
15.
16.
17.
18.
FTY720, a sphingosine analog, is in clinical trials as an immunomodulator. The biological effects of FTY720 are believed to occur after its metabolism to FTY720 phosphate. However, very little is known about whether FTY720 can interact with and modulate the activity of other enzymes of sphingolipid metabolism. We examined the ability of FTY720 to modulate de novo ceramide synthesis. In mammals, ceramide is synthesized by a family of six ceramide synthases, each of which utilizes a restricted subset of acyl-CoAs. We show that FTY720 inhibits ceramide synthase activity in vitro by noncompetitive inhibition toward acyl-CoA and uncompetitive inhibition toward sphinganine; surprisingly, the efficacy of inhibition depends on the acyl-CoA chain length. In cultured cells, FTY720 has a more complex effect, with ceramide synthesis inhibited at high (500 nm to 5 μm) but not low (<200 nm) sphinganine concentrations, consistent with FTY720 acting as an uncompetitive inhibitor toward sphinganine. Finally, electrospray ionization-tandem mass spectrometry demonstrated, unexpectedly, elevated levels of ceramide, sphingomyelin, and hexosylceramides after incubation with FTY720. Our data suggest a novel mechanism by which FTY720 might mediate some of its biological effects, which may be of mechanistic significance for understanding its mode of action.FTY720 (2-amino-(2-2-[4-octylphenyl]ethyl)propane 1,3-diol hydrochloride), also known as Fingolimod, is an immunosuppressant drug currently being tested in clinical trials for organ transplantation and autoimmune diseases such as multiple sclerosis (1). FTY720 is a structural analog of sphingosine, a key biosynthetic intermediate in sphingolipid (SL)2 metabolism (see Fig. 1). In vivo, FTY720 is rapidly phosphorylated by sphingosine kinase 2 (2, 3) to form FTY720 phosphate (FTY720-P), an analog of sphingosine 1-phosphate (S1P) (see Fig. 1A). FTY720-P binds to S1P receptors (S1PRs) (4, 5) and thereby induces a variety of phenomena such as T-lymphocyte migration from lymphoid organs (69); accordingly, FTY720 treatment results in lymphopenia as lymphocytes (especially T-cells) become sequestered inside lymphoid organs (1012). The ability of FTY720 to sequester lymphocytes has stimulated its use in treatment of allograft rejection and autoimmune diseases (13), and FTY720 is currently under phase III clinical trials for treatment of relapsing-remitting multiple sclerosis (14).Open in a separate windowFIGURE 1.SL structure and metabolism. A, structures of SLs and SL analogs used in this study. B, metabolic inter-relationships between SLs and the metabolism of FTY720. The enzymes are denoted in italics. LPP3, lipid phosphate phosphatase 3; LPP1α, lipid phosphate phosphatase 1α.Apart from the binding of FTY720-P to S1PRs, the ability of FTY720 to inhibit S1P lyase (15) (see Fig. 1B), and its inhibitory effect on cytosolic phospholipase A2 (16), whose activity can be modulated by ceramide 1-phosphate (17), little is known about whether FTY720 or FTY720-P can modulate the activity of other enzymes of SL metabolism. Because FTY720 is an analog of sphingosine, one of the two substrates of ceramide synthase (CerS) (see Fig. 1), we now examine whether FTY720 can modulate CerS activity. CerS utilizes fatty acyl-CoAs to N-acylate sphingoid long chain bases. Six CerS exist in mammals, each of which uses a restricted subset of acyl-CoAs (1823). We demonstrate that FTY720 inhibits CerS activity and that the extent of inhibition varies according to the acyl chain length of the acyl-CoA substrate. Surprisingly, FTY720 inhibits CerS activity toward acyl-CoA via noncompetitive inhibition and toward sphinganine via uncompetitive inhibition. Finally, the mode of interaction of FTY720 with CerS in cultured cells depends on the amount of available sphinganine. Together, we show that FTY720 modulates ceramide synthesis, which may be of relevance for understanding its biological effects in vivo and its role in immunomodulation.  相似文献   

19.
Malic enzyme has a dimer of dimers quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In addition, the enzyme has distinct active sites within each subunit. The mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) isoform behaves cooperatively and allosterically and exhibits a quaternary structure in dimer-tetramer equilibrium. The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) isoform is noncooperative and nonallosteric and exists as a stable tetramer. In this study, we analyze the essential factors governing the quaternary structure stability for human c-NADP-ME and m-NAD(P)-ME. Site-directed mutagenesis at the dimer and tetramer interfaces was employed to generate a series of dimers of c-NADP-ME and m-NAD(P)-ME. Size distribution analysis demonstrated that human c-NADP-ME exists mainly as a tetramer, whereas human m-NAD(P)-ME exists as a mixture of dimers and tetramers. Kinetic data indicated that the enzyme activity of c-NADP-ME is not affected by disruption of the interface. There are no significant differences in the kinetic properties between AB and AD dimers, and the dimeric form of c-NADP-ME is as active as tetramers. In contrast, disrupting the interface of m-NAD(P)-ME causes the enzyme to be less active than wild type and to become less cooperative for malate binding; the kcat values of mutants decreased with increasing Kd,24 values, indicating that the dissociation of subunits at the dimer or tetramer interfaces significantly affects the enzyme activity. The above results suggest that the tetramer is required for a fully functional m-NAD(P)-ME. Taken together, the analytical ultracentrifugation data and the kinetic analysis of these interface mutants demonstrate the differential role of tetramer organization for the c-NADP-ME and m-NAD(P)-ME isoforms. The regulatory mechanism of m-NAD(P)-ME is closely related to the tetramer formation of this isoform.Malic enzymes catalyze a reversible oxidative decarboxylation of l-malate to yield pyruvate and CO2 with reduction of NAD(P)+ to NAD(P)H. This reaction requires a divalent metal ion (Mg2+ or Mn2+) for catalysis (13). Malic enzymes are found in a broad spectrum of living organisms that share conserved amino acid sequences and structural topology; such shared characteristics reveal a crucial role for the biological functions of these enzymes (4, 5). In mammals, malic enzymes have been divided into three isoforms according to their cofactor specificity and subcellular localization as follows: cytosolic NADP+-dependent (c-NADP-ME),2 mitochondrial NADP+-dependent (m-NADP-ME), and mitochondrial NAD(P)+-dependent (m-NAD(P)-ME). The m-NAD(P)-ME isoform displays dual cofactor specificity; it can use both NAD+ and NADP+ as the coenzyme, but NAD+ is more favored in a physiological environment (68). Dissimilar to the other two isoforms, m-NAD(P)-ME binds malate cooperatively, and it can be allosterically activated by fumarate; the sigmoidal kinetics observed with cooperativity is abolished by fumarate (912). Mutagenesis and kinetic studies demonstrated that ATP is an active-site inhibitor, although it also binds to the exo sites in the tetramer interface (1315). Structural studies also revealed an allosteric binding site for fumarate residing at the dimer interface. Mutation in the binding site significantly affects the activating effects of fumarate (11, 16, 17).The c-NADP-ME and m-NADP-ME isoforms play an important role in lipogenesis by providing NADPH for the biosynthesis of long-chain fatty acids and steroids. Thus, c-NADP-ME together with acetyl-CoA carboxylase, fatty-acid synthase, and glucose-6-phosphate dehydrogenase are classified as lipogenic enzymes (2, 1821). The m-NAD(P)-ME isoform has attracted much attention because it is involved in glutaminolysis, which is an energy-producing pathway of tumor cells that utilizes glutamine and glutamate. Thus, m-NAD(P)-ME is considered to be a potential target in cancer therapy (2227).Various crystal structures of malic enzymes in complex with substrate, metal ion, coenzyme, regulator, and inhibitor are available in the Protein Data Bank (4, 11, 2832). The overall tertiary structures of these malic enzymes are similar, but there are still some differences that may be significant for catalysis and regulation of the enzyme. Malic enzyme exists as a dimer of dimers with a stronger association of the dimer interface than that of the tetramer interface (Fig. 1A). The dimer interface is formed by subunits A and B or C and D (Fig. 1B), whereas the tetramer interaction consists of contacts between subunits A and D or B and C (Fig. 1C). A hydrophobic interaction is the major driving force for subunit assembly, but hydrogen bonding and ionic interactions also contribute markedly. The homotetramer of the enzyme is composed of four identical monomers each with its own active site. In the structure of human m-NAD(P)-ME, aside from its well defined active site, there are two regulatory sites on the enzyme (Fig. 1A). One of these sites is located at the dimer interface and is occupied by fumarate (Fig. 1B), whereas the other site, which is referred to as the exo site, is located at the tetramer interface and is occupied by either an NAD or an ATP molecule (Fig. 1A). In the ME family, Ascaris suum and human m-NAD(P)-ME were found to be activated by fumarate (11, 1517, 31). However, the relationship between enzyme regulation and subunit-subunit interaction is still unclear.Open in a separate windowFIGURE 1.Dimer and tetramer interfaces of human m-NAD(P)-ME. A, dimer of dimers quaternary structure of human m-NAD(P)-ME (Protein Data Bank code 1PJ3). The active site, fumarate site, and exo site in each subunit are indicated. B, dimer interface between A and B subunits of m-NAD(P)-ME. C, tetramer interface between A and D subunits of m-NAD(P)-ME. The amino acid residues at the dimer interface, Gln-51, Glu-90, Asp-139, His-142, and Asp-568 and C terminus in the tetramer interface, are represented by ball-and-stick modeling. The amino acid residues 51 and 90 in human c-NADP-ME are His and Asp, respectively. This figure was generated with PyMOL (DeLano Scientific LLC, San Carlos, CA).Previous studies have shown that the quaternary structure stability of malic enzyme isoforms is diverse. At neutral pH, pigeon c-NADP-ME exists as a unique tetramer with a sedimentation coefficient of ∼10 S (3335), whereas human m-NAD(P)-ME exists as a mixture of tetramer and dimer of 9.5 S and 6.5 S, respectively (13, 35). Some mutations at the interface will affect the quaternary structure (3437). Although the crystal structure of human c-NADP-ME has not been resolved, it is believed that it is similar to pigeon c-NADP-ME.Here we analyze the essential factors governing quaternary structure stability for human c-NADP-ME and m-NAD(P)-ME. Site-directed mutagenesis at the dimer and tetramer interfaces was used to disrupt the tetramer organization to create a series of c-NADP-ME and m-NAD(P)-ME dimers. Combined with the analytical ultracentrifugation data and kinetic analysis of these interface mutants, we demonstrate the differential role of tetramer organization for the c-NADP-ME and m-NAD(P)-ME isoforms. The regulatory mechanism of m-NAD(P)-ME is highly associated with the tetramer formation of this isoform.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号