共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis B Virus X Protein Is both a Substrate and a Potential Inhibitor of the Proteasome Complex 总被引:13,自引:0,他引:13 下载免费PDF全文
Zongyi Hu Zhensheng Zhang Edward Doo Olivier Coux Alfred L. Goldberg T. Jake Liang 《Journal of virology》1999,73(9):7231-7240
The hepatitis B virus X protein (HBX) is essential for the establishment of HBV infection in vivo and exerts a pleiotropic effect on diverse cellular functions. The yeast two-hybrid system had indicated that HBX could interact with two subunits of the 26S proteasome. Here we demonstrate an association in vivo of HBX with the 26S proteasome complex by coimmunoprecipitation and colocalization upon sucrose gradient centrifugation. Expression of HBX in HepG2 cells caused a modest decrease in the proteasome's chymotrypsin- and trypsin-like activities and in hydrolysis of ubiquitinated lysozyme, suggesting that HBX functions as an inhibitor of proteasome. In these cells, HBX is degraded with a half-life of 30 min. Proteasome inhibitors retarded this rapid degradation and caused a marked increase in the level of HBX and an accumulation of HBX in polyubiquitinated form. Thus, the low intracellular level of HBX is due to rapid proteolysis by the ubiquitin-proteasome pathway. Surprisingly, the proteasome inhibitors blocked the transactivation by HBX, and this effect was not a result of a squelching phenomenon due to HBX accumulation. Therefore, proteasome function is possibly required for the transactivation function of HBX. The inhibition of protein breakdown by proteasomes may account for the multiple actions of HBX and may be an important feature of HBV infection, possibly in helping stabilize viral gene products and suppressing antigen presentation. 相似文献
2.
3.
4.
Nathalie Majeau R��mi Fromentin Christian Savard Marie Duval Michel J. Tremblay Denis Leclerc 《The Journal of biological chemistry》2009,284(49):33915-33925
Hepatitis C virus core protein is the viral nucleocapsid of hepatitis C virus. Interaction of core with cellular membranes like endoplasmic reticulum (ER) and lipid droplets (LD) appears to be involved in viral assembly. However, how these interactions with different cellular membranes are regulated is not well understood. In this study, we investigated how palmitoylation, a post-translational protein modification, can modulate the targeting of core to cellular membranes. We show that core is palmitoylated at cysteine 172, which is adjacent to the transmembrane domain at the C-terminal end of core. Site-specific mutagenesis of residue Cys172 showed that palmitoylation is not involved in the maturation process carried out by the signal peptide peptidase or in the targeting of core to LD. However, palmitoylation was shown to be important for core association with smooth ER membranes and ER closely surrounding LDs. Finally, we demonstrate that mutation of residue Cys172 in the J6/JFH1 virus genome clearly impairs virion production. 相似文献
5.
6.
Mapping of Homologous Interaction Sites in the Hepatitis B Virus Core Protein 总被引:4,自引:4,他引:4 下载免费PDF全文
Hepatitis B virus consists of an outer envelope and an inner capsid, or core, that wraps around the small genome plus the viral replication enzyme. The icosahedrally symmetric nucleocapsid is assembled from multiple dimeric subunits of a single 183-residue capsid protein, which must therefore contain interfaces for monomer dimerization and for dimer multimerization. The atomic structure of the protein is not known, but electron microscopy-based image reconstructions suggested a hammerhead shape for the dimer and, very recently, led to a tentative model for the main chain trace. Here we used a combination of interaction screening techniques and functional analyses of core protein variants to define, at the primary sequence level, the regions that mediate capsid assembly. Both the two-hybrid system and the pepscan technique identified a strongly interacting region I between amino acids (aa) 78 and 117 that probably forms part of the dimer interface. Surprisingly, mutations in this region, in the context of a C-terminally truncated but assembly-competent core protein variant, had no detectable effect on assembly. By contrast, mutations in a second region, bordered by aa 113 and 143, markedly influenced capsid stability, strongly suggesting that this region II is the main contributor to dimer multimerization. Based on the electron microscopic data, it must therefore be located at the basal tips of the dimer, experimentally supporting the proposed main chain trace. 相似文献
7.
Phosphorylation of the Core Protein of Hepatitis B Virus by a 46-Kilodalton Serine Kinase 总被引:5,自引:2,他引:5 下载免费PDF全文
Core protein is the major component of the core particle (nucleocapsid) of human hepatitis B virus. Core particles and core proteins are involved in a number of important functions in the replication cycle of the virus, including RNA packaging, DNA synthesis, and recognition of viral envelope proteins. Core protein is a phosphoprotein with most, if not all, of the phosphorylation on C-terminal serine residues. In this study, we identified a serine kinase activity from the ribosome-associated protein fraction of cytoplasm that could specifically bind and phosphorylate the C-terminal portion of recombinant core protein. This kinase is referred to as core-associated kinase (CAK). CAK could be inhibited by the kinase inhibitors heparin and manganese ions but not by spermidine, DRB, H89, or H7, indicating that CAK is distinct from protein kinase A and protein kinase C. CAK could be partially purified by heparin-Sepharose CL-6B and phosphocellulose P11 columns. By using a far-Western assay, three specific proteins, of 46, 35, and 13 kDa, were shown to interact with the C-terminal part of the core protein. These three proteins were present only in the eluted fractions that contains the CAK activity. An in-gel kinase assay showed that a 46-kDa kinase in the same fraction could bind and phosphorylate the C-terminal part of the recombinant core protein. These results indicate that this 46-kDa kinase is most probably CAK. A similar 46-kDa kinase, which exhibits the same profile of sensitivity to kinase inhibitors as that of CAK, is present in both purified intracellular core particles and extracellular 42-nm virions, suggesting that CAK is a candidate for the core particle-associated kinase. 相似文献
8.
9.
10.
11.
12.
13.
Ricardo Bringas 《Journal of structural biology》1997,118(3):189-196
Hepatitis B core antigen has been intensively studied. Recently, cryoelectron microscopy studies have determined the structure of human and duck hepatitis B virus nucleocapsids at low resolution. Both viruses assemble into core particles of two sizes with icosahedral dimer-clusteredT= 3 andT= 4 symmetries. Both capsids present tightly clustered dimers composed of a shell and a protruding domain. The present work introduces a model for HBc folding, dimer formation, and assembly. The model is based in multiple alignments of HBc sequences from 20 mammalian and avian isolates and secondary structure predictions. The 54% α-helical conformation predicted is in good agreement with CD results reporting 53–71% content of α-helices. Despite the sequence divergence of mammalian and avian proteins, the secondary structure prediction of both shows a high degree of coincidence, according to the multiple sequence alignment. The proposed fold of HBc monomers is built from five α-helices. In dimers, pairs of two of those helices conform the protruding domain. The model also suggests the convergence of the region preceding the protamine domain around the sixfold symmetry axes. The model gives answers to most of the standing questions concerning the nucleocapsid assembly and antigenic behavior of HBc protein. 相似文献
14.
A Subunit of the Anaphase-Promoting Complex Is a Centromere-Associated Protein in Mammalian Cells 总被引:6,自引:0,他引:6 下载免费PDF全文
Pia-Marie Jrgensen Eva Brundell Maria Starborg Christer Hg 《Molecular and cellular biology》1998,18(1):468-476
Sister chromatids in early mitotic cells are held together mainly by interactions between centromeres. The separation of sister chromatids at the transition between the metaphase and the anaphase stages of mitosis depends on the anaphase-promoting complex (APC), a 20S ubiquitin-ligase complex that targets proteins for destruction. A subunit of the APC, called APC-α in Xenopus (and whose homologs are APC-1, Cut4, BIME, and Tsg24), has recently been identified and shown to be required for entry into anaphase. We now show that the mammalian APC-α homolog, Tsg24, is a centromere-associated protein. While this protein is detected only during the prophase to the anaphase stages of mitosis in Chinese hamster cells, it is constitutively associated with the centromeres in murine cells. We show that there are two forms of this protein in mammalian cells, a soluble form associated with other components of the APC and a centromere-bound form. We also show that both the Tsg24 protein and the Cdc27 protein, another APC component, are bound to isolated mitotic chromosomes. These results therefore support a model in which the APC by ubiquitination of a centromere protein regulates the sister chromatid separation process. 相似文献
15.
PDGF受体结合域与乙肝病毒核心抗原的融合表达 总被引:2,自引:0,他引:2
化学合成血小板源性生长因子受体结合域13肽基因,并与乙肝病毒核心抗原基因5′端融合,序列分析表明化学合成的13肽基因及融合后基因的阅读框架正确.将融合基因亚克隆于tac启动子控制的pET3a表达质粒中并于大肠杆菌中表达.表达产物经ELISA、WestrenBlot鉴定表明,融合蛋白已被表达,其单位分子量与推算值一致.电镜观察证明所表达的融合蛋白能形成颗粒. 相似文献
16.
17.
Frank G. van Steenbeek Bart Spee Louis C. Penning Anne Kummeling Ingrid H. M. van Gils Guy C. M. Grinwis Dik Van Leenen Frank C. P. Holstege Manon Vos-Loohuis Jan Rothuizen Peter A. J. Leegwater 《PloS one》2013,8(3)
The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein (AIP) and aryl hydrocarbon receptor nuclear translocator (ARNT). The resulting intrahepatic portosystemic shunts (IHPSS) are frequently diagnosed in specific dog breeds, such as the Irish wolfhound. We compared the expression of components of the AHR pathway in healthy Irish wolfhounds and dogs with IHPSS. To this end, we analyzed the mRNA expression in the liver of AHR,AIP, ARNT, and other genes involved in this pathway, namely, those for aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), hypoxia inducible factor 1alpha (HIF1A), heat shock protein 90AA1 (HSP90AA1), cytochromes P450 (CYP1A1, CYP1A2, and CYP1B1), vascular endothelial growth factor A (VEGFA), nitric oxide synthesase 3 (NOS3), and endothelin (EDN1). The observed low expression of AHR mRNA in the Irish wolfhounds is in associated with a LINE-1 insertion in intron 2, for which these dogs were homozygous. Down regulation in Irish wolfhounds was observed for AIP, ARNT2, CYP1A2, CYP1B1 and HSP90AA1 expression, whereas the expression of HIF1A was increased. Immunohistochemistry revealed lower levels of AHR, HIF1A, and VEGFA protein in the nucleus and lower levels of ARNT and HSP90AA1 protein in the cytoplasm of the liver cells of Irish wolfhounds. The impaired expression of HSP90AA1 could trigger the observed differences in mRNA and protein levels and therefore explain the link between two very different functions of AHR: regulation of the closure of the ductus venosus and the response to toxins. 相似文献
18.
The hepatitis B virus (HBV) Core protein encodes a late (L)-domain like motif (129PPAYRPPNAP138) that has been purported to serve as a docking site for recruitment of host factors such as Nedd4 that can mediate viral particle release from infected cells. However, mutation of this region of Core typically disrupts nucleocapsid formation in the cytoplasm, making it difficult to ascertain if the Core PPAY motif constitutes a functional L-domain that mediates HBV release in the context of replicating virus. Since many viral L-domains are functionally interchangeable between different virus families, and such swapping experiments have been used as a tool to identify other viral sequences with L-domain activity, we generated chimeric constructs between murine leukemia virus (MLV) Gag and HBV Core to determine if the potential HBV L-domain motif is sufficient to stimulate virus release. We found that the HBV Core PPAY motif, but not the PNAP motif, demonstrates L-domain activity in the context of MLV replication to direct virus release and infectious virion production. Additionally, we found that overexpression of the cellular Nedd4 or WWP1 ubiquitin ligases stimulates release of a partially defective PPAY domain mutant, providing further evidence supporting a role for the Nedd4 ubiquitin ligase in promoting HBV release. These studies lend further insight into the mechanisms used by HBV to mediate its release from infected cells. 相似文献
19.