首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Two methods were used to compare the biodegradation of six polychlorinated biphenyl (PCB) congeners by 12 white rot fungi. Four fungi were found to be more active than Phanerochaete chrysosporium ATCC 24725. Biodegradation of the following congeners was monitored by gas chromatography: 2,3-dichlorobiphenyl, 4,4′-dichlorobiphenyl, 2,4′,5-trichlorobiphenyl (2,4′,5-TCB), 2,2′,4,4′-tetrachlorobiphenyl, 2,2′,5,5′-tetrachlorobiphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl. The congener tested for mineralization was 2,4′,5-[U-14C]TCB. Culture supernatants were also assayed for lignin peroxidase and manganese peroxidase activities. Of the fungi tested, two strains of Bjerkandera adusta (UAMH 8258 and UAMH 7308), one strain of Pleurotus ostreatus (UAMH 7964), and Trametes versicolor UAMH 8272 gave the highest biodegradation and mineralization. P. chrysosporium ATCC 24725, a strain frequently used in studies of PCB degradation, gave the lowest mineralization and biodegradation activities of the 12 fungi reported here. Low but detectable levels of lignin peroxidase and manganese peroxidase activity were present in culture supernatants, but no correlation was observed among any combination of PCB congener biodegradation, mineralization, and lignin peroxidase or manganese peroxidase activity. With the exception of P. chrysosporium, congener loss ranged from 40 to 96%; however, these values varied due to nonspecific congener binding to fungal biomass and glassware. Mineralization was much lower, ≤11%, because it measures a complete oxidation of at least part of the congener molecule but the results were more consistent and therefore more reliable in assessment of PCB biodegradation.

Polychlorinated biphenyls (PCBs) are produced by chlorination of biphenyl, resulting in up to 209 different congeners. Commercial mixtures range from light oily fluids to waxes, and their physical properties make them useful as heat transfer fluids, hydraulic fluids, solvent extenders, plasticizers, flame retardants, organic diluents, and dielectric fluids (1, 21). Approximately 24 million lb are in the North American environment (19). The stability and hydrophobic nature of these compounds make them a persistent environmental hazard.To date, bacterial transformations have been the main focus of PCB degradation research. Aerobic bacteria use a biphenyl-induced dioxygenase enzyme system to attack less-chlorinated congeners (mono- to hexachlorobiphenyls) (1, 5, 7, 8, 22). Although more-chlorinated congeners are recalcitrant to aerobic bacterial degradation, microorganisms in anaerobic river sediments reductively dechlorinate these compounds, mainly removing the meta and para chlorines (1, 6, 10, 33, 34).The degradation of PCBs by white rot fungi has been known since 1985 (11, 18). Many fungi have been tested for their ability to degrade PCBs, including the white rot fungi Coriolus versicolor (18), Coriolopsis polysona (41), Funalia gallica (18), Hirneola nigricans (35), Lentinus edodes (35), Phanerochaete chrysosporium (3, 11, 14, 17, 18, 35, 39, 4143), Phlebia brevispora (18), Pleurotus ostreatus (35, 43), Poria cinerescens (18), Px strain (possibly Lentinus tigrinus) (35), and Trametes versicolor (41, 43). There have also been studies of PCB metabolism by ectomycorrhizal fungi (17) and other fungi such as Aspergillus flavus (32), Aspergillus niger (15), Aureobasidium pullulans (18), Candida boidinii (35), Candida lipolytica (35), Cunninghamella elegans (16), and Saccharomyces cerevisiae (18, 38). The mechanism of PCB biodegradation has not been definitively determined for any fungi. White rot fungi produce several nonspecific extracellular enzymes which have been the subject of extensive research. These nonspecific peroxidases are normally involved in lignin degradation but can oxidize a wide range of aromatic compounds including polycyclic aromatic hydrocarbons (37). Two peroxidases, lignin peroxidase (LiP) and Mn peroxidase (MnP), are secreted into the environment of the fungus under conditions of nitrogen limitation in P. chrysosporium (23, 25, 27, 29) but are not stress related in fungi such as Bjerkandera adusta or T. versicolor (12, 30).Two approaches have been used to determine the biodegradability of PCBs by fungi: (i) loss of the parent congener analyzed by gas chromatography (GC) (17, 32, 35, 42, 43) and (ii) mineralization experiments in which the 14C of the universally labeled 14C parent congener is recovered as 14CO2 (11, 14, 18, 39, 41). In the first method, the loss of a peak on a chromatogram makes it difficult to decide whether the PCB is being partly degraded, mineralized, adsorbed to the fungal biomass, or bound to glassware, soil particles, or wood chips. Even when experiments with killed-cell and abiotic controls are performed, the extraction efficiency and standard error can make data difficult to interpret. For example, recoveries can range anywhere from 40 to 100% depending on the congener used and the fungus being investigated (17). On the other hand, recovery of significant amounts of 14CO2 from the cultures incubated with a 14C substrate provides definitive proof of fungal metabolism. There appears to be only one report relating data from these two techniques (18), and in that study, [U-14C]Aroclor 1254, rather than an individual congener, was used.In this study, we examined the ability of 12 white rot fungal strains to metabolize selected PCB congeners to determine which strains were the most active degraders. Included in this group was P. chrysosporium ATCC 24725, a strain used extensively in PCB studies (3, 14, 18, 35, 39, 4143). Six PCB congeners were selected to give a range of chlorine substitutions and therefore a range of potential biodegradability which was monitored by GC. One of the chosen congeners was 14C labeled and used in studies to compare the results from a mineralization method with those from the GC method.  相似文献   

11.
Cleavage and DNA joining reactions, carried out by human immunodeficiency virus type 1 (HIV-1) integrase, are necessary to effect the covalent insertion of HIV-1 DNA into the host genome. For the integration of HIV-1 DNA into the cellular genome to be completed, short gaps flanking the integrated proviral DNA must be repaired. It has been widely assumed that host cell DNA repair enzymes are involved. Here we report that HIV-1 integrase multimers possess an intrinsic DNA-dependent DNA polymerase activity. The activity was characterized by its dependence on Mg2+, resistance to N-ethylmaleimide, and inhibition by 3′-azido-2′,3′-dideoxythymidine-5′-triphosphate, coumermycin A1, and pyridoxal 5′-phosphate. The enzyme efficiently utilized poly(dA)-oligo(dT) or self-annealing oligonucleotides as a template primer but displayed relatively low activity with gapped calf thymus DNA and no activity with poly(dA) or poly(rA)-oligo(dT). A monoclonal antibody binding specifically to an epitope comprised of amino acids 264 to 273 near the C terminus of HIV-1 integrase severely inhibited the DNA polymerase activity. A deletion of 50 amino acids at the C terminus of integrase drastically altered the gel filtration properties of the DNA polymerase, although the level of activity was unaffected by this mutation. The DNA polymerase efficiently extended a hairpin DNA primer up to 19 nucleotides on a T20 DNA template, although addition of the last nucleotide occurred infrequently or not at all. The ability of integrase to repair gaps in DNA was also investigated. We designed a series of gapped molecules containing a single-stranded region flanked by a duplex U5 viral arm on one side and by a duplex nonviral arm on the other side. Molecules varied structurally depending on the size of the gap (one, two, five, or seven nucleotides), their content of T’s or C’s in the single-stranded region, whether the CA dinucleotide in the viral arm had been replaced with a nonviral sequence, or whether they contained 5′ AC dinucleotides as unpaired tails. The results indicated that the integrase DNA polymerase is specifically designed to repair gaps efficiently and completely, regardless of gap size, base composition, or structural features such as the internal CA dinucleotide or unpaired 5′-terminal AC dinucleotides. When the U5 arm of the gapped DNA substrate was removed, leaving a nongapped DNA template-primer, the integrase DNA polymerase failed to repair the last nucleotide in the DNA template effectively. A post-gap repair reaction did depend on the CA dinucleotide. This secondary reaction was highly regulated. Only two nucleotides beyond the gap were synthesized, and these were complementary to and dependent for their synthesis on the CA dinucleotide. We were also able to identify a specific requirement for the C terminus of integrase in the post-gap repair reaction. The results are consistent with a direct role for a heretofore unsuspected DNA polymerase function of HIV-1 integrase in the repair of short gaps flanking proviral DNA integration intermediates that arise during virus infection.Integration of human immunodeficiency virus type 1 (HIV-1) DNA is an essential step in the replicative cycle of the virus (6, 13, 16, 29, 41). The initial steps whereby HIV-1 DNA becomes covalently associated with the host DNA are mediated by the viral integrase protein. Two distinct chemical reactions are involved. In a processing step, integrase cleaves viral DNA endonucleolytically, resulting in the removal of a GT dinucleotide from the 3′ ends of the DNA (15, 48, 51). Once in the nucleus, concerted cleavage and DNA strand transfer reactions, involving viral and host DNA, enable the processed 3′ termini to become covalently joined to a host DNA target site. The intermediate produced in this manner contains unpaired 5′ ends adjacent to five-base gaps. Completion of integration requires the repair of these gaps and the joining of the 5′ ends of viral DNA to the host DNA (2). The relatively rapid kinetics of 5′-end joining in vivo has been used as a basis on which to argue in favor of a role for integrase in this step of integration (40). Although integrase can catalyze the latter reaction in vitro, albeit inefficiently (28), it has been generally assumed that host cell enzymes perform gap repair and 5′-end joining.Structural, functional, and mutational studies have defined integrase as a 32-kDa protein that can be divided into three distinct functional domains (50). The catalytic core, including amino acids 50 to 212, contains a triad of acidic amino acids (Asp 64, Asp 116, and Glu 152) that form a highly conserved D,D-35-E motif. In the three-dimensional crystal structure, these amino acids are in close proximity (10). Mutation of any one of these acidic residues severely hampers the ability of integrase to catalyze endonucleolytic cleavage and DNA strand transfer (5, 9, 12, 13, 27, 31, 32). The C terminus binds DNA nonspecifically and is required for cleavage and integration activity (47, 49, 52, 53). The amino terminus contains a zinc finger or HHCC motif, which coordinates a molar equivalent of zinc (4). This domain influences DNA binding (21, 25, 47), although it does not bind DNA on its own (26, 38).In the functional integration complex, integrase is believed to act as a multimer (11, 24, 46). Transcomplementation, in which DNA strand transfer and cleavage activities are restored by mixing nonfunctional mutants, implies that the active form of integrase is minimally a dimer (46). Integrase can exist in equilibrium between dimeric and tetrameric forms, and multimerization determinants can be identified within the integrase protein (1). Association of one molar equivalent of zinc with a soluble mutant of integrase favored the formation of the tetrameric form of the protein (54).The present study was undertaken to further characterize HIV-1 integrase by searching for novel enzymatic activities that may be associated with this viral protein. We chose specifically to look for an associated DNA polymerase activity in an attempt to elucidate the final steps in integration, namely, gap repair and 5′-end joining.  相似文献   

12.
13.
The U16 small nucleolar RNA (snoRNA) is encoded by the third intron of the L1 (L4, according to the novel nomenclature) ribosomal protein gene of Xenopus laevis and originates from processing of the pre-mRNA in which it resides. The U16 snoRNA belongs to the box C/D snoRNA family, whose members are known to assemble in ribonucleoprotein particles (snoRNPs) containing the protein fibrillarin. We have utilized U16 snoRNA in order to characterize the factors that interact with the conserved elements common to the other members of the box C/D class. In this study, we have analyzed the in vivo assembly of U16 snoRNP particles in X. laevis oocytes and identified the proteins which interact with the RNA by label transfer after UV cross-linking. This analysis revealed two proteins, of 40- and 68-kDa apparent molecular size, which require intact boxes C and D together with the conserved 5′,3′-terminal stem for binding. Immunoprecipitation experiments showed that the p40 protein corresponds to fibrillarin, indicating that this protein is intimately associated with the RNA. We propose that fibrillarin and p68 represent the RNA-binding factors common to box C/D snoRNPs and that both proteins are essential for the assembly of snoRNP particles and the stabilization of the snoRNA.One of the most interesting recent findings related to ribosome biogenesis has been the identification of a large number of small RNAs localized in the nucleolus (snoRNAs). So far, more than 60 snoRNAs have been identified in vertebrates (17), and more than 30 have been identified in yeast (2). The total number of snoRNAs is not known, but it is likely to be close to 200 (33, 38). These snoRNAs, with the exception of the mitochondrial RNA processing (MRP) species (38), can be grouped into two major families on the basis of conserved structural and sequence elements. The first group includes molecules referred to as box C/D snoRNAs, whereas the second one comprises the species belonging to the box H/ACA family (2, 15).The two families differ in many aspects. The box C/D snoRNAs are functionally heterogeneous. Most of them function as antisense RNAs in site-specific ribose methylation of the pre-rRNA (1, 10, 17, 26); a minority have been shown to play a direct role in pre-rRNA processing in both yeast and metazoan cells (11, 21). The box C/D snoRNAs play their role by means of unusually long (up to 21 contiguous nucleotides) regions of complementarity to highly conserved sequences of 28S and 18S rRNAs (1). In contrast, several members of the H/ACA RNA family have been shown to direct site-specific isomerization of uridines into pseudouridines and to display shorter regions of complementarity to rRNA (14, 24). Mutational analysis suggests that H/ACA snoRNAs can also play a role as antisense RNAs by base pairing with complementary regions on rRNA (15, 24).Another difference between the two families can be seen by comparison of secondary structures. A Y-shaped motif, where a 5′,3′-terminal stem adjoins the C and D conserved elements, has been proposed for many box C/D snoRNAs (16, 26, 40, 42), whereas box H/ACA snoRNAs have been proposed to fold into two conserved hairpin structures connected by a single-stranded hinge region, followed by a short 3′ tail (15).Despite these differences, analogies have been found in the roles played by the conserved box elements. Mutational analysis and competition experiments indicated that C/D and H/ACA boxes are required both for processing and stable accumulation of the mature snoRNA, suggesting that they represent binding sites for specific trans-acting factors (2, 3, 8, 15, 16, 28, 36, 41).All snoRNAs are associated with proteins to form specific ribonucleoparticles (snoRNPs). The study of these particles began only recently, and so far, very few aspects of their structure and biosynthesis have been clarified. The only detailed analysis performed was on the mammalian U3 (19) and the yeast snR30 (20) snoRNPs. Of the identified components, a few appear to be more general factors: fibrillarin, which was shown to be associated with C/D snoRNPs (3, 4, 8, 13, 28, 31, 39), and the nucleolar protein GAR1, which was found associated with H/ACA snoRNAs in yeast (20). Just as the study of small nuclear RNP (snRNP) particles was crucial to the understanding of the splicing process, a detailed structural and functional analysis of snoRNP particles will be essential to elucidate the complex process of ribosome biosynthesis.In this study, we have analyzed the snoRNP assembly of wild-type and mutant U16 snoRNAs by following the kinetics of complex formation in the in vivo system of the Xenopus laevis oocyte. By a UV cross-linking technique, we have identified two proteins, of 40- and 68-kDa apparent molecular mass, which require intact boxes C and D together with the terminal stem for their binding. The 40-kDa species is specifically recognized by fibrillarin antibodies, indicating that this protein is intimately associated with the RNA.  相似文献   

14.
15.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号