首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanisms underlying coagulation abnormalities in sepsis and septic acute lung injury remain unclear. Tissue factor (TF) initiates coagulation; its production can be regulated by reactive oxygen species (ROS); and monocytes/macrophages produce pathological TF during sepsis. The SUMO2/3 protease SENP3 is redox-sensitive, and SENP3 accumulation in lipopolysaccharide (LPS)-activated macrophages is ROS-dependent. To explore whether SENP3 contributes to LPS-activated coagulation, we used mice with Senp3 conditional knockout (cKO) in myeloid cells. In the model of LPS-induced sepsis, SENP3 cKO mice exhibited less severe acute lung injury than SENP3 fl/fl mice. SENP3 cKO mice exhibited decreased TF expression in monocytes and alveolar macrophages, with consequently compromised coagulation in their blood and lungs. In vitro results showed that ROS-induced SENP3 accumulation contributed to LPS-induced TF expression, which was reduced by JNK inhibitor SP600125. Furthermore, mice injected with LPS following SP600125 (75 mg/kg) treatment showed decreased monocytes/macrophages TF production and alleviated coagulation activation, with less severe lung injury and higher survival rates. Collectively, the results suggest that SENP3 mediates LPS-induced coagulation activation by up-regulating monocyte/macrophage TF production in a JNK-dependent manner. This work provides new insights into ROS regulation of LPS-activated coagulation and reveals a link between SUMOylation and coagulation.  相似文献   

3.
《Molecular cell》2020,77(3):488-500.e9
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
6.
N 6‐methyladenosine (m6A) is a chemical modification present in multiple RNA species and is most abundant in mRNAs. Studies on m6A reveal its comprehensive roles in almost every aspect of mRNA metabolism, as well as in a variety of physiological processes. Although some recent discoveries indicate that m6A can affect the life cycles of numerous viruses as well as the cellular antiviral immune response, the roles of m6A modification in type I interferon (IFN‐I) signaling are still largely unknown. Here, we reveal that WT1‐associated protein (WTAP), one of the m6A “writers”, is degraded via the ubiquitination‐proteasome pathway upon activation of IFN‐I signaling. With the degradation of WTAP, the m6A levels of IFN‐regulatory factor 3 (IRF3) and interferon alpha/beta receptor subunit 1 (IFNAR1) mRNAs are reduced, leading to translational suppression of IRF3 and instability of IFNAR1 mRNA. Thus, the WTAP‐IRF3/IFNAR1 axis may serve as negative feedback pathway to fine‐tune the activation of IFN‐I signaling, which highlights the roles of m6A in the antiviral response by dictating the fate of mRNAs associated with IFN‐I signaling.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Objective: To test for differences in the amount and activity of peritoneal macrophages present in the peritoneal fluid of women with, and without endometriosis using prostaglandin release by macrophages in culture as a marker.Patients: Women of reproductive age undergoing laparoscopy for infertility or chronic pelvic pain with postoperative diagnosis of endometriosis and women undergoing laparoscopy for sterilization.Methods: Peritoneal fluid was aspirated during laparoscopy, volume was recorded, macrophages were isolated via a Ficoll Paque gradient and kept in primary culture. PGE2 and PGF release of the cells were measured before and after stimulation with zymosan.Results: Women with endometriosis had significantly more peritoneal macrophages than controls. Peritoneal macrophages of women with endometriosis released significantly more PGE2 than those of the control group: 8.4 ± 2.0 versus 1.4 ± 0.4 ng/ml/106cells (mean ± SEM, p=0.0005) and PGF : 10 ± 4.3 (endometriosis) versus 1.8 ± 0.4 (control) ng/ml/106cells (mean ± SEM, p = 0.045).Conclusion: There is a significant increase in the amount of prostaglandins released by peritoneal macrophages from women with endometriosis. These prostaglandins might alter uterine and tubal contractility, thereby affecting fertility.  相似文献   

15.
Pei Z  Lin D  Song X  Li H  Yao H 《Cellular immunology》2008,254(1):20-27
Chronic inflammation promotes tumor development and progression, and Toll-like receptors (TLRs) may play an important role in this process. In this study, we found that human prostate epithelial PC3 cells constitutively express TLR4 in mRNA and protein level. lipopolysaccharide (LPS) promotes the expression and secretion of immunosuppressive cytokine TGFβ1 and proangiogenic factor VEGF in human prostate epithelial PC3 cells. We further elucidated that functionally activation of TLR4 is essential for the increased VEGF and TGFβ1 mRNA expression in the cells. In addition, after LPS stimulation, the increased expression of NF-KB p65 protein was also detected in human PC3 cells. Our results demonstrate that TLR4 expressed on human PC3 cells is functionally active, and may play important roles in promoting prostate cancer immune escape, survival, progression, and metastasis by inducing immunosuppressive and proangiogenic cytokines.  相似文献   

16.
17.
Epigenetic dysregulation plays an important role in cancer. Histone demethylation is a well‐known mechanism of epigenetic regulation that promotes or inhibits tumourigenesis in various malignant tumours. However, the pathogenic role of histone demethylation modifiers in papillary thyroid cancer (PTC), which has a high incidence of early lymphatic metastasis, is largely unknown. Here, we detected the expression of common histone demethylation modifiers and found that the histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) demethylase KDM1A (or lysine demethylase 1A) is frequently overexpressed in PTC tissues and cell lines. High KDM1A expression correlated positively with age <55 years and lymph node metastasis in patients with PTC. Moreover, KDM1A was required for PTC cell migration and invasion. KDM1A knockdown inhibited the migration and invasive abilities of PTC cells both in vitro and in vivo. We also identified tissue inhibitor of metalloproteinase 1 (TIMP1) as a key KDM1A target gene. KDM1A activated matrix metalloproteinase 9 (MMP9) through epigenetic repression of TIMP1 expression by demethylating H3K4me2 at the TIMP1 promoter region. Rescue experiments clarified these findings. Altogether, we have uncovered a new mechanism of KDM1A repression of TIMP1 in PTC and suggest that KDM1A may be a promising therapeutic target in PTC.  相似文献   

18.
19.
β-1, 4-Galactosyltransferase gene (B4GALT) family consists of seven members, which encode corresponding enzymes known as type II membrane-bound glycoproteins. These enzymes catalyze the biosynthesis of different glycoconjugates and saccharide structures, and have been recognized to be involved in various diseases. In this study, we sought to determine the expressional profiles of B4GALT family in four pairs of parental and chemoresistant human leukemia cell lines and in bone marrow mononuclear cells (BMMC) of leukemia patients with multidrug resistance (MDR). The results revealed that B4GALT1 and B4GALT5 were highly expressed in four MDR cells and patients, altered levels of B4GALT1 and B4GALT5 were responsible for changed drug-resistant phenotype of HL60 and HL60/adriamycin-resistant cells. Further data showed that manipulation of these two gene expression led to increased or decreased activity of hedgehog (Hh) signaling and proportionally mutative expression of p-glycoprotein (P-gp) and MDR-associated protein 1 (MRP1) that are both known to be related to MDR. Thus, we propose that B4GALT1 and B4GALT5, two members of B4GALT gene family, are involved in the development of MDR of human leukemia cells, probably by regulating the activity of Hh signaling and the expression of P-gp and MRP1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号