首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In order to analyze bonding contacts that stabilize the virion or promote capsid assembly, bovine papillomavirus (BPV) virions were subjected to buffer conditions known to disrupt polyomavirus virions. At physiologic ionic strength, incubation with dithiothreitol (DTT), EGTA, or DTT plus EGTA did not disrupt BPV virions as determined by electron microscopy. However, incubation of virions with DTT rendered the BPV L1 protein susceptible to trypsin cleavage at its carboxy terminus and rendered the genome susceptible to digestion with DNase I. When DTT-treated BPV virions were analyzed by analytical ultracentrifugation, they sedimented at 230S compared with 273S for untreated virions, suggesting a capsid shell expansion. Incubation with EGTA had no effect on trypsin or DNase I sensitivity and only a small effect upon the virion S value. A single cysteine residue conserved among BPV and human papillomavirus (HPV) L1 proteins resides within the trypsin-sensitive carboxy terminus of L1, which is required for capsid assembly. A recombinant HPV type 11 L1 protein, which was purified after expression in Escherichia coli and which has a Cys-to-Gly change at this position (Cys424), formed pentamers; however, unlike the wild-type protein, these mutant pentamers could no longer assemble in vitro into capsid-like structures. These results indicate an important role for interpentamer disulfide bonds in papillomavirus capsid assembly and disassembly and suggest a mechanism of virus uncoating in the reducing environment of the cytoplasm.Papovaviruses are small nonenveloped DNA viruses which include murine polyomavirus, simian virus 40 (SV40), and the papillomaviruses. These viruses have a common capsid structure composed of 72 capsomeric subunits arranged in a T=7d icosahedral lattice. For polyomaviruses, the capsomeres are pentamers of the VP1 structural protein, while for the papillomaviruses the capsomeres are pentamers of the L1 protein (1, 15). Although atomic-resolution structures for murine polyomavirus and SV40 (14, 24, 25) and high-resolution cryoelectron microscopic structures for several papillomaviruses (1, 2, 4, 26) are now known, much less is known about the biology of virion assembly and disassembly.For polyomaviruses, virion disruption experiments initially indicated the importance of disulfide bonds and bound calcium in capsid stability (57, 28). In agreement with these observations, the in vitro self-assembly of the recombinant polyomavirus VP1 protein supported the importance of calcium and ionic bonds in the formation of capsids (19, 20). Most recently, crystallographic data have explicitly identified the calcium binding sites, disulfide-bonded residues, and other interactions which link capsomeres in virions (14, 24, 25). A crystallographic structure is not yet available for any papillomavirus. Virus-like particles (VLPs) generated by expressing the L1 protein in insect cells with recombinant baculovirus vectors (12, 17, 27) or in mammalian cells with vaccinia virus vectors (11, 29) have been useful for both cryoelectron microscopic structural analysis and to assess the assembly and disassembly properties for L1-containing capsids. For example, Sapp et al. (21) determined that human papillomavirus type 33 (HPV33) VLPs were disassembled by dithiothreitol (DTT) treatment, suggesting disulfide bonds between a subset of capsomeres in agreement with the observations of Doorbar and Gallimore with native HPV1 virions (8).The recombinant expression of HPV11 L1 in Escherichia coli (13) now permits a similar analysis of capsid assembly for papillomaviruses as previously carried out for polyomaviruses (19, 20, 23). In order to assess their biological significance, in vitro assembly conditions for the recombinant L1 protein require correlation with conditions that affect the stability of native papillomavirus virions. However, although VLP disruption experiments have been performed, a systematic analysis of papillomavirus virion disruption similar to that carried out for polyomavirus has not been described. Therefore, we have used purified bovine papillomavirus type 1 (BPV) virions to test conditions affecting virion stability. Based on these results, disulfide bonds were found to be critical for virion integrity, and their reduction led to a substantial conformational change in the capsid which may be a precursor state for disassembly in vivo.  相似文献   

3.
4.
African swine fever (ASF) virus is a large DNA virus that shares the striking icosahedral symmetry of iridoviruses and the genomic organization of poxviruses. Both groups of viruses have a complex envelope structure. In this study, the mechanism of formation of the inner envelope of ASF virus was investigated. Examination of thin cryosections by electron microscopy showed two internal membranes in mature intracellular virions and all structural intermediates. These membranes were in continuity with intracellular membrane compartments, suggesting that the virus gained two membranes from intracellular membrane cisternae. Immunogold electron microscopy showed the viral structural protein p17 and resident membrane proteins of the endoplasmic reticulum (ER) within virus assembly sites, virus assembly intermediates, and mature virions. Resident ER proteins were also detected by Western blotting of isolated virions. The data suggested the ASF virus was wrapped by the ER. Analysis of the published sequence of ASF virus (R. J. Yanez et al., Virology 208:249–278, 1995) revealed a reading frame, XP124L, that encoded a protein predicted to translocate into the lumen of the ER. Pulse-chase immunoprecipitation and glycosylation analysis of pXP124L, the product of the XP124L gene, showed that pXP124L was retained in the ER lumen after synthesis. When analyzed by immunogold electron microscopy, pXP124L localized to virus assembly intermediates and fully assembled virions. Western blot analysis detected pXP124L in virions isolated from Percoll gradients. The packaging of pXP124L from the lumen of the ER into the virion is consistent with ASF virus being wrapped by ER cisternae: a mechanism which explains the presence of two membranes in the viral envelope.African swine fever (ASF) virus is a large icosahedral enveloped DNA virus that causes a lethal hemorrhagic disease in domestic pigs. The virus is endemic in areas of southern Europe and in Africa where it causes major problems for the development of pig industries. At present there are no vaccines, and the disease is controlled through the slaughter of infected animals. The economic importance of ASF virus has made the virus the focus of much research since it was first described in 1921 (32). ASF virus is unique among animal viruses, and its classification has been controversial. ASF virus shares the striking icosahedral symmetry of iridoviruses (5, 8, 13, 34), while the presence of inverted terminal repeats and covalently linked ends in the 170-kDa genome suggests similarities with poxviruses (16). The ASF virus genome encoding at least 150 proteins has been sequenced (17, 51), and the amino acid sequences of at least 11 structural proteins are known. p73 is the major structural protein (14, 28) and has sequence similarities to the capsid protein of iridoviruses (39). The ordered proteolysis of pp220 produces p150, p37/p34 and p14 (40), which together comprise 25% of the viral proteins (3). These proteins localize to the interior of the virion (3). Three proteins, J13L/p54, I1L/p17, and p22, with membrane-spanning domains localize to the viral envelope (10, 37, 41, 43). Three other structural proteins, p14.5 encoded by E120R (30), p10 encoded by K78R (35), and p5AR encoded by A104R (7), have DNA-binding properties (51) and may be involved in DNA packaging. The virus has been the subject of several detailed electron microscopy studies (24, 8, 9, 11, 13, 34, 47). Electron micrographs of sections taken through ASF virus assembly sites reveal fully assembled virions as 200-nm hexagons and an ordered series of assembly intermediates with one to six sides of a hexagon. Close inspection of intracellular virions identifies multiple concentric layers of differing electron densities. According to recent models, the layers represent a central electron-dense nucleocapsid core, surrounded by an inner core shell, an inner envelope, and an outer capsid layer (3). The mechanism of formation of the inner envelope of ASF virus has not been resolved.Most viruses gain a single membrane envelope by budding into intracellular membrane compartments or from the plasma membrane, as reviewed in reference 21. When viruses bud into an intracellular compartment, the domains of the membrane proteins that are initially located in the lumen of membrane compartments are exposed on the outside of the virion after release from the cell (Fig. (Fig.1a).1a). A second mechanism of envelopment, described recently for poxviruses and herpesviruses (18, 20, 24, 38, 42, 46, 50), is more complex and involves the wrapping of virions by membrane cisternae derived from specific membrane compartments. Wrapping provides two membrane envelopes in one step and leaves the virion free in the cytoplasm. When compared with budding, wrapping reverses the orientation of membrane proteins within the virus such that the domains of membrane proteins located in the lumen of the wrapping organelle are confined to the interior of the virus after release from the cell, whereas cytoplasmic tails are exposed on the outside of the virus (Fig. (Fig.1b).1b). Given these important consequences for understanding the mechanism of assembly of the virus and for determining the final orientation of membrane proteins in virions, we have set out to determine whether ASF virus acquires its membranes by the conventional budding mechanism or whether the virus is wrapped by intracellular membrane compartments before release from the cell. Open in a separate windowFIG. 1Schematic comparison of budding and wrapping mechanisms of virus envelopment. (a) Budding. Viral nucleoprotein complexes bind to the cytoplasmic domains of virally encoded integral membrane proteins (|, membrane glycoproteins). Interactions between viral proteins lead to membrane curvature, and the virion gains a single membrane by budding into the lumen of the membrane compartment. When the virion is released from the cell, oligosaccharides () are exposed on the surface of the virus, and the cytoplasmic tail of the membrane glycoprotein is buried within the virion. (b) Wrapping. Viral nucleoprotein complexes bind to the cytoplasmic domains of virally encoded integral membrane proteins. The nucleoprotein complex is then wrapped by the membrane cisternae, and the virus gains two membranes. The particle remains in the cytosol. When the virion is released from the cell by cell lysis, oligosaccharides () are buried within the two membranes of the virion while the cytoplasmic tail of the membrane glycoprotein is exposed on the surface of the virus.In this study we have taken advantage of thin cryoelectron microscopic sections to enhance the definition of viral membranes. The micrographs show two membranes within mature intracellular virions and all structural intermediates. They also show assembly intermediates in continuity with cellular membrane compartments. Consistent with our earlier study showing that p73 was enveloped by the endoplasmic reticulum (ER) (15), immunogold labelling experiments show resident proteins of the ER within membranes found at assembly sites, in virus assembly intermediates, and in mature virions. Importantly, we have identified a protein (pXP124L) encoded by ASF virus that translocates completely into the lumen of the ER and is incorporated as a structural protein of the virus. The presence of two membranes within intracellular virions and structural intermediates and the packaging of a structural protein from the lumen of the ER into the virus, strongly suggest that ASF virus is wrapped by the ER.  相似文献   

5.
The pseudorabies virus (PrV) gene homologous to herpes simplex virus type 1 (HSV-1) UL53, which encodes HSV-1 glycoprotein K (gK), has recently been sequenced (J. Baumeister, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 69:5560–5567, 1995). To identify the corresponding protein, a rabbit antiserum was raised against a 40-kDa glutathione S-transferase–gK fusion protein expressed in Escherichia coli. In Western blot analysis, this serum detected a 32-kDa polypeptide in PrV-infected cell lysates as well as a 36-kDa protein in purified virion preparations, demonstrating that PrV gK is a structural component of virions. After treatment of purified virions with endoglycosidase H, a 34-kDa protein was detected, while after incubation with N-glycosidase F, a 32-kDa protein was specifically recognized. This finding indicates that virion gK is modified by N-linked glycans of complex as well as high-mannose type. For functional analysis, the UL53 open reading frame was interrupted after codon 164 by insertion of a gG-lacZ expression cassette into the wild-type PrV genome (PrV-gKβ) or by insertion of the bovine herpesvirus 1 gB gene into a PrV gB genome (PrV-gKgB). Infectious mutant virus progeny was obtained only on complementing gK-expressing cells, suggesting that gK has an important function in the replication cycle. After infection of Vero cells with either gK mutant, only single infected cells or small foci of infected cells were visible. In addition, virus yield was reduced approximately 30-fold, and penetration kinetics showed a delay in entry which could be compensated for by phenotypic gK complementation. Interestingly, the plating efficiency of PrV-gKβ was similar to that of wild-type PrV on complementing and noncomplementing cells, pointing to an essential function of gK in virus egress but not entry. Ultrastructurally, virus assembly and morphogenesis of PrV gK mutants in noncomplementing cells were similar to wild-type virus. However, late in infection, numerous nucleocapsids were found directly underneath the plasma membrane in stages typical for the entry process, a phenomenon not observed after wild-type virus infection and also not visible after infection of gK-complementing cells. Thus, we postulate that presence of gK is important to inhibit immediate reinfection.Herpesvirions are complex structures consisting of a nucleoprotein core, capsid, tegument, and envelope. They comprise at least 30 structural proteins (35). Pseudorabies virus (PrV), a member of the Alphaherpesvirinae, is an economically important animal pathogen, causing Aujeszky’s disease in swine. It is also highly pathogenic for most other mammals except higher primates, including humans (28, 45), and a wide range of cultured cells from different species support productive virus replication, reflecting the wide in vivo host range. Envelope glycoproteins play major roles in the early and late interactions between virion and host cell. They are required for virus entry and participate in release of free virions and viral spread by direct cell-to-cell transmission (27, 37). For PrV, 10 glycoproteins, designated gB, gC, gD, gE, gG, gH, gI, gL, gM, and gN, have been characterized (20, 27); these glycoproteins are involved in the attachment of virion to host cell (gC and gD), fusion of viral envelope and cellular cytoplasmic membrane (gB, gD, gH, and gL), spread from infected to noninfected cells (gB, gE, gH, gI, gL, and gM), and egress (gC, gE, and gI) (27, 37). Homologs of these glycoproteins are also present in other alphaherpesviruses (37). The gene coding for a potential 11th PrV glycoprotein, gK, has been described recently (3), but the protein and its function have not been identified.The product of the homologous UL53 open reading frame (ORF) of herpes simplex virus type 1 (HSV-1) is gK (13, 32). gK was detected in nuclear membranes and in membranes of the endoplasmic reticulum but was not observed in the plasma membrane (14). Also, it did not appear to be present in purified virion preparations (15). The latter result was surprising since earlier studies identified several mutations in HSV-1 gK resulting in syncytium-inducing phenotypes (7, 14), which indicates participation of gK in membrane fusion events during HSV-1 infection. Moreover, HSV-1 mutants in gK exhibited a delayed entry into noncomplementing cells, which is difficult to reconcile with absence of gK from virions (31). Mutants deficient for gK expression have been isolated and investigated by different groups (16, 17). Mutant F-gKβ carries a lacZ gene insertion in the HSV-1 strain F gK gene, which interrupts the ORF after codon 112 (16). In mutant ΔgK, derived from HSV-1 KOS, almost all of the UL53 gene was deleted (17). Both mutants formed small plaques on Vero cells, and virus yield was reduced to an extent which varied with the different confluencies of the infected cells, cell types, and mutants used for infection. However, both HSV-1 gK mutants showed a defect in efficient translocation of virions from the cytoplasm to the extracellular space, and only a few enveloped virions were present in the extracellular space after infection of Vero cells (16, 17). The authors therefore suggested that HSV-1 gK plays a role in virion transport during egress.Different routes of final envelopment and egress of alphaherpesvirions are discussed. It has been suggested that HSV-1 nucleocapsids acquire their envelope at the inner nuclear membrane and are transported as enveloped particles through the endoplasmic reticulum to the Golgi stacks, where glycoproteins are modified in situ during transport (5, 6, 19, 39), although other potential egress pathways cannot be excluded (4). In contrast, maturation of varicella-zoster virus and PrV involves primary envelopment at the nuclear membrane, followed by release of nucleocapsids into the cytoplasm and secondary envelopment in the trans-Golgi area (10, 12, 43). Final egress of virions appears to occur via transport vesicles containing one or more virus particles by fusion of vesicle and cell membrane. The possibility of different routes of virion egress is supported by studies of other proteins involved in egress, e.g., the UL20 proteins of HSV-1 and PrV and the PrV UL3.5 protein, which lacks a homolog in the HSV-1 genome (1, 8, 9). In UL20-negative HSV-1, virions accumulated in the perinuclear cisterna of Vero cells (1), while PrV UL20 virions accumulated and were retained in cytoplasmic vesicles (9). PrV UL3.5 is important for budding of nucleocapsids into Golgi-derived vesicles during secondary envelopment (8). Thus, there appear to be profound differences in the egress pathways. Since HSV-1 gK was also implicated in egress, we were interested in identifying the PrV homolog and analyzing its function.  相似文献   

6.
7.
8.
The capsid (CA) and nucleocapsid domains of the human immunodeficiency virus type 1 Gag polyprotein are separated by the p2 spacer peptide, which is essential for virus replication. Previous studies have revealed that p2 has an important role in virus morphogenesis. In this paper, we show that a crucial assembly determinant maps to the highly conserved N terminus of p2, which is predicted to form part of an α-helix that begins in CA. A mutational analysis indicates that the ability of the N terminus of p2 to adopt an α-helical structure is essential for its function during virus assembly. To prevent CA-p2 processing, it was necessary to mutate both the CA-p2 cleavage site and an internal cleavage site within p2. Virions produced by the double mutant lacked a conical core shell and instead contained a thin electron-dense shell about 10 nm underneath the virion membrane. These results suggest that p2 is transiently required for proper assembly, but needs to be removed from the C terminus of CA to weaken CA-CA interactions and allow the rearrangement of the virion core shell during virus maturation.The internal structural proteins of the human immunodeficiency virus type 1 (HIV-1) virion are synthesized in the form of a polyprotein (Pr55gag) which can efficiently form enveloped virus-like particles even when expressed alone (17). Pr55gag is modified by N-terminal myristylation, which is required for its stable association with the inner leaflet of the plasma membrane, where virus assembly occurs (4, 21). During or after the release of an immature particle from the plasma membrane, Pr55gag is cleaved by the viral protease. The major Gag cleavage products are matrix (MA), capsid (CA), nucleocapsid (NC), and p6 (25, 34). MA, which has a crucial role in the incorporation of the viral surface glycoproteins (10, 52), remains associated with the host cell-derived lipid envelope of the virion (16). CA forms the shell of the characteristic cone-shaped core of the mature virion which encloses the viral genomic RNA (16, 27). NC is essential for the encapsidation of the viral genome and is believed to coat the viral RNA within the core of the virion (2, 19, 30). The C-terminal p6 domain of Pr55gag facilitates the release of assembled viral particles from the cell surface (20) and is also needed for the incorporation of the regulatory viral protein Vpr (31, 39).Within the context of Pr55gag, two spacer peptides, p2 and p1, are located between CA and NC and between NC and p6, respectively (24, 25). Cleavage between CA and p2 is much slower than that between p2 and NC or between MA and CA (41). As a consequence, a CA-p2 protein (p25) accumulates in virus-producing cells (34). However, CA-p2 is normally found only in trace amounts in virions. In addition to p2, which comprises 14 amino acids (Ala-363 through Met-376) of the HIV-1HXB2 Gag precursor, a 10-amino-acid p2 fragment which extends from Ser-367 through Met-376 has been isolated from HIV-1 virions, indicating that the viral protease can also cleave within p2 (24, 25).Genetic analyses indicate that the region surrounding the CA-p2 boundary has an important role in particle assembly (21, 28, 50). Within CA, the N-terminal two-thirds forms a domain which appears dispensable for particle assembly but is required for the formation of the cone-shaped core of the mature virion (8, 44, 51). Recent structure determinations have revealed that the N-terminal HIV-1 CA domain is largely α-helical (18, 35). An exposed loop region between two α-helices interacts with the prolyl isomerase cyclophilin A (14), which leads to the incorporation of the cellular enzyme into virions (13, 48). The C-terminal third of CA forms a distinct domain which is essential for Gag oligomerization and particle assembly (8, 12, 44). While genetic and structural studies indicate that the N-terminal boundary of the CA assembly domain coincides with a uniquely conserved sequence, termed the major homology region (8, 15, 18, 32), its C-terminal boundary remains less well defined.The replacement of the scissile dipeptide Leu-Ala at the CA-p2 boundary with Ser-Arg in a mutant designated SVC-C2 led to the formation of grossly distorted capsid structures and caused a significant reduction in particle yield, indicating that the very C terminus of CA and/or p2 is crucial for HIV-1 morphogenesis (21). The possibility that the CA assembly domain extends into p2 is also suggested by the finding that the precise deletion of p2 from Pr55gag markedly reduced particle production (28). Electron microscopy revealed an accumulation of large electron-dense plaques underneath the plasma membrane in the absence of p2 (28), a phenotype which is similar to that observed for the SVC-C2 cleavage site mutant (21). However, the role of p2 in virus assembly remains controversial, because its removal appeared to have no effect on particle release in another study (41).In the present study, we focused on the N-terminal portion of p2, since it is considerably more conserved than the C terminus and because it is predicted to be part of an α-helix which begins in CA. The analysis of a panel of single-amino-acid changes shows that the conserved N terminus of p2 is essential for virus replication and indicates that its predicted α-helical conformation is crucial for virus assembly. In contrast, a deletion which removed 5 out of 10 amino acids between a previously reported cleavage site within p2 and NC delayed but did not abolish virus replication, demonstrating that this relatively variable region of p2 has no essential function in the viral life cycle. We also show that processing of CA-p2 can be essentially prevented by disrupting both the CA-p2 cleavage site and the reported Met-Ser site (25) within p2. Interestingly, the mutant particles often contained a prominent circular structure underneath the viral membrane, indicating that the presence of p2 at the C terminus of CA prevented the rearrangement of the core into a conical tube.  相似文献   

9.
10.
11.
12.
13.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

14.
15.
16.
17.
18.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号