首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
The biological, serological, and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus (APMV) group, APMV10. This penguin virus resembled other APMVs by electron microscopy; however, its viral hemagglutination (HA) activity was not inhibited by antisera against any of the nine defined APMV serotypes. In addition, antiserum generated against this penguin virus did not inhibit the HA of representative viruses of the other APMV serotypes. Sequence data produced using random priming methods revealed a genomic structure typical of APMV. Phylogenetic evaluation of coding regions revealed that amino acid sequences of all six proteins were most closely related to APMV2 and APMV8. The calculation of evolutionary distances among proteins and distances at the nucleotide level confirmed that APMV2, APMV8, and the penguin virus all were sufficiently divergent from each other to be considered different serotypes. We propose that this isolate, named APMV10/penguin/Falkland Islands/324/2007, be the prototype virus for APMV10. Because of the known problems associated with serology, such as antiserum cross-reactivity and one-way immunogenicity, in addition to the reliance on the immune response to a single protein, the hemagglutinin-neuraminidase, as the sole base for viral classification, we suggest the need for new classification guidelines that incorporate genome sequence comparisons.Viruses from the Paramyxoviridae family have caused disease in humans and animals for centuries. Over the last 40 years, many paramyxoviruses isolated from animals and people have been newly described (16, 17, 22, 29, 31, 32, 36, 42, 44, 46, 49, 58, 59, 62-64). Viruses from this family are pleomorphic, enveloped, single-stranded, nonsegmented, negative-sense RNA viruses that demonstrate serological cross-reactivity with other paramyxoviruses related to them (30, 46). The subfamily Paramyxovirinae is divided into five genera: Respirovirus, Morbillivirus, Rubulavirus, Henipavirus, and Avulavirus (30). The Avulavirus genus contains nine distinct avian paramyxovirus (APMV) serotypes (Table (Table1),1), and information on the discovery of each has been reported elsewhere (4, 6, 7, 9, 12, 34, 41, 50, 51, 60, 68).

TABLE 1.

Characteristics of prototype viruses APMV1 to APMV9 and the penguin virus
StrainHostDiseaseDistributionFusion cleavagecGI accession no.
APMV1/Newcastle disease virus>250 speciesHigh mortalityWorldwideGRRQKRF45511218
InapparentWorldwideGGRQGRLa11545722
APMV2/Chicken/CA/Yucaipa/1956Turkey, chickens, psittacines, rails, passerinesDecrease in egg production and respiratory diseaseWorldwideDKPASRF169144527
APMV3/Turkey/WI/1968TurkeyMild respiratory disease and moderate egg decreaseWorldwidePRPSGRLa209484147
APMV3/Parakeet/Netherlands/449/1975Psittacines, passerines, flamingosNeurological, enteric, and respiratory diseaseWorldwideARPRGRLa171472314
APMV4/Duck/Hong Kong/D3/1975Duck, geese, chickensNone knownWorldwideVDIQPRF210076708
APMV5/Budgerigar/Japan/Kunitachi/1974Budgerigars, lorikeetsHigh mortality, enteric diseaseJapan, United Kingdom, AustraliaGKRKKRFa290563909
APMV6/Duck/Hong Kong/199/1977Ducks, geese, turkeysMild respiratory disease and increased mortality in turkeysWorldwidePAPEPRLb15081567
APMV7/Dove/TN/4/1975Pigeons, doves, turkeysMild respiratory disease in turkeysUnited States, England, JapanTLPSSRF224979458
APMV8/Goose/DE/1053/1976Ducks, geeseNone knownUnited States, JapanTYPQTRLa226343050
APMV9/Duck/NY/22/1978DucksNone knownWorldwideRIREGRIa217068693
APMV10/Penguin/Falkland Islands/324/2007Rockhopper penguinsNone KnownFalkland IslandsDKPSQRIa300432141
Open in a separate windowaRequires the addition of an exogenous protease.bProtease requirement depends on the isolate examined.cPutative.Six of these serotypes were classified in the latter half of the 1970s, when the most reliable assay available to classify paramyxoviruses was the hemagglutination inhibition (HI) assay (61). However, there are multiple problems associated with the use of serology, including the inability to classify some APMVs by comparing them to the sera of the nine defined APMVs alone (2, 8). In addition, one-way antigenicity and cross-reactivity between different serotypes have been documented for many years (4, 5, 14, 25, 29, 33, 34, 41, 51, 52, 60). The ability of APMVs, like other viruses, to show antigenic drift as it evolves over time (37, 43, 54) and the wide use and availability of precise molecular methods, such as PCR and genome sequencing, demonstrate the need for a more practical classification system.The genetic diversity of APMVs is still largely unexplored, as hundreds of avian species have never been surveyed for the presence of viruses that do not cause significant signs of disease or are not economically important. The emergence of H5N1 highly pathogenic avian influenza (HPAI) virus as the cause of the largest outbreak of a virulent virus in poultry in the past 100 years has spurred the development of surveillance programs to better understand the ecology of avian influenza (AI) viruses in aquatic birds around the globe, and in some instances it has provided opportunities for observing other viruses in wild bird populations (15, 53). In 2007, as part of a seabird health surveillance program in the Falkland Islands (Islas Malvinas), oral and cloacal swabs and serum were collected from rockhopper penguins (Eudyptes chrysocome) and environmental/fecal swab pools were collected from other seabirds.While AI virus has not yet been isolated from penguins in the sub-Antarctic and Antarctic areas, there have been two reports of serum antibodies positive to H7 and H10 from the Adélie species (11, 40). Rare isolations of APMV1, both virulent (45) and of low virulence (8), have been reported from Antarctic penguins. Sera positive for APMV1 and AMPV2 have also been reported (21, 24, 38, 40, 53). Since 1981, paramyxoviruses have been isolated from king penguins (Aptenodytes patagonicus), royal penguins (Eudyptes schlegeli), and Adélie penguins (Pygoscelis adeliae) from Antarctica and little blue penguins (Eudyptula minor) from Australia that cannot be identified as belonging to APMV1 to -9 and have not yet been classified (8, 11, 38-40). The morphology, biological and genomic characteristics, and antigenic relatedness of an APMV recently isolated from multiple penguin colonies on the Falkland Islands are reported here. Evidence that the virus belongs to a new serotype (APMV10) and a demonstration of the advantages of a whole genome system of analysis based on random sequencing followed by comparison of genetic distances are presented. Only after all APMVs are reported and classified will epidemiological information be known as to how the viruses are moving and spreading as the birds travel and interact with other avian species.  相似文献   

7.
Nerve growth factor (NGF) is produced as a precursor called pro-nerve growth factor (proNGF), which is secreted by many tissues and is the predominant form of NGF in the central nervous system. In Alzheimer disease brain, cholinergic neurons degenerate and can no longer transport NGF as efficiently, leading to an increase in untransported NGF in the target tissue. The protein that accumulates in the target tissue is proNGF, not the mature form. The role of this precursor is controversial, and both neurotrophic and apoptotic activities have been reported for recombinant proNGFs. Differences in the protein structures, protein expression systems, methods used for protein purification, and methods used for bioassay may affect the activity of these proteins. Here, we show that proNGF is neurotrophic regardless of mutations or tags, and no matter how it is purified or in which system it is expressed. However, although proNGF is neurotrophic under our assay conditions for primary sympathetic neurons and for pheochromocytoma (PC12) cells, it is apoptotic for unprimed PC12 cells when they are deprived of serum. The ratio of tropomyosin-related kinase A to p75 neurotrophin receptor is low in unprimed PC12 cells compared with primed PC12 cells and sympathetic neurons, altering the balance of proNGF-induced signaling to favor apoptosis. We conclude that the relative level of proNGF receptors determines whether this precursor exhibits neurotrophic or apoptotic activity.Nerve growth factor (NGF)3 regulates neuronal survival, neurite outgrowth, and differentiation in the peripheral and central nervous systems (1). The mature form of NGF forms a non-covalent homodimer and binds with high affinity (kd ≈ 10−11 m) to tropomyosin-related kinase A (TrkA) and with low affinity (kd ≈ 10−9 m) to the common neurotrophin receptor p75NTR (p75 neurotrophin receptor) (2). NGF promotes cell survival and growth in cells expressing TrkA through activation of the phosphatidylinositol 3-kinase/AKT pathway and the Ras/mitogen-activated protein kinase (MAPK) pathway (3, 4). p75NTR plays diverse roles, ranging from cell survival to cell death depending on the cellular context in which it is expressed. Through activation of the NF-κB pathway, p75NTR can contribute to cell survival in sensory neurons (5), it is involved in axonal growth via regulation of Rho activity (6), and it can interact with Trks to enhance neurotrophin affinity (at low concentration of ligand) and specificity of binding to Trks (79). High levels of p75NTR expression can induce apoptosis when there are low levels of Trk or when Trk is absent (10, 11). Apoptosis occurs through increased ceramide production (12), activation of c-Jun N-terminal kinase (JNK1), and p53 (10, 13). p75NTR requires a co-receptor called sortilin to induce cell death (14).NGF is produced as a precursor called pro-nerve growth factor (proNGF) (15). ProNGF is secreted by many tissues such as prostate cells, spermatids, hair follicles, oral mucosal keratinocytes, sympathetic neurons, cortical astrocytes, heart, and spleen (1620). ProNGF is the predominant form of NGF in the central and peripheral nervous systems, whereas little or no mature NGF can be detected (2124). In Alzheimer disease brain, retrograde transport from the cortex and hippocampus to basal forebrain cholinergic neurons is reduced as these neurons degenerate, with concomitant proNGF accumulation in the cortex and hippocampus (21, 23). This suggested that proNGF mediates biological activity besides its prodomain function of promoting protein folding and regulation of neurotrophin secretion (2528). To study the role of proNGF protein in vitro, point mutations were inserted at the cleavage site used by furin, a proprotein convertase known to cleave proNGF (29), to minimize the conversion of proNGF to mature NGF. The resulting recombinant, cleavage-resistant proNGFs reportedly exhibit either apoptotic activity (30, 31) or neurotrophic activity (32, 33). These recombinant proteins differ in several ways (
ProNGF(R−1G)ProNGFhisProNGFEProNGF123WT-NGFhis
Mutations−1 (R to G)−2 and −1 (RR to AA), 118 and 119 (RR to AA)−1 and +1 (RS to AA)−73 and −72 (RR to AA), −43 and −42 (KKRR to KAAR), −2 and −1 (KR to AA)None: cleavable proNGF
TagNo tagHistidine tagNo tagNo tagHistidine tag
Expression systemInsect cellsInsect cells, mammalian cellsBacteriaInsect cellsInsect cells, mammalian cells
PurificationNo purificationNickel columnRefolded from inclusion bodies, FPLCCation exchange chromatography, immunoaffinity chromatographyNickel column
Open in a separate window  相似文献   

8.
Molecular and Biochemical Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide Lichenysin     
Dirk Konz  Sascha Doekel  Mohamed A. Marahiel 《Journal of bacteriology》1999,181(1):133-140
Lichenysins are surface-active lipopeptides with antibiotic properties produced nonribosomally by several strains of Bacillus licheniformis. Here, we report the cloning and sequencing of an entire 26.6-kb lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Three large open reading frames coding for peptide synthetases, designated licA, licB (three modules each), and licC (one module), could be detected, followed by a gene, licTE, coding for a thioesterase-like protein. The domain structure of the seven identified modules, which resembles that of the surfactin synthetases SrfA-A to -C, showed two epimerization domains attached to the third and sixth modules. The substrate specificity of the first, fifth, and seventh recombinant adenylation domains of LicA to -C (cloned and expressed in Escherichia coli) was determined to be Gln, Asp, and Ile (with minor Val and Leu substitutions), respectively. Therefore, we suppose that the identified biosynthesis operon is responsible for the production of a lichenysin variant with the primary amino acid sequence l-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile, with minor Leu and Val substitutions at the seventh position.Many strains of Bacillus are known to produce lipopeptides with remarkable surface-active properties (11). The most prominent of these powerful lipopeptides is surfactin from Bacillus subtilis (1). Surfactin is an acylated cyclic heptapeptide that reduces the surface tension of water from 72 to 27 mN m−1 even in a concentration below 0.05% and shows some antibacterial and antifungal activities (1). Some B. subtilis strains are also known to produce other, structurally related lipoheptapeptides (Table (Table1),1), like iturin (32, 34) and bacillomycin (3, 27, 30), or the lipodecapeptides fengycin (50) and plipastatin (29).

TABLE 1

Lipoheptapeptide antibiotics of Bacillus spp.
LipopeptideOrganismStructureReference
Lichenysin AB. licheniformisFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asn-D-Leu-L-Ile51, 52
Lichenysin BFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu23, 26
Lichenysin CFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Ile17
Lichenysin DFAa-L-Gln-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-IleThis work
Surfactant 86B. licheniformisFAa-L-Glxd-L-Leu-D-Leu-L-Val-L-Asxd-D-Leu-L-Ilee14, 15
L-Val
SurfactinB. subtilisFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu1, 7, 49
EsperinB. subtilisFAb-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leue45
L-Val 
Iturin AB. subtilisFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Ser32
Iturin CFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asne-L-Asne34
D-Ser-L-Thr 
Bacillomycin LB. subtilisFAc-L-Asp-D-Tyr-D-Asn-L-Ser-L-Gln-D-Proe-L-Thr3
D-Ser- 
Bacillomycin DFAc-L-Asp-D-Tyr-D-Asn-L-Pro-L-Glu-D-Ser-L-Thr30, 31
Bacillomycin FFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Thr27
Open in a separate windowaFA, β-hydroxy fatty acid. The β-hydroxy group forms an ester bond with the carboxy group of the C-terminal amino acid. bFA, β-hydroxy fatty acid. The β-hydroxy group forms an ester bond with the carboxy group of Asp5. cFA, β-amino fatty acid. The β-amino group forms a peptide bond with the carboxy group of the C-terminal amino acid. dOnly the following combinations of amino acid 1 and 5 are allowed: Gln-Asp or Glu-Asn. eWhere an alternative amino acid may be present in a structure, the alternative is also presented. In addition to B. subtilis, several strains of Bacillus licheniformis have been described as producing the lipopeptide lichenysin (14, 17, 23, 26, 51). Lichenysins can be grouped under the general sequence l-Glx–l-Leu–d-Leu–l-Val–l-Asx–d-Leu–l-Ile/Leu/Val (Table (Table1).1). The first amino acid is connected to a β-hydroxyl fatty acid, and the carboxy-terminal amino acid forms a lactone ring to the β-OH group of the lipophilic part of the molecule. In contrast to the lipopeptide surfactin, lichenysins seem to be synthesized during growth under aerobic and anaerobic conditions (16, 51). The isolation of lichenysins from cells growing on liquid mineral salt medium on glucose or sucrose basic has been studied intensively. Antimicrobial properties and the ability to reduce the surface tension of water have also been described (14, 17, 26, 51). The structural elucidation of the compounds revealed slight differences, depending on the producer strain. Various distributions of branched and linear fatty acid moieties of diverse lengths and amino acid variations in three defined positions have been identified (Table (Table11).In contrast to the well-defined methods for isolation and structural characterization of lichenysins, little is known about the biosynthetic mechanisms of lichenysin production. The structural similarity of lichenysins and surfactin suggests that the peptide moiety is produced nonribosomally by multifunctional peptide synthetases (7, 13, 25, 49, 53). Peptide synthetases from bacterial and fungal sources describe an alternative route in peptide bond formation in addition to the ubiquitous ribosomal pathway. Here, large multienzyme complexes affect the ordered recognition, activation, and linking of amino acids by utilizing the thiotemplate mechanism (19, 24, 25). According to this model, peptide synthetases activate their substrate amino acids as aminoacyl adenylates by ATP hydrolysis. These unstable intermediates are subsequently transferred to a covalently enzyme-bound 4′-phosphopantetheinyl cofactor as thioesters. The thioesterified amino acids are then integrated into the peptide product through a stepwise elongation by a series of transpeptidations directed from the amino terminals to the carboxy terminals. Peptide synthetases have not only awakened interest because of their mechanistic features; many of the nonribosomally processed peptide products also possess important biological and medical properties.In this report we describe the identification and characterization of a putative lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Cloning and sequencing of the entire lic operon (26.6 kb) revealed three genes, licA, licB, and licC, with structural patterns common to peptide synthetases and a gene designated licTE, which codes for a putative thioesterase. The modular organization of the sequenced genes resembles the requirements for the biosynthesis of the heptapeptide lichenysin. Based on the arrangement of the seven identified modules and the tested substrate specificities, we propose that the identified genes are involved in the nonribosomal synthesis of the portion of the lichenysin peptide with the primary sequence l-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile (with minor Val and Leu substitutions).  相似文献   

9.
Normalization and Statistical Analysis of Multiplexed Bead-based Immunoassay Data Using Mixed-effects Modeling     
David C. Clarke  Melody K. Morris  Douglas A. Lauffenburger 《Molecular & cellular proteomics : MCP》2013,12(1):245-262
  相似文献   

10.
Disease Mutations in the Human Mitochondrial DNA Polymerase Thumb Subdomain Impart Severe Defects in Mitochondrial DNA Replication     
Rajesh Kasiviswanathan  Matthew J. Longley  Sherine S. L. Chan    William C. Copeland 《The Journal of biological chemistry》2009,284(29):19501-19510
Forty-five different point mutations in POLG, the gene encoding the catalytic subunit of the human mitochondrial DNA polymerase (pol γ), cause the early onset mitochondrial DNA depletion disorder, Alpers syndrome. Sequence analysis of the C-terminal polymerase region of pol γ revealed a cluster of four Alpers mutations at highly conserved residues in the thumb subdomain (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) and two Alpers mutations at less conserved positions in the adjacent palm subdomain (Q879H, c.2637g→t and T885S, c.2653a→t). Biochemical characterization of purified, recombinant forms of pol γ revealed that Alpers mutations in the thumb subdomain reduced polymerase activity more than 99% relative to the wild-type enzyme, whereas the palm subdomain mutations retained 50–70% wild-type polymerase activity. All six mutant enzymes retained physical and functional interaction with the pol γ accessory subunit (p55), and none of the six mutants exhibited defects in misinsertion fidelity in vitro. However, differential DNA binding by these mutants suggests a possible orientation of the DNA with respect to the polymerase during catalysis. To our knowledge this study represents the first structure-function analysis of the thumb subdomain in pol γ and examines the consequences of mitochondrial disease mutations in this region.As the only DNA polymerase found in animal cell mitochondria, DNA polymerase γ (pol γ)3 bears sole responsibility for DNA synthesis in all replication and repair transactions involving mitochondrial DNA (1, 2). Mammalian cell pol γ is a heterotrimeric complex composed of one catalytic subunit of 140 kDa (p140) and two 55-kDa accessory subunits (p55) that form a dimer (3). The catalytic subunit contains an N-terminal exonuclease domain connected by a linker region to a C-terminal polymerase domain. Whereas the exonuclease domain contains essential motifs I, II, and III for its activity, the polymerase domain comprising the thumb, palm, and finger subdomains contains motifs A, B, and C that are crucial for polymerase activity. The catalytic subunit is a family A DNA polymerase that includes bacterial pol I and T7 DNA polymerase and possesses DNA polymerase, 3′ → 5′ exonuclease, and 5′-deoxyribose phosphate lyase activities (for review, see Refs. 1 and 2). The 55-kDa accessory subunit (p55) confers processive DNA synthesis and tight binding of the pol γ complex to DNA (4, 5).Depletion of mtDNA as well as the accumulation of deletions and point mutations in mtDNA have been observed in several mitochondrial disorders (for review, see Ref. 6). mtDNA depletion syndromes are caused by defects in nuclear genes responsible for replication and maintenance of the mitochondrial genome (7). Mutation of POLG, the gene encoding the catalytic subunit of pol γ, is frequently involved in disorders linked to mutagenesis of mtDNA (8, 9). Presently, more than 150 point mutations in POLG are linked with a wide variety of mitochondrial diseases, including the autosomal dominant (ad) and recessive forms of progressive external ophthalmoplegia (PEO), Alpers syndrome, parkinsonism, ataxia-neuropathy syndromes, and male infertility (tools.niehs.nih.gov/polg) (9).Alpers syndrome, a hepatocerebral mtDNA depletion disorder, and myocerebrohepatopathy are rare heritable autosomal recessive diseases primarily affecting young children (1012). These diseases generally manifest during the first few weeks to years of life, and symptoms gradually develop in a stepwise manner eventually leading to death. Alpers syndrome is characterized by refractory seizures, psychomotor regression, and hepatic failure (11, 12). Mutation of POLG was first linked to Alpers syndrome in 2004 (13), and to date 45 different point mutations in POLG (18 localized to the polymerase domain) are associated with Alpers syndrome (9, 14, 15). However, only two Alpers mutations (A467T and W748S, both in the linker region) have been biochemically characterized (16, 17).During the initial cloning and sequencing of the human, Drosophila, and chicken pol γ genes, we noted a highly conserved region N-terminal to motif A in the polymerase domain that was specific to pol γ (18). This region corresponds to part of the thumb subdomain that tracks DNA into the active site of both Escherichia coli pol I and T7 DNA polymerase (1921). A high concentration of disease mutations, many associated with Alpers syndrome, is found in the thumb subdomain.Here we investigated six mitochondrial disease mutations clustered in the N-terminal portion of the polymerase domain of the enzyme (Fig. 1A). Four mutations (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) reside in the thumb subdomain and two (Q879H, c.2637g→t and T885S, c.2653a→t) are located in the palm subdomain. These mutations are associated with Alpers, PEO, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), ataxia-neuropathy syndrome, Leigh syndrome, and myocerebrohepatopathy (POLG mutationDiseaseGeneticsReferenceG848SAlpers syndromeIn trans with A467T, Q497H, T251I-P587L, or W748S-E1143G in Alpers syndrome15, 35, 4350Leigh syndromeIn trans with R232H in Leigh syndrome49MELASIn trans with R627Q in MELAS38PEO with ataxia-neuropathyIn trans with G746S and E1143G in PEO with ataxia50PEOIn trans with T251I and P587L in PEO51, 52T851AAlpers syndromeIn trans with R1047W48, 53In trans with H277CR852CAlpers syndromeIn trans with A467T14, 48, 50In cis with G11D and in trans with W748S-E1143G or A467TAtaxia-neuropathyIn trans with G11D-R627Q15R853QMyocerebrohepatopathyIn trans with T251I-P587L15Q879HAlpers syndrome with valproate-induced hepatic failureIn cis with E1143G and in trans with A467T-T885S35, 54T885SAlpers syndrome with valproate-induced hepatic failureIn cis with A467T and in trans with Q879H-E1143G35, 54Open in a separate windowOpen in a separate windowFIGURE 1.POLG mutations characterized in this study. A, the location of the six mutations characterized is shown in red in the primary sequence of pol γ. Four mutations, the G848S, T851A, R852C, and R853Q, are located in the thumb domain, whereas two mutations, the Q879H and T885S, are in the palm domain of the polymerase region. B, sequence alignment of pol γ from yeast to humans. The amino acids characterized in this study are shown in red. Yellow-highlighted amino acids are highly conserved, and blue-highlighted amino acids are moderately conserved.  相似文献   

11.
RNA Polymerase I Transcription Silences Noncoding RNAs at the Ribosomal DNA Locus in Saccharomyces cerevisiae     
Elisa Cesarini  Francesca Romana Mariotti  Francesco Cioci  Giorgio Camilloni 《Eukaryotic cell》2010,9(2):325-335
  相似文献   

12.
Critical Factors Determining Dimerization of Human Antizyme Inhibitor     
Kuo-Liang Su  Ya-Fan Liao  Hui-Chih Hung    Guang-Yaw Liu 《The Journal of biological chemistry》2009,284(39):26768-26777
Ornithine decarboxylase (ODC) is the first enzyme involved in polyamine biosynthesis, and it catalyzes the decarboxylation of ornithine to putrescine. ODC is a dimeric enzyme, whereas antizyme inhibitor (AZI), a positive regulator of ODC that is homologous to ODC, exists predominantly as a monomer and lacks decarboxylase activity. The goal of this paper was to identify the essential amino acid residues that determine the dimerization of AZI. The nonconserved amino acid residues in the putative dimer interface of AZI (Ser-277, Ser-331, Glu-332, and Asp-389) were substituted with the corresponding residues in the putative dimer interface of ODC (Arg-277, Tyr-331, Asp-332, and Tyr-389, respectively). Analytical ultracentrifugation analysis was used to determine the size distribution of these AZI mutants. The size-distribution analysis data suggest that residue 331 may play a major role in the dimerization of AZI. Mutating Ser-331 to Tyr in AZI (AZI-S331Y) caused a shift from a monomer configuration to a dimer. Furthermore, in comparison with the single mutant AZI-S331Y, the AZI-S331Y/D389Y double mutant displayed a further reduction in the monomer-dimer Kd, suggesting that residue 389 is also crucial for AZI dimerization. Analysis of the triple mutant AZI-S331Y/D389Y/S277R showed that it formed a stable dimer (Kd value = 1.3 μm). Finally, a quadruple mutant, S331Y/D389Y/S277R/E332D, behaved as a dimer with a Kd value of ∼0.1 μm, which is very close to that of the human ODC enzyme. The quadruple mutant, although forming a dimer, could still be disrupted by antizyme (AZ), further forming a heterodimer, and it could rescue the AZ-inhibited ODC activity, suggesting that the AZ-binding ability of the AZI dimer was retained.Polyamines (putrescine, spermidine, and spermine) have been shown to have both structural and regulatory roles in protein and nucleic acid biosynthesis and function (13). Ornithine decarboxylase (ODC,3 EC 4.1.1.17) is a central regulator of cellular polyamine synthesis (reviewed in Refs. 1, 4, 5). This enzyme catalyzes the pyridoxal 5-phosphate (PLP)-dependent decarboxylation of ornithine to putrescine, and it is the first and rate-limiting enzyme in polyamine biosynthesis (2, 3, 6, 7). ODC and polyamines play important roles in a number of biological functions, including embryonic development, cell cycle, proliferation, differentiation, and apoptosis (815). They also have been associated with human diseases and a variety of cancers (1626). Because the regulation of ODC and polyamine content is critical to cell proliferation (11), as well as in the origin and progression of neoplastic diseases (23, 24), ODC has been identified as an oncogenic enzyme, and the inhibitors of ODC and the polyamine pathway are important targets for therapeutic intervention in many cancers (6, 11).ODC is ubiquitously found in organisms ranging from bacteria to humans. It contains 461 amino acid residues in each monomer and is a 106-kDa homodimer with molecular 2-fold symmetry (27, 28). Importantly, ODC activity requires the formation of a dimer (2931). X-ray structures of the ODC enzyme reveal that this dimer contains two active sites, both of which are formed at the interface between the N-terminal domain of one monomer, which provides residues involved in PLP interactions, and the C-terminal domain of the other subunit, which provides the residues that interact with substrate (27, 3241).ODC undergoes a unique ubiquitin-independent proteasomal degradation via a direct interaction with the regulatory protein antizyme (AZ). Binding of AZ promotes the dissociation of the ODC homodimers and targets ODC for degradation by the 26 S proteasome (4246). Current models of antizyme function indicate that increased polyamine levels promote the fidelity of the AZ mRNA translational frameshift, leading to increased concentrations of AZ (47). The AZ monomer selectively binds to dimeric ODC, thereby inactivating ODC by forming inactive AZ-ODC heterodimers (44, 4850). AZ acts as a regulator of polyamine metabolism that inhibits ODC activity and polyamine transport, thus restricting polyamine levels (4, 5, 51, 52). When antizymes are overexpressed, they inhibit ODC and promote ubiquitin-independent proteolytic degradation of ODC. Because elevated ODC activity is associated with most forms of human malignancies (1), it has been suggested that antizymes may function as tumor suppressors.In contrast to the extensive studies on the oncogene ODC, the endogenous antizyme inhibitor (AZI) is less well understood. AZI is homologous to the enzyme ODC. It is a 448-amino acid protein with a molecular mass of 50 kDa. However, despite the homology between these proteins, AZI does not possess any decarboxylase activity. It binds to antizyme more tightly than does ODC and releases ODC from the ODC-antizyme complex (53, 54). Both the AZI and AZ proteins display rapid ubiquitin-dependent turnover within a few minutes to 1 h in vivo (5). However, AZ binding actually stabilizes AZI by inhibiting its ubiquitination (55).AZI, which inactivates all members of the AZ family (53, 56), restores ODC activity (54), and prevents the proteolytic degradation of ODC, may play a role in tumor progression. It has been reported that down-regulation of AZI is associated with the inhibition of cell proliferation and reduced ODC activity, presumably through the modulation of AZ function (57). Moreover, overexpression of AZI has been shown to increase cell proliferation and promote cell transformation (5860). Furthermore, AZI is capable of direct interaction with cyclin D1, preventing its degradation, and this effect is at least partially independent of AZ function (60, 61). These results demonstrate a role for AZI in the positive regulation of cell proliferation and tumorigenesis.It is now known that ODC exists as a dimer and that AZI may exist as a monomer physiologically (62). Fig. 1 shows the dimeric structures of ODC (Fig. 1A) and AZI (Fig. 1B). Although structural studies indicate that both ODC and AZI crystallize as dimers, the dimeric AZI structure has fewer interactions at the dimer interface, a smaller buried surface area, and a lack of symmetry of the interactions between residues from the two monomers, suggesting that the AZI dimer may be nonphysiological (62). In this study, we identify the critical amino acid residues governing the difference in dimer formation between ODC and AZI. Our preliminary studies using analytical ultracentrifugation indicated that ODC exists as a dimer, whereas AZI exists in a concentration-dependent monomer-dimer equilibrium. Multiple sequence alignments of ODC and AZI from various species have shown that residues 277, 331, 332, and 389 are not conserved between ODC and AZI (Open in a separate windowFIGURE 1.Crystal structure and the amino acid residues at the dimer interface of human ornithine decarboxylase (hODC) and mouse antizyme inhibitor (mAZI). A, homodimeric structure of human ODC with the cofactor PLP analog, LLP (Protein Data Bank code 1D7K). B, putative dimeric structure of mouse AZI (Protein Data Bank code 3BTN). The amino acid residues in the dimer interface are shown as a ball-and-stick model. The putative AZ-binding site is colored in cyan. This figure was generated using PyMOL (DeLano Scientific LLC, San Carlos, CA).

TABLE 1

Amino acid residues at the dimer interface of human ODC and AZI
Human ODCResidueHuman AZI
Nonconserved
    Arg277Ser
    Tyr331Ser
    Asp332Glu
    Tyr389Asp

Conserved
    Asp134Asp
    Lys169Lys
    Lys294Lys
    Tyr323Tyr
    Asp364Asp
    Gly387Gly
    Phe397Phe
Open in a separate window  相似文献   

13.
Protein Identification Using Top-Down Spectra     
Xiaowen Liu  Yakov Sirotkin  Yufeng Shen  Gordon Anderson  Yihsuan S. Tsai  Ying S. Ting  David R. Goodlett  Richard D. Smith  Vineet Bafna  Pavel A. Pevzner 《Molecular & cellular proteomics : MCP》2012,11(6)
In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set.In the past two decades, proteomics was dominated by bottom-up mass spectrometry that analyzes digested peptides rather than intact proteins. Bottom-up approaches, although powerful, do have limitations in analyzing protein species, e.g. various proteolytic forms of the same protein or various protein isoforms resulting from alternative splicing. Top-down mass spectrometry focuses on analyzing intact proteins and large peptides (110) and has advantages in localizing multiple post-translational modifications (PTMs)1 in a coordinated fashion (e.g. combinatorial PTM code) and identifying multiple protein species (e.g. proteolytically processed protein species) (11). Until recently, most top-down studies were limited to single purified proteins (1215). Top-down studies of protein mixtures were restricted by difficulties in separating and fragmenting intact proteins and a shortage of robust computational tools.In the last two years, because of advances in protein separation and top-down instrumentation, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples containing hundreds and even thousands of proteins (1621). Because algorithms for interpreting top-down spectra are still in their infancy, many recent developments include computational innovations in protein identification.Because top-down spectra are complex, the first step in top-down spectral interpretation is usually spectral deconvolution, which converts a complex top-down spectrum to a list of monoisotopic masses (a deconvolved spectrum). Every protein (possibly with modifications) can be scored against a top-down deconvoluted spectrum, resulting in a Protein-Spectrum-Match (PrSM). The top-down protein identification problem is finding a protein in a database with the highest scoring PrSM for a top-down spectrum and further output the PrSM if it is statistically significant. There are several software tools for top-down protein identification (SoftwareIdentification of unexpected modificationsProteogenomics search against 6-frame translationSpeedEstimation of statistical significanceProSightPC+/−a+Fast/Slowb+PIITA+/−−Fast−UStag++Fast−MS-TopDown+−Slow−MS-Align+++Fast+Open in a separate windowa ProSightPC has various search modes that contribute to bridging the gap between blind and restrictive modes of MS/MS database search. It can identify truncated proteins by using biomarker search and identify unexpected modifications by using Δm mode and setting the error tolerance of precursor mass to a large value (e.g., 1999 Da). However, it is not designed for identifying truncated proteins with unexpected PTMs which are not represented in the “shotgun annotated” database.b In its most advances mode, ProSightPC can search the annotated top-down database that contains various protein species. However, ProSightPC searches in this mode become an order of magnitude slower.
  • ProSightPC—ProSightPC is the most commonly used tool for top-down protein identification (22, 23). ProSightPC searches spectra against a “shotgun annotated” protein database, which is generated by considering all expected PTMs. The “shotgun annotated” protein database is much larger than the original protein database. ProSightPC can identify some (but not all) proteins with unexpected PTMs using advanced search options, such as biomarker search and Δm mode, but it is not designed for identifying truncated proteins with unexpected PTMs that are not represented in the “shotgun annotated” database. ProSightPC is a fast tool that reports the statistical significance of PrSMs.
  • PIITA—Unlike ProSightPC, PIITA (19) is a precursor independent method that uses only fragment ions for protein identification. It is capable of identifying protein species with unexpected PTMs on N- or C-termini, but it cannot directly identify protein species with PTMs on both N- and C-termini. PIITA is a fast tool that provides FIT scores and Δ scores rather than statistical significance estimates.
  • USTag—Unique Sequence Tag (USTag) (17) generates long (6 amino acids or longer) peptide sequence tags to identify PrSMs. This approach, although fast, relies on long peptide sequence tags that may be difficult to obtain for some spectra. It also does not provide an estimate of the statistical significance of PrSMs.
  • MS-TopDown—MS-TopDown (24) is based on spectral alignment (25). MS-TopDown allows one to match top-down spectra to proteins with unexpected PTMs, i.e. without knowing which PTMs are present in the sample. However, MS-TopDown is rather slow when searching against large proteomes and does not provide the statistical significance of PrSMs, making it difficult to select good PrSMs.
  • In addition, MASCOT, SEQUEST, and OMSSA (16, 26, 27) have been used for top-down protein identification.
We describe MS-Align+, a fast software tool for top-down protein identification. MS-Align+ shares the spectral alignment approach with MS-TopDown, but greatly improves on speed, statistical analysis (providing E-values of PrSMs), and the number of identified PrSMs (e.g. by finding spectral alignments between spectra and truncated proteins). We benchmarked various tools for top-down protein identification on two data sets from Saccharomyces cerevisiae (SC) and Salmonella typhimurium (ST). We demonstrate that MS-Align+ significantly increase the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the ST data set, MS-Align+ outperforms ProSightPC on the more complex SC data set.  相似文献   

14.
Neurodegeneration and Alzheimer's disease (AD). What Can Proteomics Tell Us About the Alzheimer's Brain?     
Guillermo Moya-Alvarado  Noga Gershoni-Emek  Eran Perlson  Francisca C. Bronfman 《Molecular & cellular proteomics : MCP》2016,15(2):409-425
  相似文献   

15.
Mode of Action of cGMP-dependent Protein Kinase-specific Inhibitors Probed by Photoaffinity Cross-linking Mass Spectrometry     
Martijn W. H. Pinkse  Dirk T. S. Rijkers  Wolfgang R. Dostmann    Albert J. R. Heck 《The Journal of biological chemistry》2009,284(24):16354-16368
The inhibitor peptide DT-2 (YGRKKRRQRRRPPLRKKKKKH) is the most potent and selective inhibitor of the cGMP-dependent protein kinase (PKG) known today. DT-2 is a construct of a PKG tight binding sequence (W45, LRKKKKKH, KI = 0.8 μm) and a membrane translocating sequence (DT-6, YGRKKRRQRRRPP, KI = 1.1 μm), that combined strongly inhibits PKG catalyzed phosphorylation (KI = 12.5 nm) with ∼1000-fold selectivity toward PKG over protein kinase A, the closest relative of PKG. However, the molecular mechanism behind this inhibition is not entirely understood. Using a combination of photoaffinity labeling, stable isotope labeling, and mass spectrometry, we have located the binding sites of PKG-specific substrate and inhibitor peptides. Covalent linkage of a PKG-specific substrate analogue was localized in the catalytic core on residues 356–372, also known as the glycine-rich loop, essential for ATP binding. By analogy, the individual inhibitor peptides W45 and DT-6 were also found to cross-link near the glycine-rich loop, suggesting these are both substrate competitive inhibitors. A bifunctional photoreactive analogue of DT-2 was found to generate dimers of PKG. This cross-linking induced covalent PKG dimerization was not observed for an N-terminal deletion mutant of PKG, which lacks the dimerization domain. In addition, non-covalent mass spectrometry was used to determine binding stoichiometry and binding order of the inhibitor peptides. Dimeric PKG binds two W45 and DT-6 peptides, whereas only one DT-2 molecule was observed to bind to the dimeric PKG. Taken together, these findings imply that (i) the two individual components making up DT-2 are both targeted against the substrate-binding site and (ii) binding of a single DT-2 molecule inactivates both PKG monomers simultaneously, which is an indication that (iii) in cGMP-activated PKG the catalytic centers of both subunits may be in each other''s proximity.Among the superfamily of protein kinases the two cyclic nucleotide-regulated protein kinases, cAMP-dependent protein kinase and cGMP-dependent protein kinase, form a closely related subfamily of serine/threonine protein kinases (14). Both proteins share several structural elements, such as the N-terminal dimerization domain, an autoinhibition site, two in-tandem cyclic nucleotide-binding sites, and a highly conserved catalytic core (Fig. 1, A and B). Despite these similarities, these two enzymes display differences, which account for their unique properties. Whereas PKA2 is nearly ubiquitous, PKG is primarily found in the lung, cerebellum, and smooth muscles (5, 6). From a structural point of view these cyclic nucleotide-dependent protein kinases differ as well. The holoenzyme of PKA is a tetramer composed of two regulatory and two catalytic subunits. The catalytic subunits are non-covalently attached to the regulatory subunit dimer. Upon interaction with cAMP, the catalytic subunits dissociate from the holoenzyme and are free to catalyze heterophosphorylation (Fig. 1C). The mammalian type I PKGs are homodimeric cytosolic proteins containing two identical polypeptides of ∼76 kDa. Alternative mRNA splicing produces type Iα and type Iβ PKG, which are identical proteins apart from their first ∼100 N-terminal residues (7). Each PKG subunit is composed of a regulatory and a catalytic domain on a single polypeptide chain. Consequently, when cGMP activates PKG, the catalytic and regulatory components remain physically attached (Fig. 1D). Within the catalytic domain PKA and PKG share a strong primary sequence homology (8). Not surprisingly, these enzymes also exhibit overlapping substrate specificities, a feature that often interferes with efforts to elucidate their distinct biological pathways. Peptide substrates with a primary amino acid sequence motif RRX(S/T)X are in general recognized by both PKA and PKG (9). Besides this strong overlapping substrate specificity, several studies report on subtle differences in determinants that discriminate for PKA and PKG substrate specificity (1016). To specifically discriminate between PKG and PKA activity in biological assays a highly specific PKG peptide inhibitor was developed (17). This peptide, YGRKKRRQRRRPPLRKKKKKH (DT-2), is the most potent and selective PKG inhibitor known today. Recently, the validity of DT-2 as a superior inhibitor of PKG in terms of potency, selectivity, and membrane permeability has been demonstrated (1824). The inhibitor is a construct of a substrate competitive sequence, LRKKKKKH (W45), derived from a library screen that selected for tight PKG binding sequences, with a significant specificity toward PKG over PKA, and a membrane translocating signal peptide, YGRKKRRQRRRPP (DT-6). DT-2 strongly inhibits PKG-catalyzed phosphorylation (Ki = 12.5 nm), however, the molecular nature of DT-2 inhibition is not entirely understood (25). Because high resolution structural data are not available for PKG, one of our goals is to elucidate binding sites for PKG-specific substrates and inhibitors in more detail using a combination of mass spectrometric techniques and photoaffinity labeling. To further delineate the nature of inhibition we have developed photoaffinity analogues of DT-2 and related inhibitory peptides, as well as a high affinity peptide substrate. The method of photoaffinity labeling enables the direct probing of target proteins through a covalent bond, which is photochemically introduced between a ligand and its specific receptor (26). In combination with modern mass spectrometric techniques this is a powerful approach for the characterization of peptide-protein interactions (27). Substrate and inhibitor peptides containing photoactivatable analogues of phenylalanine, 4-benzoyl-l-phenylalanine (Phe(Bz)) or 4′-(3-(trifluoromethyl)-3H-diazirin-3-yl)-l-phenylalanine (Phe(Tmd)) were synthesized and used to locate their substrate/inhibitor-binding sites on PKG. These measurements indicate that the substrate peptide resides near the glycine-rich loop within the catalytic domain and that the inhibitor peptides are directed similarly toward this substrate-binding site, thereby acting as competitive inhibitors. In addition, nanoflow electrospray ionization time of flight mass spectrometry (ESI-TOF-MS) was performed to study the interaction between DT-2 and PKG in more detail. ESI-MS has proven to be a useful tool to analyze the non-covalent interaction of proteins with ligands, oligonucleotides, peptides, or other proteins (2831). Using this technique, important information on conformational changes (3235), measurement of relative dissociation constants (36, 37), and sequential binding order and cooperativity (38, 39) can be obtained. ESI-MS confirms that PKG is primarily a homodimer and is able to bind four cGMP molecules. Binding of DT-2 was strongly enhanced in the presence of cGMP. Surprising is the observation that only one DT-2 molecule binds to dimeric PKG. The information derived from these measurements allows for molecular modeling and structural refinements of the next generation of PKG-selective inhibitors.Open in a separate windowFIGURE 1.Linear arrangement of the functional domains of the regulatory and catalytic subunit of PKA (A) and PKG (B) type I and schematic representation of the current working models of the activation process of PKA (C) and PKG (D) type 1. Binding of cAMP to the PKA induces a conformational change that results in the dissociation of the catalytic subunits. Binding of cGMP to PKG also induces a conformational change, which exposes the catalytic domains, but both catalytic domains remain near each other via the N-terminal dimerization domain. (Images adapted from Scholten et al. (4).)

TABLE 1

Inhibition contants (KI) of PKA- or PKG-specific peptide inhibitors and the PKA/PKG specificity index
PeptideSequencePKGKiPKAKiSpecificity index (PKA/PKG)Ref.
μmμm
PKI(5–24)TTYDFIASGRTGRRNAIHD-NH21500.0030.0002(11)
WW21TQAKRKKALAMA-NH27.5750100(11)
W45LRKKKKKH0.82 ± 0.33559680(17)
DT-6YGRGGRRQRRRPP1.1 ± 0.2226 ± 423.6(17)
DT-2YGRKKRRQRRRPPLRKKKKKH0.0125 ± 0.00316.5 ± 3.81320(17)
Open in a separate window  相似文献   

16.
Natural Infection of Burkholderia pseudomallei in an Imported Pigtail Macaque (Macaca nemestrina) and Management of the Exposed Colony     
Crystal H Johnson  Brianna L Skinner  Sharon M Dietz  David Blaney  Robyn M Engel  George W Lathrop  Alex R Hoffmaster  Jay E Gee  Mindy G Elrod  Nathaniel Powell  Henry Walke 《Comparative medicine》2013,63(6):528-535
Identification of the select agent Burkholderia pseudomallei in macaques imported into the United States is rare. A purpose-bred, 4.5-y-old pigtail macaque (Macaca nemestrina) imported from Southeast Asia was received from a commercial vendor at our facility in March 2012. After the initial acclimation period of 5 to 7 d, physical examination of the macaque revealed a subcutaneous abscess that surrounded the right stifle joint. The wound was treated and resolved over 3 mo. In August 2012, 2 mo after the stifle joint wound resolved, the macaque exhibited neurologic clinical signs. Postmortem microbiologic analysis revealed that the macaque was infected with B. pseudomallei. This case report describes the clinical evaluation of a B. pseudomallei-infected macaque, management and care of the potentially exposed colony of animals, and protocols established for the animal care staff that worked with the infected macaque and potentially exposed colony. This article also provides relevant information on addressing matters related to regulatory issues and risk management of potentially exposed animals and animal care staff.Abbreviations: CDC, Centers for Disease Control and Prevention; IHA, indirect hemagglutination assay; PEP, postexposure prophylacticBurkholderia pseudomallei, formerly known as Pseudomonas pseudomallei, is a gram-negative, aerobic, bipolar, motile, rod-shaped bacterium. B. pseudomallei infections (melioidosis) can be severe and even fatal in both humans and animals. This environmental saprophyte is endemic to Southeast Asia and northern Australia, but it has also been found in other tropical and subtropical areas of the world.7,22,32,42 The bacterium is usually found in soil and water in endemic areas and is transmitted to humans and animals primarily through percutaneous inoculation, ingestion, or inhalation of a contaminated source.8, 22,28,32,42 Human-to-human, animal-to-animal, and animal-to-human spread are rare.8,32 In December 2012, the National Select Agent Registry designated B. pseudomallei as a Tier 1 overlap select agent.39 Organisms classified as Tier 1 agents present the highest risk of deliberate misuse, with the most significant potential for mass casualties or devastating effects to the economy, critical infrastructure, or public confidence. Select agents with this status have the potential to pose a severe threat to human and animal health or safety or the ability to be used as a biologic weapon.39Melioidosis in humans can be challenging to diagnose and treat because the organism can remain latent for years and is resistant to many antibiotics.12,37,41 B. pseudomallei can survive in phagocytic cells, a phenomenon that may be associated with latent infections.19,38 The incubation period in naturally infected animals ranges from 1 d to many years, but symptoms typically appear 2 to 4 wk after exposure.13,17,35,38 Disease generally presents in 1 of 2 forms: localized infection or septicemia.22 Multiple methods are used to diagnose melioidosis, including immunofluorescence, serology, and PCR analysis, but isolation of the bacteria from blood, urine, sputum, throat swabs, abscesses, skin, or tissue lesions remains the ‘gold standard.’9,22,40,42 The prognosis varies based on presentation, time to diagnosis, initiation of appropriate antimicrobial treatment, and underlying comorbidities.7,28,42 Currently, there is no licensed vaccine to prevent melioidosis.There are several published reports of naturally occurring melioidosis in a variety of nonhuman primates (NHP; 2,10,13,17,25,30,31,35 The first reported case of melioidosis in monkeys was recorded in 1932, and the first published case in a macaque species was in 1966.30 In the United States, there have only been 7 documented cases of NHP with B. pseudomallei infection.2,13,17 All of these cases occurred prior to the classification of B. pseudomallei as a select agent. Clinical signs in NHP range from subclinical or subacute illness to acute septicemia, localized infection, and chronic infection. NHP with melioidosis can be asymptomatic or exhibit clinical signs such as anorexia, wasting, purulent drainage, subcutaneous abscesses, and other soft tissue lesions. Lymphadenitis, lameness, osteomyelitis, paralysis and other CNS signs have also been reported.2,7,10,22,28,32 In comparison, human''s clinical signs range from abscesses, skin ulceration, fever, headache, joint pain, and muscle tenderness to abdominal pain, anorexia, respiratory distress, seizures, and septicemia.7,9,21,22

Table 1.

Summary of reported cases of naturally occurring Burkholderia pseudomalleiinfections in nonhuman primates
CountryaImported fromDate reportedSpeciesReference
AustraliaBorneo1963Pongo sp.36
BruneiUnknown1982Orangutan (Pongo pygmaeus)33
France1976Hamlyn monkey (Cercopithecus hamlyni) Patas monkey (Erythrocebus patas)11
Great BritainPhilippines and Indonesia1992Cynomolgus monkey (Macaca fascicularis)10
38
MalaysiaUnknown1966Macaca spp.30
Unknown1968Spider monkey (Brachytelis arachnoides) Lar gibbon (Hylobates lar)20
Unknown1969Pig-tailed macaque (Macaca nemestrina)35
Unknown1984Banded leaf monkey (Presbytis melalophos)25
SingaporeUnknown1995Gorillas, gibbon, mandrill, chimpanzee43
ThailandUnknown2012Monkey19
United StatesThailand1970Stump-tailed macaque (Macaca arctoides)17
IndiaPig-tailed macaque (Macaca nemestrina)
AfricaRhesus macaque (Macaca mulatta) Chimpanzee (Pan troglodytes)
Unknown1971Chimpanzee (Pan troglodytes)3
Malaysia1981Pig-tailed macaque (Macaca nemestrina)2
Wild-caught, unknown1986Rhesus macaque (Macaca mulatta)13
Indonesia2013Pig-tailed macaque (Macaca nemestrina)Current article
Open in a separate windowaCountry reflects the location where the animal was housed at the time of diagosis.Here we describe a case of melioidosis diagnosed in a pigtail macaque (Macaca nemestrina) imported into the United States from Indonesia and the implications of the detection of a select agent identified in a laboratory research colony. We also discuss the management and care of the exposed colony, zoonotic concerns regarding the animal care staff that worked with the shipment of macaques, effects on research studies, and the procedures involved in reporting a select agent incident.  相似文献   

17.
Comparative Analysis of Myxococcus Predation on Soil Bacteria     
Andrew D. Morgan  R. Craig MacLean  Kristina L. Hillesland  Gregory J. Velicer 《Applied and environmental microbiology》2010,76(20):6920-6927
Predator-prey relationships among prokaryotes have received little attention but are likely to be important determinants of the composition, structure, and dynamics of microbial communities. Many species of the soil-dwelling myxobacteria are predators of other microbes, but their predation range is poorly characterized. To better understand the predatory capabilities of myxobacteria in nature, we analyzed the predation performance of numerous Myxococcus isolates across 12 diverse species of bacteria. All predator isolates could utilize most potential prey species to effectively fuel colony expansion, although one species hindered predator swarming relative to a control treatment with no growth substrate. Predator strains varied significantly in their relative performance across prey types, but most variation in predatory performance was determined by prey type, with Gram-negative prey species supporting more Myxococcus growth than Gram-positive species. There was evidence for specialized predator performance in some predator-prey combinations. Such specialization may reduce resource competition among sympatric strains in natural habitats. The broad prey range of the Myxococcus genus coupled with its ubiquity in the soil suggests that myxobacteria are likely to have very important ecological and evolutionary effects on many species of soil prokaryotes.Predation plays a major role in shaping both the ecology and evolution of biological communities. The population and evolutionary dynamics of predators and their prey are often tightly coupled and can greatly influence the dynamics of other organisms as well (1). Predation has been invoked as a major cause of diversity in ecosystems (11, 12). For example, predators may mediate coexistence between superior and inferior competitors (2, 13), and differential trajectories of predator-prey coevolution can lead to divergence between separate populations (70).Predation has been investigated extensively in higher organisms but relatively little among prokaryotes. Predation between prokaryotes is one of the most ancient forms of predation (27), and it has been proposed that this process may have been the origin of eukaryotic cells (16). Prokaryotes are key players in primary biomass production (44) and global nutrient cycling (22), and predation of some prokaryotes by others is likely to significantly affect these processes. Most studies of predatory prokaryotes have focused on Bdellovibrionaceae species (e.g., see references 51, 55, and 67). These small deltaproteobacteria prey on other Gram-negative cells, using flagella to swim rapidly until they collide with a prey cell. After collision, the predator cells then enter the periplasmic space of the prey cell, consume the host cell from within, elongate, and divide into new cells that are released upon host cell lysis (41). Although often described as predatory, the Bdellovibrionaceae may also be considered to be parasitic, as they typically depend (apart from host-independent strains that have been observed [60]) on the infection and death of their host for their reproduction (47).In this study, we examined predation among the myxobacteria, which are also deltaproteobacteria but constitute a monophyletic clade divergent from the Bdellovibrionaceae (17). Myxobacteria are found in most terrestrial soils and in many aquatic environments as well (17, 53, 74). Many myxobacteria, including the model species Myxococcus xanthus, exhibit several complex social traits, including fruiting body formation and spore formation (14, 18, 34, 62, 71), cooperative swarming with two motility systems (64, 87), and group (or “wolf pack”) predation on both bacteria and fungi (4, 5, 8, 9, 15, 50). Using representatives of the genus Myxococcus, we tested for both intra- and interspecific variation in myxobacterial predatory performance across a broad range of prey types. Moreover, we examined whether prey vary substantially in the degree to which they support predatory growth by the myxobacteria and whether patterns of variation in predator performance are constant or variable across prey environments. The latter outcome may reflect adaptive specialization and help to maintain diversity in natural populations (57, 59).Although closely related to the Bdellovibrionaceae (both are deltaproteobacteria), myxobacteria employ a highly divergent mode of predation. Myxobacteria use gliding motility (64) to search the soil matrix for prey and produce a wide range of antibiotics and lytic compounds that kill and decompose prey cells and break down complex polymers, thereby releasing substrates for growth (66). Myxobacterial predation is cooperative both in its “searching” component (6, 31, 82; for details on cooperative swarming, see reference 64) and in its “handling” component (10, 29, 31, 32), in which secreted enzymes turn prey cells into consumable growth substrates (56, 83). There is evidence that M. xanthus employs chemotaxis-like genes in its attack on prey cells (5) and that predation is stimulated by close contact with prey cells (48).Recent studies have revealed great genetic and phenotypic diversity within natural populations of M. xanthus, on both global (79) and local (down to centimeter) scales (78). Phenotypic diversity includes variation in social compatibility (24, 81), the density and nutrient thresholds triggering development (33, 38), developmental timing (38), motility rates and patterns (80), and secondary metabolite production (40). Although natural populations are spatially structured and both genetic diversity and population differentiation decrease with spatial scale (79), substantial genetic diversity is present even among centimeter-scale isolates (78). No study has yet systematically investigated quantitative natural variation in myxobacterial predation phenotypes across a large number of predator genotypes.Given the previous discovery of large variation in all examined phenotypes, even among genetically extremely similar strains, we anticipated extensive predatory variation as well. Using a phylogenetically broad range of prey, we compared and contrasted the predatory performance of 16 natural M. xanthus isolates, sampled from global to local scales, as well as the commonly studied laboratory reference strain DK1622 and representatives of three additional Myxococcus species: M. flavescens (86), M. macrosporus (42), and M. virescens (63) (Table (Table1).1). In particular, we measured myxobacterial swarm expansion rates on prey lawns spread on buffered agar (31, 50) and on control plates with no nutrients or with prehydrolyzed growth substrate.

TABLE 1.

List of myxobacteria used, with geographical origin
Organism abbreviation used in textSpeciesStrainGeographic originReference(s)
A9Myxococcus xanthusA9Tübingen, Germany78
A23Myxococcus xanthusA23Tübingen, Germany78
A30Myxococcus xanthusA30Tübingen, Germany78
A41Myxococcus xanthusA41Tübingen, Germany78
A46Myxococcus xanthusA46Tübingen, Germany78
A47Myxococcus xanthusA47Tübingen, Germany78
A75Myxococcus xanthusA75Tübingen, Germany78
A85Myxococcus xanthusA85Tübingen, Germany78
TVMyxococcus xanthusTvärminneTvärminne, Finland79
PAKMyxococcus xanthusPaklenicaPaklenica, Croatia79
MADMyxococcus xanthusMadeira 1Madeira, Portugal79
WARMyxococcus xanthusWarwick 1Warwick, UK79
TORMyxococcus xanthusToronto 1Toronto, Ontario, Canada79
SUL2Myxococcus xanthusSulawesi 2Sulawesi, Indonesia79
KALMyxococcus xanthusKalalauKalalau, HI79
DAVMyxococcus xanthusDavis 1ADavis, CA79
GJV1Myxococcus xanthusGJV 1Unknown35, 72
MXFL1Myxococcus flavescensMx fl1Unknown65
MXV2Myxococcus virescensMx v2Unknown65
CCM8Myxococcus macrosporusCc m8Unknown65
Open in a separate window  相似文献   

18.
Focus on Chromatin/Epigenetics: Trans-Homolog Interactions Facilitating Paramutation in Maize     
Brian John Giacopelli  Jay Brian Hollick 《Plant physiology》2015,168(4):1226-1236
  相似文献   

19.
Phosphoprotein Secretome of Tumor Cells as a Source of Candidates for Breast Cancer Biomarkers in Plasma     
Anna M. Zawadzka  Birgit Schilling  Michael P. Cusack  Alexandria K. Sahu  Penelope Drake  Susan J. Fisher  Christopher C. Benz  Bradford W. Gibson 《Molecular & cellular proteomics : MCP》2014,13(4):1034-1049
Breast cancer is a heterogeneous disease whose molecular diversity is not well reflected in clinical and pathological markers used for prognosis and treatment selection. As tumor cells secrete proteins into the extracellular environment, some of these proteins reach circulation and could become suitable biomarkers for improving diagnosis or monitoring response to treatment. As many signaling pathways and interaction networks are altered in cancerous tissues by protein phosphorylation, changes in the secretory phosphoproteome of cancer tissues could reflect both disease progression and subtype. To test this hypothesis, we compared the phosphopeptide-enriched fractions obtained from proteins secreted into conditioned media (CM) derived from five luminal and five basal type breast cancer cell lines using label-free quantitative mass spectrometry. Altogether over 5000 phosphosites derived from 1756 phosphoproteins were identified, several of which have the potential to qualify as phosphopeptide plasma biomarker candidates for the more aggressive basal and also the luminal-type breast cancers. The analysis of phosphopeptides from breast cancer patient plasma and controls allowed us to construct a discovery list of phosphosites under rigorous collection conditions, and second to qualify discovery candidates generated from the CM studies. Indeed, a set of basal-specific phosphorylation CM site candidates derived from IBP3, CD44, OPN, FSTL3, LAMB1, and STC2, and luminal-specific candidates derived from CYTC and IBP5 were selected and, based on their presence in plasma, quantified across all cell line CM samples using Skyline MS1 intensity data. Together, this approach allowed us to assemble a set of novel cancer subtype specific phosphopeptide candidates for subsequent biomarker verification and clinical validation.Breast cancer (BC)1 is a heterogeneous disease whose molecular complexity and diversity is not well reflected in current clinical and pathological markers. Therefore, there is a critical need to increase the number of clinically suitable biomarkers that better reflect the many molecular subtypes of BC (13). BC can be categorized by gene expression profiling and molecular pathology into three major clinical types, each with different natural histories and therapeutic recommendations, and exhibiting significant molecular and clinical heterogeneity. First, luminal estrogen receptor (ER) positive breast cancers exist in luminal A and B subtypes; they are the most numerous and clinically diverse of all breast cancers, with luminal A tumors having the more favorable prognosis because of their responsiveness to targeted endocrine therapy compared with the more proliferative luminal B tumors. Second, human epidermal growth factor receptor-2 (HER2/ErbB2) amplified breast cancers, despite having poor prognosis in the absence of any systemic adjuvant therapy, can now be successfully treated with HER2-targeted agents. Third, basal-like breast cancers are among the most aggressive tumors, and are further subdivided. Those with BRCA1-like features are modeled by basal-A breast cancer cell lines, and those with mesenchymal and stem/progenitor-cell features are modeled by basal-B breast cancer cell lines (4). This latter subtype of basal-like tumors include triple negative breast cancers (TNBC), lacking expression of ER, progesterone receptor (PR), and HER2, and therefore not susceptible to more advanced targeted treatment options and requiring aggressive chemotherapy with otherwise very poor prognosis (5).BC is the leading cause of adult female mortality worldwide, caused by recurrent spread of metastatic disease that is thought to have seeded prior to the time of primary tumor excision (6). Thus, blood-based biomarkers that are highly specific as well as capable of detecting BC prior to primary tumor diagnosis offer the potential to decrease BC morbidity as well as identify the most appropriate treatment options (7). As cancer cells are known to secrete proteins into the extracellular microenvironment that modify cell adhesion, intercellular communication, motility, and invasiveness (8), it is expected that some will enter the blood stream and become suitable targets for early noninvasive diagnosis or monitoring of treatment progression.It is well recognized that blood contains hormones, cytokines, and other nonhormonal proteins, as well as a tissue leakage products and secretions from diseased tissues and tumors (9). Secreted proteins are often in the low abundance range of plasma protein concentrations, and likely contain proteins specific for distinct tumor and/or tissue types. Because tumorogenesis is known to involve changes in cellular signaling pathways involving protein kinases, protein phosphorylation is a particularly promising target for the detection of such activated pathways in BC (10). For example, almost half of the tyrosine kinases of the human “kinome” are implicated in human cancers (11) as well as numerous serine-threonine kinases, including Akt and mTOR (12, 13). Kinases participating in signal transduction pathways phosphorylate their substrates altering their conformation, localization, and activity, which in turn modulates downstream protein effectors and alters cellular processes. Like other posttranslational modifications, changes in the phosphorylation status of a protein do not directly correlate with changes in expression, and are therefore not accounted for in most gene expression or protein array analyses (14). Therefore, we hypothesized that phosphoproteins secreted or shed by cancer cells constitute a largely overlooked source of biomarker candidates that could be correlated with BC subtypes and/or disease status (15, 16).To test this hypothesis, we analyzed the conditioned media (CM) from human cancer cell lines, a well-established model for the discovery of disease-specific biomarkers (17, 18). Breast cancer cell lines derived from primary tumors or pleural effusions are a good model of BC, mirroring molecular characteristics of primary breast tumors (19). The use of CM is also advantageous in that it provides sufficient amounts of sample to identify candidates that can subsequently be targeted in more limited breast cancer patient plasma samples. To examine the phosphorylation status of secreted proteins, we examined a panel of five luminal and five basal type BC cell lines thought to emulate the molecular characteristics of most primary breast tumor types, including four basal-B subtypes corresponding to TNBC (19). A mass spectrometry-based proteomic approach was used that employed HILIC fractionation, TiO2 affinity enrichment of phosphopeptides, and final mass spectrometric analysis by reverse-phase liquid chromatography and label-free quantification (Fig. 1). MS1 Filtering in Skyline (20, 21) was used to quantify relative differences in site-specific protein phosphorylation between secretomes of BC cell lines derived from breast tumor subtypes to discern luminal or basal tumor specificity. Lastly, plasma obtained from breast cancer patients and controls were analyzed in an optimized workflow suitable to both preserve and identify phosphopeptides, and to qualify a subset of biomarker candidates selected from the CM analysis (Fig. 1). Overall, we identified 107 phosphorylation sites specific for basal-type tumors derived from 84 proteins and 95 phosphorylation sites specific for luminal-type tumors derived from 64 proteins. Moreover, we qualified the presence of seven basal type specific and two luminal specific phosphosites derived from eight phosphoproteins in BC patient and control plasma.

Table I

Luminal and basal breast cancer cell lines
Cell lineaTumor subtypeERbPRcHER2dDiagnosise
MCF7Luminal++NoIDC
T47DLuminal++NoIDC
BT474Luminal++YesIDC
MDAMB361Luminal+YesAdenocarcinoma
SKBR3LuminalYesAdenocarcinoma
HCC1954Basal AYesDuctal carcinoma
MCF10ABasal BNoFibrocystic disease
MDAMB231Basal BNoAdenocarcinoma
HCC38Basal BNoDuctal carcinoma
BT549Basal BNoIDC, papillary
Open in a separate windowa This table was populated with information from Neve et al. (19).b Estrogen (ER).c Progesterone receptor (PR) expression.d Human epidermal growth factor receptor 2 (HER2/ERBB2) overexpression.e Invasive ductal carcinoma (IDC).Open in a separate windowFig. 1.The experimental workflow developed for preparation of phosphopeptides from CM samples from breast cancer cell lines derived from five luminal and five basal tumors.  相似文献   

20.
Glycopeptide-preferring Polypeptide GalNAc Transferase 10 (ppGalNAc T10), Involved in Mucin-type O-Glycosylation, Has a Unique GalNAc-O-Ser/Thr-binding Site in Its Catalytic Domain Not Found in ppGalNAc T1 or T2     
Cynthia L. Perrine  Anjali Ganguli  Peng Wu  Carolyn R. Bertozzi  Timothy A. Fritz  Jayalakshmi Raman  Lawrence A. Tabak    Thomas A. Gerken 《The Journal of biological chemistry》2009,284(30):20387-20397
Mucin-type O-gly co sy la tion is initiated by a large family of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer GalNAc from UDP-GalNAc to the Ser and Thr residues of polypeptide acceptors. Some members of the family prefer previously gly co sylated peptides (ppGalNAc T7 and T10), whereas others are inhibited by neighboring gly co sy la tion (ppGalNAc T1 and T2). Characterizing their peptide and glycopeptide substrate specificity is critical for understanding the biological role and significance of each isoform. Utilizing a series of random peptide and glycopeptide substrates, we have obtained the peptide and glycopeptide specificities of ppGalNAc T10 for comparison with ppGalNAc T1 and T2. For the glycopeptide substrates, ppGalNAc T10 exhibited a single large preference for Ser/Thr-O-GalNAc at the +1 (C-terminal) position relative to the Ser or Thr acceptor site. ppGalNAc T1 and T2 revealed no significant enhancements suggesting Ser/Thr-O-GalNAc was inhibitory at most positions for these isoforms. Against random peptide substrates, ppGalNAc T10 revealed no significant hydrophobic or hydrophilic residue enhancements, in contrast to what has been reported previously for ppGalNAc T1 and T2. Our results reveal that these transferases have unique peptide and glycopeptide preferences demonstrating their substrate diversity and their likely roles ranging from initiating transferases to filling-in transferases.Mucin-type O-glycosylation is a common post-translational modification of secreted and membrane-associated proteins. O-Glycan biosynthesis is initiated by the transfer of GalNAc from UDP-GalNAc to the hydroxyl groups of serine or threonine residues in a polypeptide, catalyzed by a family of polypeptide N-α-acetylgalactosaminyltransferases (ppGalNAc Ts).5 To date, 16 mammalian members have been reported in the literature (116) with a total of at least 20 members currently present in the human genome data base. Multiple members of the ppGalNAc T family have also been identified in Drosophila (9, 10, 14), Caenorhabditis elegans (3, 8), and single and multicellular organisms (1720). Several members show close sequence orthologues across species suggesting that the ppGalNAc Ts are responsible for biologically significant functions that have been conserved during evolution. For example, in Drosophila four isoforms have close sequence orthologues to the mammalian transferases. Of the two that have been recently compared, nearly identical peptide substrate specificities have been observed between the fly and mammals, suggesting common but presently unknown functions preserved across these diverse species (21).Recently, several ppGalNAc T isoforms have been shown to be important for normal development or cellular processes. For example, inactive mutations in the fly PGANT35A (the T11 orthologue in mammals) are lethal because of the disruption of the tracheal tube structures (9, 10, 22), whereas mutations in PGANT3 alter epithelial cell adhesion in the Drosophila wing blade resulting in wing blistering (23). In humans, mutations in ppGalNAc T3 are associated with familial tumoral calcinosis, the result of the abnormal processing and secretion of the phosphaturic factor FGF23 (24, 25). Human ppGalNAc T14 has been suggested to modulate apoptotic signaling in tumor cells by its glycosylation of the proapoptotic receptors DLR4 and DLR5 (26), and very recently the specific O-glycosylation of the TGFB-II receptor (ActR-II) by the GalNTL1 has been shown to modulate its signaling in development (16).Historically, the major targets of the ppGalNAc Ts have been thought to be heavily O-glycosylated mucin domains of membrane and secreted glycoproteins. Such domains typically contain 15–30% Ser or Thr, which are highly (>50%) substituted by GalNAc. One question in the field is as follows. How is this high degree of peptide core glycosylation achieved and is it related to the large number of ppGalNAc isoforms, some of which may even have specific mucin domain preferences? Interestingly, some members of the ppGalNAc T family are known to prefer substrates that have been previously modified with O-linked GalNAc on nearby Ser/Thr residues, hence having so-called glycopeptide or filling-in activities, i.e. ppGalNAc T7 and T10 (8, 2729). Others simply possess altered preferences against glycopeptide substrates, i.e. ppGalNAc T2 and T4 (3033), or may be inhibited by neighboring glycosylation, i.e. ppGalNAc T1 and T2 (29, 34, 35). These latter transferases have been called early or initiating transferases, preferring nonglycosylated over-glycosylated substrates. Presently, little is known about which factors dictate the different peptide/glycopeptide specificities among the ppGalNAc Ts.The ppGalNAc Ts consist of an N-terminal catalytic domain tethered by a short linker to a C-terminal ricin-like lectin domain containing three recognizable carbohydrate-binding sites (36). Because ppGalNAc T7 and T10 prefer to transfer GalNAc to glycopeptide acceptors, it has been widely assumed that their C-terminal lectin domains would play significant roles in this activity, as has been demonstrated for other family members (27, 28, 32). Recently, Kubota et al. (37) solved the crystal structure of ppGalNAc T10 in complex with Ser-GalNAc specifically bound to its lectin domain. In this work (37), the authors further demonstrated that a T10 lectin domain mutant indeed had altered specificity against GalNAc-containing glycopeptide substrates when the acceptor Ser/Thr site was distal from the pre-existing glycopeptide GalNAc site. However, it was also observed that the lectin mutant still possessed relatively unaltered glycopeptide activity when the acceptor Ser/Thr site was directly N-terminal of a pre-existing glycopeptide GalNAc site. Kubota et al. (37) therefore concluded that for ppGalNAc T10, both its lectin and indeed its catalytic domain must contain distinct peptide GalNAc recognition sites. In support of this, Raman et al. (33) have shown that the complete removal of the ppGalNAc T10 lectin domain only slightly alters its specificity against distal glycopeptide substrates while showing no difference in its ability to glycosylate residues directly N-terminal of an existing site of glycosylation. Thus, it seems that the catalytic domain of ppGalNAc T10 may have specific requirements for a peptide O-linked GalNAc in at least the +1 position (toward the C terminus) of residues being glycosylated. As no systematic determination of the glycopeptide binding properties of the ppGalNAc Ts catalytic domain has been performed, it is unknown whether additional GalNAc peptide-binding sites exist in T10 or, for that matter, any of the other ppGalNAc Ts.We have recently reported the use of oriented random peptide substrates, GAGA(X)nT(X)nAGAGK (where X indicates randomized amino acid positions and n = 3 and 5) for determining the peptide substrate specificities of mammalian ppGalNAc T1, T2, and their fly orthologues (21, 38). In the present work, we extend this approach to the determination of the catalytic domain glycopeptide (Ser/Thr-O-GalNAc) substrate preferences for ppGalNAc T1, T2, and T10 employing two n = 4 oriented random glycopeptide libraries (21). Interestingly, ppGalNAc T10 displays few significant enhancements and specifically lacks the Pro residue enhancements observed for ppGalNAc T1 and T2. These findings further demonstrate the vast substrate diversity of the catalytic domains of the ppGalNAc T family of transferases.

TABLE 1

ppGalNAc transferase random substrates utilized in this workPVI, PVII, GP-I, and GP-II random (glyco)peptide substrates.
PeptideSequenceNo. of unique sequences
GAGAXXXXXTXXXXXAGAGK
P-VIX = G, A, P, V, L, Y, E, Q, R, H10 × 109
P-VIIX = G, A, P, I, M, F, D, N, R, K10 × 109

GAGAXXXXTXXXXAGAG
GP-IX = G, A, P, V, I, F, Y, E, D, N, R, K, H, and Ser-O-α-GalNAc1.47 × 109

GAGAXXXX(Thr-O-α-GalNAc)XXXXAGAG
GP-IIX = G, A, P, V, I, F, Y, E, D, N, R, K, H, S1.47 × 109
Open in a separate window  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号