首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

13.
14.
15.
Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of the M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches, including four complementary footprinting assays such as DNase I, copper-phenanthroline, methylation protection, and KMnO4, enhancement of 2-aminopurine fluorescence, and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site, and generates two staggered double strand breaks. Taken together, these results implicate that PI-MleI possesses a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of the LAGLIDADG family of homing endonucleases.Mycobacterium leprae, a Gram-positive rod-shaped bacillus, mostly found in warm tropical countries, is the bacterium that causes leprosy in humans (1). The lack of understanding of the basic biology of M. leprae is believed to be the key factor for the failure of leprosy research to advance. The genome sequence of M. leprae contains 3.27 Mb and has an average G + C content of 57.8%, values much lower than the corresponding values for Mycobacterium tuberculosis, which are ∼4.41 Mb and 65.6% G + C, respectively (2). There are some 1500 genes that are common to both M. leprae and M. tuberculosis. The comparative genome analysis suggests that both species of mycobacteria are derived from a common ancestor and, at one stage, had gene pools of similar size. The downsizing of the M. tuberculosis genome from ∼4.41 to 3.27 Mb of M. leprae would account for the loss of some 1200 protein-coding sequences (1, 3). There is evidence that many of the genes that were present in the genome of M. leprae have truly been lost (1, 3). Comparative genomics of M. leprae with that of M. tuberculosis indicate that the former has undergone substantial downsizing, losing more than 2000 genes, thus suggesting an extreme case of reductive evolution in a microbial pathogen (1). With the availability of the M. leprae genome sequence, using functional genomics approaches, it is possible to identify the gene products, elucidate the mechanism of their action, and identify novel drug targets for rational design of new therapeutic regimens and drugs to treat leprosy.Eubacterial RecA proteins catalyze a set of biochemical reactions that are essential for homologous recombination, DNA repair, restoration of stalled replication forks, and SOS response (47). RecA protein and the process of homologous recombination, which is the main mechanism of genetic exchange, are evolutionarily conserved among a range of organisms (4, 7). Perhaps the most striking development in the field of RecA protein biology was the discovery of an in-frame insertion of an intein-coding sequence in the recA genes of M. tuberculosis and M. leprae (8, 9). In these organisms, RecA is synthesized as a large precursor, which undergoes protein splicing to excise the intein, and the two flanking domains called exteins are ligated together to generate a functionally active RecA protein (9, 10). The milieu in which RecA precursor undergoes splicing differs substantially between M. tuberculosis and M. leprae. M. leprae RecA precursor (79 kDa) undergoes splicing only in mycobacterial species, whereas M. tuberculosis RecA precursor (85 kDa) is spliced efficiently in Escherichia coli as well (911). Intriguingly, M. tuberculosis and M. leprae RecA inteins differ greatly in their size, primary sequence, and location within the recA gene, thereby suggesting two independent origins during evolution (9). The occurrence of inteins in the obligate mycobacterial pathogens, M. tuberculosis, M. leprae, and Mycobacterium microti, suggested that RecA inteins might play a role in mycobacterial functions related to pathogenesis or virulence (9). Previously, we have shown that M. tuberculosis RecA intein (PI-MtuI),2 which contains Walker A motif, displays dual target specificity in the presence of alternative cofactors in an ATP-dependent manner (12, 13).Since their discovery in Saccharomyces cerevisiae (14, 15), a large number of putative homing endonucleases have been found in a diverse range of proteins in all the three domains of life (1619). The majority of inteins possess the protein splicing and homing endonuclease activities (18, 19). Homing endonucleases are a class of diverse rare-cutting enzymes that promote site-specific transposition of their encoding genetic elements by inflicting double-stranded DNA breaks via different cleavage mechanisms in alleles lacking these elements (1823). In addition, these are characterized by their ability to bind long DNA target sites (14–40 bp), and their tolerance of minor sequence changes in their binding region. These have been divided into highly divergent subfamilies on the basis of conserved sequence and structural motifs as follows: LAGLIDADG, GIY-YIG, HNH, His-Cys box, and the more recently identified PD(D/E)XK families (1824). LAGLIDADG homing enzymes, which include the largest family, contain one or two copies of the conserved dodecapeptide motif and utilize an extended protein-DNA interface covering up to 40 bp to acquire their necessary specificity (1822). The LAGLIDADG sequence is a part of the conserved 10- or 12-residue sequence motif defining the family of LAGLIDADG-type homing endonucleases; therefore, it is designated as deca- or dodecapeptide motif (19).Comparison of the M. leprae recA intervening sequence with known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease (25, 26). In light of massive gene decay and function loss in the leprosy bacillus, and dissimilarities in size and primary structures among mycobacterial inteins, we sought to investigate whether M. leprae recA intervening sequence encodes a catalytically active homing endonuclease. In this study, we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations Mg2+ or Mn2+. Furthermore, using a variety of approaches, we have mapped the positions of PI-MleI binding as well as cleavage in the cognate DNA, thus providing the most comprehensive analysis of PI-MleI. Taken together, these results suggest that PI-MleI possesses a modular structure with functionally separable domains for DNA target recognition and cleavage, each with distinct sequence preferences. These results provide insights into understanding the function and evolution of the family of LAGLIDADG homing endonucleases.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号