首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friend spleen focus-forming virus (F-SFFV) is a replication-defective acutely leukemogenic mouse retrovirus and encodes an envelope protein (Env)-like membrane glycoprotein (gp55) in its defective env gene, which is responsible for the early stage of the viral leukemogenesis. Gp55 is a modified Env protein and contains a polytropic mink cell focus-inducing (MCF) murine leukemia virus (MuLV) Env gp70-derived sequence in its amino-terminal region. To evaluate the possibility that the presumed binding of gp55 to an MCF MuLV receptor protein has some role in leukemogenesis, we examined the biological activities of a mutant gp55 (XE gp55), which has a xenotropic MuLV Env gp70 amino-terminal region. XE gp55 displayed almost the same biological activities as the wild-type gp55, excluding the above possibility.  相似文献   

2.
Co-infection of neonatal BALB/c mice with Friend virus (FV) complex (containing defective spleen focus-forming virus [SFFV] and endogenous N-tropic leukemia-inducing helper virus [LLV-F]) and B-tropic Tennant leukemia virus (TenLV) resulted in the inhibition of LLV-F by the Fv-1(b) gene and recovery of a TenLV pseudotype of SFFV, abbreviated SFFV(TenLV). The host range of this pseudotype was B-tropic, since SFFV(TenLV) was 10 to 100 times more infectious for B-type (Fv-1(bb)) than for N-type (Fv-1(nn)) mice. The similar patterns of neutralization of N-tropic and B-tropic SFFV by type-specific murine antisera suggested that the difference in infectivity between these two SFFV preparations did not reside in envelope determinants. Rather, helper control of SFFV's host range was only apparent and dependent upon the ability of associated virus to provide a helper function for late stages in SFFV synthesis. Early stages in SFFV's infectious cycle were shown to be helper independent. The Fv-1 gene did not act at the level of the cell membrane to effectively restrict SFFV infection, since SFFV-induced transformed cells could be detected in the absence of spleen focus formation and SFFV synthesis. Further, the generation of these transformed cells by SFFV followed a one-hit, dose-response pattern, suggesting that SFFV-induced cell transformation is helper independent. Finally, restriction of helper function by Fv-1 may be an intracellular event, because both SFFV and its associated LLV-F helper share common envelope determinants and presumably adsorb onto and penetrate target cells with equal efficiency.  相似文献   

3.
N Watanabe  M Nishi  Y Ikawa    H Amanuma 《Journal of virology》1990,64(6):2678-2686
To determine the biological significance of the 585-base-pair deletion in the env gene of Friend spleen focus-forming virus (SFFV) encoding a leukemogenic glycoprotein (gp55), we examined the pathogenicity of a constructed mutant SFFV (SFFVDF). In the SFFVDF genome, the env deletion was filled in with the corresponding env sequence of Friend mink cell focus-forming virus, whereas the 6-base-pair duplication and the single base insertion near the 3' terminus of SFFV env remained intact. SFFVDF was nonpathogenic in adult mice. During passage of SFFVDF through newborn mice, we recovered various pathogenic variant SFFVs. Molecular analyses of variant SFFV genome DNAs revealed the presence of a distinct deletion in each env gene, which was similar but not identical to that in the wild-type SFFV env. Starting with the SFFVDF genome DNA, other mutant SFFV genome DNAs were constructed in which the sequence coding for the gp70/p15E proteolytic cleavage site present in the SFFVDF genome was modified by oligonucleotide-directed site-specific mutagenesis to prevent the cleavage. These mutant SFFVs were also nonpathogenic. These results indicate that for the pathogenic activity of gp55, a certain env deletion is necessary which causes production of a gp70-p15E fusion protein with an absence of at least the N-terminal one-third of the p15E-coding region.  相似文献   

4.
The membrane-proximal external region(MPER) of Lassa virus(LASV) glycoprotein complex(GPC) is critical in modulating its functionality. Till now, the high-resolution structure of the intact GPC, including MPER is not available. In this study, we used alanine substitution to scan all 16 residues located in LASV MPER. Western blotting and quantification fusion assay showed that the residues located at the C terminus of the HR2(M414 and L415) and N terminus of the MPER(K417 and Y419) are critical for GPC-mediated membrane fusion function. Furthermore, cell surface biotinylation experiments revealed that M414 A, K417 A and Y419 A expressed similar levels as WT, whereas L415 A mutant led to a reduction of mature GPC on the cell surface. Moreover, substitution of these residues with the similar residue such as M414 L, L415 I, K417 R and Y419 F would partly compensate the loss of the fusion activity caused by the alanine mutant in these sites. Results from this study showed that several key residues in the MPER region are indispensable to promote the conformational changes that drive fusion events and shed light on the structure analysis of LASV GPC and anti-LASV therapeutics.  相似文献   

5.
Posttranslational modifications, e.g. proteolysis, glycosylation, and citrullination regulate chemokine function, affecting leukocyte migration during inflammatory responses. Here, modification of CXCL5/epithelial cell-derived neutrophil-activating protein-78 (ENA-78) by proteases or peptidylarginine deiminases (PAD) was evaluated. Slow CXCL5(1–78) processing by the myeloid cell marker aminopeptidase N/CD13 into CXCL5(2–78) hardly affected its in vitro activity, but slowed down the activation of CXCL5 by the neutrophil protease cathepsin G. PAD, an enzyme with a potentially important function in autoimmune diseases, site-specifically deiminated Arg9 in CXCL5 to citrulline, generating [Cit9]CXCL5(1–78). Compared with CXCL5(1–78), [Cit9]CXCL5(1–78) less efficiently induced intracellular calcium signaling, phosphorylation of extracellular signal-regulated kinase, internalization of CXCR2, and in vitro neutrophil chemotaxis. In contrast, conversion of CXCL5 into the previously reported natural isoform CXCL5(8–78) provided at least 3-fold enhanced biological activity in these tests. Citrullination, but not NH2-terminal truncation, reduced the capacity of CXCL5 to up-regulate the expression of the integrin α-chain CD11b on neutrophils. Truncation nor citrullination significantly affected the ability of CXCL5 to up-regulate CD11a expression or shedding of CD62L. In line with the in vitro results, CXCL5(8–78) and CXCL5(9–78) induced a more pronounced neutrophil influx in vivo compared with CXCL5(1–78). Administration of 300 pmol of either CXCL5(1–78) or [Cit9]CXCL5(1–78) failed to attract neutrophils to the peritoneal cavity. Citrullination of the more potent CXCL5(9–78) lowers its chemotactic potency in vivo and confirms the tempering effect of citrullination in vitro. The highly divergent effects of modifications of CXCL5 on neutrophil influx underline the potential importance of tissue-specific interactions between chemokines and PAD or proteases.  相似文献   

6.
刘晓丽  吴冰  王志玉 《病毒学报》2009,25(2):101-106
为了探讨风疹病毒包膜糖蛋白E1中二硫键对风疹病毒细胞融合活性的影响,在构建重组载体pBSK-SPE2E1的基础上,利用PCR定点突变与体内同源重组相结合的方法,构建了11个突变体,分别将E1外功能区的11个半胱氨酸残基突变为其它氨基酸残基,从而去除一个二硫键,利用Giemsa染色法定性检测由此引起的细胞融合情况,流式细胞术检测导入的外源DNA在细胞表面的表达效率,血吸附检测重组表达的突变体蛋白的受体识别活性。结果表明E1外功能区的10个二硫键对RV的细胞融合活性都有重要影响,任何一个二硫键的去除均导致E1的细胞融合活性丧失;其中第5和第8个半胱氨酸残基所形成的二硫键与E2和E1的相互作用有关,第3、第4和第13个半胱氨酸残基所形成的二硫键可能直接影响E1的细胞融合功能。  相似文献   

7.
The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P Envs.  相似文献   

8.
9.
Rubella virus (RV) virions contain two glycosylated membrane proteins, E1 and E2, that exist as a heterodimer and form the viral spike complexes on the virion surface. Formation of an E1-E2 heterodimer is required for transport of E1 out of the endoplasmic reticulum lumen to the Golgi apparatus and plasma membrane. To investigate the nature of the E1-E2 interaction, we have introduced mutations in the internal hydrophobic region (residues 81 to 109) of E1. Substitution of serine at Cys82 (mutant C82S) or deletion of this hydrophobic domain (mutant dt) of E1 resulted in a disruption of the E1 conformation that ultimately affected E1-E2 heterodimer formation and cell surface expression of both E1 and E2. Substitution of either aspartic acid at Gly93 (G93D) or glycine at Pro104 (P104G) was found to impair neither E1-E2 heterodimer formation nor the transport of E1 and E2 to the cell surface. Fusion of RV-infected cells is induced by a brief treatment at a pH below 6.0. To test whether this internal hydrophobic domain is involved in the membrane fusion activity of RV, transformed BHK cell lines expressing either wild-type or mutant spike proteins were exposed to an acidic pH and polykaryon formation was measured. No fusion activity was observed in the C82S, dt, and G93D mutants; however, the wild type and the P104G mutant exhibited fusogenic activities, with greater than 60% and 20 to 40% of the cells being fused, respectively, at pH 4.8. These results suggest that it is likely that the region of E1 between amino acids 81 and 109 is involved in the membrane fusion activity of RV and that it may be important for the interaction of that protein with E2 to form the E1-E2 heterodimer.  相似文献   

10.
Glycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared with native HSV-1 (i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells and reduced release of viral particles from the surface of infected cells). Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared with native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.  相似文献   

11.
N Watanabe  T Yugawa  Y Ikawa    H Amanuma 《Journal of virology》1995,69(12):7606-7611
Friend spleen focus-forming virus (F-SFFV) causes acute erythroleukemia in mice and encodes in its defective env gene an Env-like membrane glycoprotein (gp55). The F-SFFV env gene has three characteristic structures compared with that of ecotropic murine leukemia viruses (MuLVs): substitution by the polytropic MuLV env sequence, a 585-bp deletion, and a 1-bp insertion. All of these characteristic structures are essential for the leukemogenic potential of gp55 of polycythemia-inducing isolates of F-SFFV (F-SFFVp). The 1-bp insertion causes changes of six amino acids and truncation by 34 amino acids at the C terminus. In this study, we constructed 12 mutant F-SFFV genomes starting from the wild-type F-SFFVp and examined the effect of the C-terminal truncation and the six altered amino acids on the pathogenic activity of gp55. The results indicated that at least 18 to 24 amino acids must be deleted from the C terminus for the env product to be pathogenically active. We also found that the six altered amino acids contributed significantly to the pathogenic activity of gp55. Analyses of the cellular processing of these mutant gp55s supported a correlation between the pathogenic activity of gp55 and its efficiency in overall cellular processing.  相似文献   

12.
13.
A maximum-likelihood analysis of selection pressures acting on the attachment (G) glycoprotein gene of respiratory syncytial virus (RSV) from humans (HRSV) and bovines (BRSV) is presented. Six positively selected sites were identified in both group A and group B of HRSV, although only one site was common between them, while no positively selected sites were detected in BRSV. All positively selected sites were located within the ectodomain of the G protein and showed some association with positions of immunoglobulin (Ig) epitopes and sites of O-glycosylation. These results suggest that immune (antibody)-driven natural selection is an important determinant of RSV evolution and that this selection pressure differs among strains. The passage histories of RSV strains were also shown to affect the distribution of positively selected sites, particularly in HRSV B, and should be considered whenever retrospective analysis of adaptive evolution is undertaken. Received: 15 August 2000 / Accepted: 2 November 2000  相似文献   

14.
PVC-441 murine leukemia virus (MuLV) is a member of the PVC group of Friend MuLV (F-MuLV)-derived neuropathogenic retroviruses. In order to determine the molecular basis for the difference in neuropathogenicity between PVC-441 and the previously characterized PVC-211 MuLVs, the entire nucleotide sequence of PVC-441 MuLV was determined and compared with those of PVC-211 and F-MuLV. The results suggest that PVC-441 and PVC-211 MuLVs were formed as a result of random mutations of F-MuLV and developed differently. The distinct pathogenicities of PVC-441 and PVC-211 MuLVs were maintained in the viruses regenerated from their molecular clones, and the sequences responsible for the pathological differences observed can be localized to the env gene. The amino acid sequence of PVC-441 deduced from its nucleotide sequence revealed a number of differences from PVC-211, the most striking of which was a difference at position 129 of the SU proteins in the two viruses. Host range studies with a brain capillary endothelial cell line (RTEC-6) and Chinese hamster ovary cells (CHO-K1) revealed that PVC-441, like PVC-211, could infect these cells but its efficiency of infection was lower than that of PVC-211. These results may account for the difference in neuropathogenicity between PVC-441 and PVC-211.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) may be studied by molecular or immunological approaches. Most analyses have been performed by genetic comparison of isolates and have led to the definition of clades or subtypes within the major (M) group of HIV-1. Five subtypes (A to E) were initially identified by comparison of genomic sequences. Four new subtypes (F to I) were identified more recently. Amino acid differences in the immunogenic V3 loop between isolates have also been studied, leading to a phenetic classification of at least 14 clusters (1 to 14) of sequences (B. T. M. Korber, K. McInnes, R. F. Smith, and G. Myers, J. Virol. 68:6730–6744, 1994). In this study, we compared the antigenicity of the V3 consensus sequences defined by phylogenetic analysis to the antigenicity of those defined by phenetic analysis. We used a recently developed subtype-specific enzyme immunoassay (SSEIA) that uses the principle of blocking with an excess of peptide in the liquid phase. Two SSEIAs were performed, the first with five V3 sequences defined by phylogenetic analysis and the second with 14 V3 sequences defined by phenetic analysis. A total of 168 HIV-1 sera taken from seropositive individuals from seven different countries or regions were studied. Experimental and statistical data, including correlation matrix and cluster analyses, demonstrated associations between the genetic subtypes and phenetically associated groups. Most of these were predicted by Korber et al. (J. Virol. 68:6730–6744, 1994) by theoretical analysis. We also found that V3 sequences can be grouped into between three and five antigenically unrelated categories. Residues that may be responsible for major antigenic differences were identified at the apex of the V3 loop, within the octapeptide xIGPGxxx, where x represents the critical positions. Our study provides evidence that there is a limited number of V3 serotypes which could be easily monitored by serological assays to study the diversity and dynamics of HIV-1 strains.The diversity of human immunodeficiency virus type 1 (HIV-1) is a major problem in the development of an effective vaccine against AIDS. Many HIV-1 sequences are now available, and phylogenetic analysis resulting in a continuously developing classification into subtypes or clades is possible (45). HIV-1 isolates are classified into the M group (for major) or O group (for outlier). The O group contains only a few variants, all from a limited area of Africa (19, 27, 50). The M group includes variants responsible for the present AIDS pandemic. It contains at least five subtypes (A to E), to which have been added more recently four other subtypes (F to I) (23, 28, 34, 36, 37). Subtypes A, C, D, G, and H are common in Africa (21, 35, 37, 38). Subtype B is the most common in America and Europe (24, 26, 51). Subtype E occurs mainly in Asia (25, 30, 41), and subtype F has been detected in Brazil and Romania (3, 28, 34). These distributions are not restrictive. Subtype C is also present in Asia (India and China), and subtype G is also present in Russia (7, 12, 29). The African subtypes (A, C, and D) and the Asian subtype (E) have also been identified in North America and in European countries (9, 13, 14, 32, 48). All the subtypes are present in Africa, including B (detected in West Africa), E (Central African Republic), and F (Cameroon) (1, 35, 38). Analysis of the genetic diversity of HIV-1 is becoming more difficult due to the increasing frequency of coinfections and recombinations (15, 20, 44).Phylogenetic trees have been generated with gag, env, or tat nucleotide sequences. Shorter DNA sequences encoding the functionally important V3 region of the envelope protein are most frequently used to provide reliable subtype designations (37). The diversity of the immunogenic V3 loop has also been studied by comparing the amino acids of different isolates, leading to a phenetic classification of at least 14 clusters of sequences, each one characterized by a consensus sequence based on the most common amino acid in a given position (22).The heterogeneity of HIV-1 strains is studied mostly by molecular characterization of genomic sequences. This involves sequencing fragments amplified by the PCR or the use of the heteroduplex mobility assay (10, 11). However, although these methods allow direct subtype classification, they are time-consuming and expensive and require highly trained workers. Serotyping of HIV-1 by antibody (Ab) binding to the V3 region has been suggested as an alternative approach (8, 40, 49, 51). Such an approach may make it possible to identify subtypes based on antigenic rather than genetic properties. This immunological information about antigenic diversity might be of value in vaccine development. We recently developed a subtype-specific enzyme immunoassay (SSEIA) which gave results consistent with those of genotyping (4, 48). This assay used V3 consensus sequences defined by genetic classification, so we wanted to compare the antigenicity of these V3 consensus sequences to the antigenicity of those defined by phenetic analysis. The phenetic clustering of V3 loop amino acid sequences is not always consistent with phylogenetic analysis. Our results suggested that a limited number of serotypes may exist and identified amino acids at the tip of the V3 loop that may be responsible for serological discrimination.  相似文献   

16.
Production of recombinant subunit vaccines in transgenic plants may be a means of reducing vaccine costs while increasing availability and safety. A plant-derived product found safe and effective for oral administration would provide additional advantages when used as a vaccine. Outstanding issues with the technology include transgene stability through successive generations and consistent bioproduction. We previously reported expression of glycoprotein B (gB) of human cytomegalovirus in seeds of transgenic tobacco. Here the goal was to determine if gB could be similarly expressed in rice, and if so, to examine expression over several plant generations. Results show that immunoreactive gB was successfully expressed in transgenic rice seeds, with sustained expression over three generations. The gB contained several neutralizing epitopes and was stable over 27 months.  相似文献   

17.
Phosphate homeostasis in multicellular eukaryotes depends on both phosphate influx and efflux. The mammalian Xenotropic Polytropic Virus Receptor 1 (XPR1) shares homology to the Arabidopsis PHO1, a phosphate exporter expressed in roots. However, phosphate export activity of XPR1 has not yet been demonstrated in a heterologous system. Here, we demonstrate that transient expression in tobacco leaves of XPR1-GFP leads to specific phosphate export. Like PHO1-GFP, XPR1-GFP is localized predominantly to the endomembrane system in tobacco cells. These results show that tobacco leaves are a good heterologous system to study the transport activity of members of the PHO1/XPR1 family.  相似文献   

18.
To clarify the relationship between the amino acid variations of the gp120 of human immunodeficiency virus type 1 (HIV-1) and the chemokine receptors that are used as the second receptor for HIV, we evaluated amino acid site variation of gp120 between the X4 strains (use CXCR4) and the R5 strains (use CCR5) from 21 sequences of subtype B. Our analysis showed that residues 306 and 322 in the V3 loop and residue 440 in the C4 region were associated with usage of the second receptor. The polymorphism at residue 440 is clearly associated with the usage of the second receptor: The amino acid at position 440 was a basic amino acid in the R5 strains, and a nonbasic and smaller amino acid in the X4 strains, while the V3 loop of the X4 strains was more basic than that of the R5 strains. This suggests that residue 440 in the C4 region, which is close to the V3 loop in the three-dimensional structure, is critical in determining which second receptor is used. Analysis of codon frequency suggests that, in almost all cases, the difference at residue 440 between basic amino acids in the R5 strains and nonbasic amino acids in the X4 strains could be due to a single nucleotide change. These findings predict that the evolutionary changes in amino acid residue 440 may be correlated with evolutionary changes in the V3 loop. One possibility is that a change in electric charge at residue 440 compensates for a change in electric charge in the V3 loop. The amino acid polymorphism at position 440 can be useful to predict the cell tropism of a strain of HIV-1 subtype B.  相似文献   

19.
Members of the Bunyaviridae family acquire an envelope by budding through the lipid bilayer of the Golgi complex. The budding compartment is thought to be determined by the accumulation of the two heterodimeric membrane glycoproteins G1 and G2 in the Golgi. We recently mapped the retention signal for Golgi localization in one Bunyaviridae member (Uukuniemi virus) to the cytoplasmic tail of G1. We now show that a myc-tagged 81-residue G1 tail peptide expressed in BHK21 cells is efficiently targeted to the Golgi complex and retained there during a 3-h chase. Green-fluorescence protein tagged at either end with this peptide or with a C-terminally truncated 60-residue G1 tail peptide was also efficiently targeted to the Golgi. The 81-residue peptide colocalized with mannosidase II (a medial Golgi marker) and partially with p58 (an intermediate compartment marker) and TGN38 (a trans-Golgi marker). In addition, the 81-residue tail peptide induced the formation of brefeldin A-resistant vacuoles that did not costain with markers for other membrane compartments. Removal of the first 10 N-terminal residues had no effect on the Golgi localization but abolished the vacuolar staining. The shortest peptide still able to become targeted to the Golgi encompassed residues 10 to 40. Subcellular fractionation showed that the 81-residue tail peptide was associated with microsomal membranes. Removal of the two palmitylation sites from the tail peptide did not affect Golgi localization and had only a minor effect on the association with microsomal membranes. Taken together, the results provide strong evidence that Golgi retention of the heterodimeric G1-G2 spike protein complex of Uukuniemi virus is mediated by a short region in the cytoplasmic tail of the G1 glycoprotein.  相似文献   

20.
CNSgp130 is a CNS-specific membrane glycoprotein abundantly expressed throughout the mature mammalian CNS. The molecule is recognised by the mouse monoclonal antibody F3-87-8, which reacts with a determinant of CNSgp130 common to all mammals tested to date. Rat and human CNSgp130 were purified by a combination of F3-87-8 monoclonal antibody affinity and gel permeation chromatography, and the N-terminal amino acid sequence was determined by gas-phase sequencing techniques. The results show a remarkable conservation of the N terminus of the CNSgp130 polypeptide between rats and humans, with complete identity of the first 20 amino acid residues. There was an unusually high and phylogenetically conserved number of cysteines in this region. The sequence showed no homology to other known sequences and should prove useful in precisely identifying the relationship of CNSgp130 to other CNS membrane molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号