首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hemagglutinin (HA) protein undergoes a low-pH-induced conformational change in the acidic milieu of the endosome, resulting in fusion of viral and cellular membranes. A class of compounds that specifically interact with the HA protein of H1 and H2 subtype viruses and inhibit this conformational change was recently described (G. X. Luo et al., Virology 226:66–76, 1996, and J. Virol. 71:4062–4070, 1997). In this study, purified HA trimers (bromelain-cleaved HA [BHA]) are used to examine the properties and binding characteristics of these inhibitors. Compounds were able to inhibit the low-pH-induced change of isolated trimers, as detected by resistance to digestion with trypsin. Protection from digestion was extremely stable, as BHA-inhibitor complexes could be incubated for 24 h in low pH with almost no change in BHA structure. One inhibitor was prepared as a radiolabeled photoaffinity analog and used to probe for specific drug interactions with the HA protein. Analysis of BHA after photoaffinity analog binding and UV cross-linking revealed that the HA2 subunit of the HA was specifically radiolabeled. Cross-linking of the photoaffinity analog to BHA under neutral (native) pH conditions identified a stretch of amino acids within the α-helix of HA2 that interact with the inhibitor. Interestingly, cross-linking of the analog under acidic conditions identified a different region within the HA2 N terminus which interacts with the photoaffinity compound. These attachment sites help to delineate a potential binding pocket and suggest a model whereby the BHA is able to undergo a partial, reversible structural change in the presence of inhibitor compound.Influenza virus contains a lipid envelope that must fuse with host cell membranes in order to initiate virus infection (42, 43, 49). The hemagglutinin (HA) protein, a trimeric glycoprotein embedded in the viral membrane, is responsible for specific binding to cell surface sialic acid-containing receptors (46) and for the fusion of the two membranes (51). Although the mechanism of viral fusion is not fully elucidated, it is known that the fusion event is preceded by a conformational change occurring in the HA trimer that is triggered by the decreasing pH encountered during endosomal passage of the virus (23, 43, 49, 50). The HA trimer is composed of three identical monomers, each containing two protein subunits (designated HA1 and HA2) attached to each other via a disulfide linkage (36, 52). These monomer subunits are formed from a single chain precursor HA (HA0) that undergoes cleavage during transport from the Golgi to the cell surface (27). Entry of the influenza virus into host cells is facilitated through receptor binding by the HA1 subunit to the sialic acid-containing receptor. The conformational change brought on by the low pH of the endosome exposes the hydrophobic amino terminus of the HA2 subunit, which is believed to be a trigger in the fusion process (8, 17, 19, 40). It is postulated that the native state of the HA is a spring-loaded coiled coil and upon acidification, the hydrophobic fusion peptide is translocated toward the target membrane (911). This exposed hydrophobic amino terminus is believed to mediate fusion with the cell membrane (8, 19).Influenza virus HA can be cleaved from viral membrane surfaces with bromelain protease to create a soluble form of the protein (bromelain-cleaved HA [BHA]) (5, 52). The soluble HA remains a trimer with properties identical to those of the native membrane bound protein (44). Upon acidification, BHA undergoes a conformational change and forms rosettes caused by the aggregation of the exposed hydrophobic fusogenic domains of the HA2 subunit (14, 40). In this conformation, the BHA is susceptible to trypsin digestion, while it is resistant to this protease in its native conformation (15, 40).We have previously reported on the identification of a class of compounds that can inhibit influenza virus fusion (29, 30). These compounds are able to inhibit the low pH induced conformational change in the HA protein of H1 and H2 subtype viruses but not of the H3 subtype virus. Of these three subtypes, precise structural information is available only for H3 HA (8, 20, 37, 38, 45, 48). Previously a model of H1 HA was constructed using H3 HA crystal structure data (52) and a potential fusion inhibitor-binding pocket was identified within HA2 based on resistant mutation analysis and inhibitor selectivity (30). In order to probe this binding model and better understand the mechanism of action of these compounds, experiments were carried out with isolated H1 BHA. Various analogs were able to protect BHA from protease digestion following acid treatment and subsequent neutralization. A radiolabeled analog which possessed a photoactivatable azide moiety was synthesized (16). Affinity labeling at a neutral or acidic pH produced very different profiles of labeled amino acids, although in each case the amino acids were in or near the proposed binding pocket in the HA2. The consequences of the differences in HA2 photoaffinity labeling patterns with regard to the mechanism of action of these fusion inhibitors are discussed below.  相似文献   

2.
Following infection of mice with lymphocytic choriomeningitis virus (LCMV), virus-neutralizing antibodies appear late, after 30 to 60 days. Such neutralizing antibodies play an important role in protection against reinfection. To analyze whether a neutralizing antibody response which developed earlier could contribute to LCMV clearance during the acute phase of infection, we generated transgenic mice expressing LCMV-neutralizing antibodies. Transgenic mice expressing the immunoglobulin μ heavy chain of the LCMV-neutralizing monoclonal antibody KL25 (H25 transgenic mice) mounted LCMV-neutralizing immunoglobulin M (IgM) serum titers within 8 days after infection. This early inducible LCMV-neutralizing antibody response significantly improved the host’s capacity to clear the infection and did not cause an enhancement of disease after intracerebral (i.c.) LCMV infection. In contrast, mice which had been passively administered LCMV-neutralizing antibodies and transgenic mice exhibiting spontaneous LCMV-neutralizing IgM serum titers (HL25 transgenic mice expressing the immunoglobulin μ heavy and the κ light chain) showed an enhancement of disease after i.c. LCMV infection. Thus, early-inducible LCMV-neutralizing antibodies can contribute to viral clearance in the acute phase of the infection and do not cause antibody-dependent enhancement of disease.Against many cytopathic viruses such as poliovirus, influenza virus, rabies virus, and vesicular stomatitis virus, protective virus-neutralizing antibodies are generated early, within 1 week after infection (3, 31, 36, 44, 49). In contrast, several noncytopathic viruses (e.g., human immunodeficiency virus and hepatitis viruses B and C in humans or lymphocytic choriomeningitis virus [LCMV] in mice) elicit poor and delayed virus-neutralizing antibody responses (1, 7, 20, 24, 27, 35, 45, 48).In the mouse, the natural host of LCMV, the acute LCMV infection is predominantly controlled by cytotoxic T lymphocytes (CTLs) in an obligatory perforin-dependent manner (13, 18, 28, 50). In addition to the CTL response, LCMV-specific antibodies are generated. Early after infection (by day 8), a strong antibody response specific for the internal viral nucleoprotein (NP) is mounted (7, 19, 23, 28). These early LCMV NP-specific antibodies exhibit no virus-neutralizing capacity (7, 10). Results from studies of B-cell-depleted mice and B-cell-deficient mice implied that the early LCMV NP-specific antibodies are not involved in the clearance of LCMV (8, 11, 12, 40). Late after infection (between days 30 and day 60), LCMV-neutralizing antibodies develop (7, 19, 22, 28, 33); these antibodies are directed against the surface glycoprotein (GP) of LCMV (9, 10). LCMV-neutralizing antibodies have an important function in protection against reinfection (4, 6, 38, 41, 47).In some viral infections, subprotective virus-neutralizing antibody titers can enhance disease rather than promote host recovery (i.e., exhibit antibody-dependent enhancement of disease [ADE] [14, 15, 21, 46]). For example, neutralizing antibodies are involved in the resolution of a primary dengue virus infection and in the protection against reinfection. However, if subprotective neutralizing antibody titers are present at the time of reinfection, a severe form of the disease (dengue hemorrhagic fever/dengue shock syndrome [15, 21]), which might be caused by Fc receptor-mediated uptake of virus-antibody complexes leading to an enhanced infection of monocytes (15, 16, 25, 39), can develop. Similarly, an enhancement of disease after intracerebral (i.c.) LCMV infection was observed in mice which had been treated with virus-neutralizing antibodies before the virus challenge (6). ADE in LCMV-infected mice was either due to an enhanced infection of monocytes by Fc receptor-mediated uptake of antibody-virus complexes or due to CTL-mediated immunopathology caused by an imbalanced virus spread and CTL response.To analyze whether LCMV-neutralizing antibodies generated early after infection improve the host’s capacity to clear the virus or enhance immunopathological disease, immunoglobulin (Ig)-transgenic mice expressing LCMV-neutralizing IgM antibodies were generated. After LCMV infection of transgenic mice expressing the Ig heavy chain (H25 transgenic mice), LCMV-neutralizing serum antibodies were mounted within 8 days, which significantly improved the host’s capacity to eliminate LCMV. H25 transgenic mice did not show any signs of ADE after i.c. LCMV infection.Transgenic mice expressing the Ig heavy and light chains (HL25 transgenic mice) exhibited spontaneous LCMV-neutralizing serum antibodies and confirmed the protective role of preexisting LCMV-neutralizing antibodies, even though the neutralizing serum antibodies were of the IgM isotype. Similar to mice which had been treated with LCMV-neutralizing antibodies, HL25 transgenic mice developed an enhanced disease after i.c. LCMV infection, which indicated that ADE was due to an imbalance between virus spread and CTL response. Thus, the early-inducible LCMV-neutralizing antibody response significantly enhanced clearance of the acute infection without any risk of causing ADE.  相似文献   

3.
Clinically, amniotic membrane (AM) suppresses inflammation, scarring, and angiogenesis. AM contains abundant hyaluronan (HA) but its function in exerting these therapeutic actions remains unclear. Herein, AM was extracted sequentially with buffers A, B, and C, or separately by phosphate-buffered saline (PBS) alone. Agarose gel electrophoresis showed that high molecular weight (HMW) HA (an average of ∼3000 kDa) was predominantly extracted in isotonic Extract A (70.1 ± 6.0%) and PBS (37.7 ± 3.2%). Western blot analysis of these extracts with hyaluronidase digestion or NaOH treatment revealed that HMW HA was covalently linked with the heavy chains (HCs) of inter-α-inhibitor (IαI) via a NaOH-sensitive bond, likely transferred by the tumor necrosis factor-α stimulated gene-6 protein (TSG-6). This HC·HA complex (nHC·HA) could be purified from Extract PBS by two rounds of CsCl/guanidine HCl ultracentrifugation as well as in vitro reconstituted (rcHC·HA) by mixing HMW HA, serum IαI, and recombinant TSG-6. Consistent with previous reports, Extract PBS suppressed transforming growth factor-β1 promoter activation in corneal fibroblasts and induced mac ro phage apo pto sis. However, these effects were abolished by hyaluronidase digestion or heat treatment. More importantly, the effects were retained in the nHC·HA or rcHC·HA. These data collectively suggest that the HC·HA complex is the active component in AM responsible in part for clinically observed anti-inflammatory and anti-scarring actions.Hyaluronan (HA)4 is widely distributed in extracellular matrices, tissues, body fluids, and even in intracellular compartments (reviewed in Refs. 1 and 2). The molecular weight of HA ranges from 200 to 10,000 kDa depending on the source (3), but can also exist as smaller fragments and oligosaccharides under certain physiological or pathological conditions (1). Investigations over the last 15 years have suggested that low Mr HA can induce the gene expression of proinflammatory mediators and proangiogenesis, whereas high molecular weight (HMW) HA inhibits these processes (47).Several proteins have been shown to bind to HA (8) such as aggrecan (9), cartilage link protein (10), versican (11), CD44 (12, 13), inter-α-inhibitor (IαI) (14, 15), and tumor necrosis factor-α stimulated gene-6 protein (TSG-6) (16, 17). IαI consists of two heavy chains (HCs) (HC1 and HC2), both of which are linked through ester bonds to a chondroitin sulfate chain that is attached to the light chain, i.e. bikunin. Among all HA-binding proteins, only the HCs of IαI have been clearly demonstrated to be covalently coupled to HA (14, 18). However, TSG-6 has also been reported to form stable, possibly covalent, complexes with HA, either alone (19, 20) or when associated with HC (21).The formation of covalent bonds between HCs and HA is mediated by TSG-6 (2224) where its expression is often induced by inflammatory mediators such as tumor necrosis factor-α and interleukin-1 (25, 26). TSG-6 is also expressed in inflammatory-like processes, such as ovulation (21, 27, 28) and cervical ripening (29). TSG-6 interacts with both HA (17) and IαI (21, 24, 3033), and is essential for covalently transferring HCs on to HA (2224). The TSG-6-mediated formation of the HC·HA complex has been demonstrated to play a crucial role in female fertility in mice. The HC·HA complex is an integral part of an expanded extracellular “cumulus” matrix around the oocyte, which plays a critical role in successful ovulation and fertilization in vivo (22, 34). HC·HA complexes have also been found at sites of inflammation (3538) where its pro- or anti-inflammatory role remain arguable (39, 40).Immunostaining reveals abundant HA in the avascular stromal matrix of the AM (41, 42).5 In ophthalmology, cryopreserved AM has been widely used as a surgical graft for ocular surface reconstruction and exerts clinically observable actions to promote epithelial wound healing and to suppress inflammation, scarring, and angiogenesis (for reviews see Refs. 4345). However, it is not clear whether HA in AM forms HC·HA complex, and if so whether such an HC·HA complex exerts any of the above therapeutic actions. To address these questions, we extracted AM with buffers of increasing salt concentration. Because HMW HA was found to form the HC·HA complex and was mainly extractable by isotonic solutions, we further purified it from the isotonic AM extract and reconstituted it in vitro from three defined components, i.e. HMW HA, serum IαI, and recombinant TSG-6. Our results showed that the HC·HA complex is an active component in AM responsible for the suppression of TGF-β1 promoter activity, linkable to the scarring process noted before by AM (4648) and by the AM soluble extract (49), as well as for the promotion of macrophage death, linkable to the inflammatory process noted by AM (50) and the AM soluble extract (51).  相似文献   

4.
5.
The α-chemokine receptor CXCR4 has recently been shown to support syncytium formation mediated by strains of feline immunodeficiency virus (FIV) that have been selected for growth in the Crandell feline kidney cell line (CrFK-tropic virus). Given that both human and feline CXCR4 support syncytium formation mediated by FIV, we investigated whether human stromal cell-derived factor (SDF-1) would inhibit infection with FIV. Human SDF-1α and SDF-1β bound with a high affinity (KDs of 12.0 and 10.4 nM, respectively) to human cells stably expressing feline CXCR4, and treatment of CrFK cells with human SDF-1α resulted in a dose-dependent inhibition of infection by FIVPET. No inhibitory activity was detected when the interleukin-2 (IL-2)-dependent feline T-cell line Mya-1 was used in place of CrFK cells, suggesting the existence of a CXCR4-independent mechanism of infection. Furthermore, neither the human β-chemokines RANTES, MIP-1α, MIP-1β, and MCP-1 nor the α-chemokine IL-8 had an effect on infection of either CrFK or Mya-1 cells with CrFK-tropic virus. Envelope glycoprotein purified from CrFK-tropic virus competed specifically for binding of SDF-1α to feline CXCR4 and CXCR4 expression was reduced in FIV-infected cells, suggesting that the inhibitory activity of SDF-1α in CrFK cells may be the result of steric hindrance of the virus-receptor interaction following the interaction between SDF and CXCR4. Prolonged incubation of CrFK cells with SDF-1α led to an enhancement rather than an inhibition of infection. Flow cytometric analysis revealed that this effect may be due largely to up-regulation of CXCR4 expression by SDF-1α on CrFK cells, an effect mimicked by treatment of the cells with phorbol myristate acetate. The data suggest that infection of feline cells with FIV can be mediated by CXCR4 and that, depending on the assay conditions, infection can be either inhibited or enhanced by SDF-1α. Infection with FIV may therefore prove a valuable model in which to study the development of novel therapeutic interventions for the treatment of AIDS.The initial stage in lentiviral infection involves the binding of the viral envelope glycoprotein (Env) to a molecule on the surface of the target cell. The primary high-affinity binding receptor for human immunodeficiency virus (HIV) is CD4 (9, 26), a member of the immunoglobulin supergene family of molecules. However, binding of the viral glycoprotein to CD4 is insufficient for infection to proceed (29); for virus-cell fusion to occur, the target cell must also express an accessory molecule or coreceptor. The principal coreceptors for HIV infection have now been identified as members of the seven-transmembrane domain (7TM) superfamily of molecules. Syncytium-inducing (SI) T-cell line-tropic strains of virus require coexpression of the α-chemokine receptor CXCR4 for infection (19), whereas non-syncytium-inducing (NSI) strains of virus require coexpression of the β-chemokine receptor CCR5 for infection (1, 6, 10, 13, 14). In addition, other chemokine receptors such as CCR2b and CCR3 (6, 13, 41, 48), the receptor encoded by human cytomegalovirus US28 (39, 41), and the orphan receptor STRL33 (28) can function as coreceptors for HIV infection. More recently, additional members of the 7TM superfamily have been identified as coreceptors for infection with simian immunodeficiency virus (SIV). Two of these receptors, termed Bonzo and BOB, support infection with not only SIV but also HIV type 2 (HIV-2) and macrophage-tropic or dualtropic (both macrophage- and T-cell-tropic) strains of HIV-1 (11). Bonzo has subsequently been identified as being identical to STRL33 (28), whereas BOB is identical to GPR15 (21). A subsequent study has demonstrated that an additional molecule, designated GPR1 (30), can function as a coreceptor for SIV (18). Thus, a diverse range of 7TM molecules which can support infection with primate lentiviruses have now been identified.The selective usage of chemokine receptors as coreceptors for infection by HIV and SIV is borne out by the sensitivity of the viruses to inhibition by chemokines. Infection with viruses which use CCR5 can be inhibited by the β-chemokines RANTES, MIP-1α, and MIP-1β (7, 14), whereas those which use CXCR4 can be inhibited by stromal cell-derived factor (SDF-1) (3, 36). Although infection of primary macrophages by certain primary NSI viruses is not inhibited reproducibly by the β-chemokines RANTES, MIP-1α, and MIP-1β (14, 33, 44), analogs of the β-chemokines such as AOP-RANTES that inhibit HIV infection with an increased potency, inhibit infection of both peripheral blood mononuclear cells (PBMC) and primary macrophages, and do not trigger signalling via G proteins coupled to the chemokine receptor have been developed (47). Therefore, with the development of SDF-1 derivatives analogous to AOP-RANTES, it may be possible to generate therapeutic agents that are effective at inhibiting not only the NSI strains of HIV found in early infection but also the SI strains of virus which appear late in infection with the progression to AIDS.Feline immunodeficiency virus (FIV) induces an AIDS-like illness in its natural host, the domestic cat (38). A proportion of primary isolates of FIV can be readily adapted to grow and form syncytia in the Crandell feline kidney (CrFK) cell line (45), analagous to the isolation of SI variants of HIV. Sequencing of the env gene from CrFK-tropic viruses would suggest that the principal determinant of CrFK tropism is an increase in charge of the V3 loop of the envelope glycoprotein (45, 51), further strengthening the analogy between CrFK-tropic strains of FIV and SI strains of HIV. While the primary high-affinity binding receptor for FIV remains elusive, recent studies have demonstrated a role for the feline homolog of CXCR4 in infection with CrFK-tropic strains of FIV (53, 56). Given that the appearance of CXCR4-dependent SI variants of HIV in the peripheral blood of HIV-infected individuals accompanies the progression to AIDS (8), the ability to study the role of such CXCR4-dependent strains of virus in disease pathogenesis is of obvious interest. Moreover, as it appears that several strains of SIV show preferential usage of CCR5 and not CXCR4 for infection (5, 11, 18), then FIV infection of the domestic cat is the only animal model described to date in which the contribution of CXCR4-dependent viruses to the pathogenesis of AIDS may be studied in the natural host of the virus.In this study, we investigated the nature of the interaction between FIV and the chemokine receptor CXCR4. Given the high degree of amino acid sequence homology between human and feline CXCR4 (56), we examined the interaction between human SDF-1 and feline CXCR4. We have found that human SDF-1 binds specifically to feline CXCR4 and inhibits infection with FIV. We demonstrate that SDF-1 can upregulate CXCR4 expression with a corresponding enhancement of infection and that this effect can be mimicked by treatment of the cells with the phorbol ester phorbol myristate acetate (PMA). Moreover, infection of interleukin-2 (IL-2)-dependent T cells with FIV was resistant to the inhibitory effects of SDF-1, suggesting the existence of a CXCR4-independent mechanism of infection in these cells. These data suggest that the mechanism of infection with FIV bears striking similarities to infection with HIV and that the study of FIV infection of the domestic cat may provide a valuable insight into the pathogenesis of AIDS.  相似文献   

6.
Most individuals infected with human immunodeficiency virus type 1 (HIV-1) initially harbor macrophage-tropic, non-syncytium-inducing (M-tropic, NSI) viruses that may evolve into T-cell-tropic, syncytium-inducing viruses (T-tropic, SI) after several years. The reasons for the more efficient transmission of M-tropic, NSI viruses and the slow evolution of T-tropic, SI viruses remain unclear, although they may be linked to expression of appropriate chemokine coreceptors for virus entry. We have examined plasma viral RNA levels and the extent of CD4+ T-cell depletion in SCID mice reconstituted with human peripheral blood leukocytes following infection with M-tropic, dual-tropic, or T-tropic HIV-1 isolates. The cell tropism was found to determine the course of viremia, with M-tropic viruses producing sustained high viral RNA levels and sparing some CD4+ T cells, dual-tropic viruses producing a transient and lower viral RNA spike and extremely rapid depletion of CD4+ T cells, and T-tropic viruses causing similarly lower viral RNA levels and rapid-intermediate rates of CD4+ T-cell depletion. A single amino acid change in the V3 region of gp120 was sufficient to cause one isolate to switch from M-tropic to dual-tropic and acquire the ability to rapidly deplete all CD4+ T cells.The envelope gene of human immunodeficiency virus type 1 (HIV-1) determines the cell tropism of the virus (11, 32, 47, 62), the use of chemokine receptors as cofactors for viral entry (4, 17), and the ability of the virus to induce syncytia in infected cells (55, 60). Cell tropism is closely linked to but probably not exclusively determined by the ability of different HIV-1 envelopes to bind CD4 and the CC or the CXC chemokine receptors and initiate viral fusion with the target cell. Macrophage-tropic (M-tropic) viruses infect primary cultures of macrophages and CD4+ T cells and use CCR5 as the preferred coreceptor (2, 5, 15, 23, 26, 31). T-cell-tropic (T-tropic) viruses can infect primary cultures of CD4+ T cells and established T-cell lines, but not primary macrophages. T-tropic viruses use CXCR4 as a coreceptor for viral entry (27). Dual-tropic viruses have both of these properties and can use either CCR5 or CXCR4 (and infrequently other chemokine receptors [25]) for viral entry (24, 37, 57). M-tropic viruses are most frequently transmitted during primary infection of humans and persist throughout the duration of the infection (63). Many, but not all, infected individuals show an evolution of virus cell tropism from M-tropic to dual-tropic and finally to T-tropic with increasing time after infection (21, 38, 57). Increases in replicative capacity of viruses from patients with long-term infection have also been noted (22), and the switch to the syncytium-inducing (SI) phenotype in T-tropic or dual-tropic isolates is associated with more rapid disease progression (10, 20, 60). Primary infection with dual-tropic or T-tropic HIV, although infrequent, often leads to rapid disease progression (16, 51). The viral and host factors that determine the higher transmission rate of M-tropic HIV-1 and the slow evolution of dual- or T-tropic variants remain to be elucidated (4).These observations suggest that infection with T-tropic, SI virus isolates in animal model systems with SCID mice grafted with human lymphoid cells or tissue should lead to a rapid course of disease (1, 8, 4446). While some studies in SCID mice grafted with fetal thymus and liver are in agreement with this concept (33, 34), our previous studies with the human peripheral blood leukocyte-SCID (hu-PBL-SCID) mouse model have shown that infection with M-tropic isolates (e.g., SF162) causes more rapid CD4+ T-cell depletion than infection with T-tropic, SI isolates (e.g., SF33), despite similar proviral copy numbers, and that this property mapped to envelope (28, 41, 43). However, the dual-tropic 89.6 isolate (19) caused extremely rapid CD4+ T-cell depletion in infected hu-PBL-SCID mice that was associated with an early and transient increase in HIV-1 plasma viral RNA (29). The relationship between cell tropism of the virus isolate and the pattern of disease in hu-PBL-SCID mice is thus uncertain. We have extended these studies by determining the kinetics of HIV-1 RNA levels in serial plasma samples of hu-PBL-SCID mice infected with primary patient isolates or laboratory stocks that differ in cell tropism and SI properties. The results showed significant differences in the kinetics of HIV-1 replication and CD4+ T-cell depletion that are determined by the cell tropism of the virus isolate.  相似文献   

7.
8.
9.
10.
11.
12.
With the use of a high-throughput biochemical DNA helicase assay as a screen, T157602, a 2-amino thiazole compound, was identified as a specific inhibitor of herpes simplex virus (HSV) DNA replication. T157602 inhibited reversibly the helicase activity of the HSV UL5-UL8-UL52 (UL5/8/52) helicase-primase complex with an IC50 (concentration of compound that yields 50% inhibition) of 5 μM. T157602 inhibited specifically the UL5/8/52 helicase and not several other helicases. The primase activity of the UL5/8/52 complex was also inhibited by T157602 (IC50 = 20 μM). T157602 inhibited HSV growth in a one-step viral growth assay (IC90 = 3 μM), and plaque formation was completely prevented at concentrations of 25 to 50 μM T157602. Vero, human foreskin fibroblast (HFF), and Jurkat cells could be propagated in the presence of T157602 at concentrations exceeding 100 μM with no obvious cytotoxic effects, indicating that the window between antiviral activity and cellular toxicity is at least 33-fold. Seven independently derived T157602-resistant mutant viruses (four HSV type 2 and three HSV type 1) carried single base pair mutations in the UL5 that resulted in single amino acid changes in the UL5 protein. Marker rescue experiments demonstrated that the UL5 gene from T157602-resistant viruses conferred resistance to T157602-sensitive wild-type viruses. Recombinant UL5/8/52 helicase-primase complex purified from baculoviruses expressing mutant UL5 protein showed complete resistance to T157602 in the in vitro helicase assay. T157602 and its analogs represent a novel class of specific and reversible anti-HSV agents eliciting their inhibitory effects on HSV replication by interacting with the UL5 helicase.Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) each comprise at least 77 genes whose expression is tightly regulated (42). These genes are assigned to four kinetic classes, designated as α, β, γ1, and γ2 on the basis of the timing of and requirements for their expression (46). The five α genes, α0, α4, α22, α27, and α47, are expressed first in the absence of viral protein synthesis and are responsible for the regulated expression of the other viral genes. The β genes require functional α gene products for their expression and encode proteins and enzymes that are directly involved in DNA synthesis and nucleotide metabolism. The γ genes form the last set of viral genes to be expressed, with the γ2 class having viral DNA replication as a strict requirement for their expression.The HSV genome contains three origins of replication (44, 45, 47, 48, 50, 54) and encodes seven viral proteins that are essential for DNA replication (34, 59). These include an origin binding protein (OBP) encoded by open reading frame (ORF) UL9 (14, 15, 17, 35), a DNA binding protein encoded by UL29 (40, 53, 54), a DNA polymerase encoded by ORF UL30 and its accessory factor encoded by UL42 (1, 4, 8, 18, 19, 21, 24, 37), and a heterotrimeric complex consisting of proteins encoded by ORFs UL5, UL8, and UL52, which include both 5′-to-3′ helicase activity and primase activity (1012). Although extensively studied, the roles of the individual subunits of the helicase-primase complex and their specific interactions with each other have not been completely defined. However, several lines of evidence suggest that the UL5 gene encodes the helicase activity of the complex. Examination of the amino acid sequence of the UL5 protein revealed that it contains six conserved motifs that are found in many DNA and RNA helicases, two of these motifs defining an ATP binding site (20, 25, 32, 52, 61). Site-specific mutagenesis of amino acids within each of the six motifs revealed that all six are critical for the function of the UL5 protein as a helicase in transient replication assays (60, 61).The observation that recombinant UL5, UL52, and UL8 proteins could be purified from baculovirus-infected insect cells as a complex that displays DNA-dependent ATPase, helicase, and primase activities that are identical to those produced during a herpesvirus infection allowed functional and biochemical analyses of the individual components of the complex (10, 13, 38). Although the UL5 protein alone contained the defining helicase amino acid sequence motifs, the UL5 protein does not display helicase activity in vitro in the absence of the UL52 protein. Purified UL5 protein has less than 1% of the ATPase activity of the complex UL5-UL8-UL52 (UL5/8/52) complex (2, 43). In addition, studies with recombinant herpesviruses carrying mutations in the UL5 gene that abolish helicase activity revealed that the UL5 protein could still form specific interactions with UL8 and UL52 proteins (60). These results indicate that the functional domains of UL5 protein required for helicase activity are separate from those involved in protein-protein interactions and that UL5 and UL52 must interact to yield efficient helicase activity. Further mutagenesis studies with the UL52 protein identified mutations that abolish the primase activity of the complex, while the helicase and ATPase activities are unaffected, suggesting that the UL52 protein is responsible for the primase activity of the complex (27). The third component of the helicase-primase complex, the UL8 protein, interacts with other viral replication proteins, including the OBP, the single-stranded DNA binding protein, and the viral DNA polymerase (30, 33). It has been postulated that the interaction of the UL8 protein with the OBP (encoded by the UL9 gene) may function to recruit helicase-primase complexes to initiation complexes at viral origins (30). The UL8 protein is also required for stimulation of primer synthesis by the UL52 protein and for stimulation of the helicase activity of the helicase-primase complex which is crucial to allow efficient unwinding of long stretches of duplex DNA (16, 43, 49). Additionally, UL8 appears to be required for efficient nuclear entry of the helicase-primase complex (1, 3, 31).As the UL5, UL8, and UL52 gene products are essential for HSV replication and have not been exploited previously for antiviral drug discovery, they represent attractive targets for the development of novel anti-HSV agents. Current anti-HSV drugs include vidarabine (adenine arabinoside; Ara-A), foscarnet (phosphonoformic acid; PFA), and a wide variety of nucleoside analogs, the most clinically successful being acyclovir (ACV) and its analogs valacyclovir and famciclovir. ACV is phosphorylated by viral thymidine kinase (TK) to its monophosphate form, an event that occurs to a much lesser extent in uninfected cells. Subsequent phosphorylation events by cellular enzymes convert the ACV monophosphate to its triphosphate form. The ACV triphosphate derivative directly inhibits the DNA polymerase by competing as a substrate with dGTP. Because the ACV triphosphate lacks the 3′ hydroxyl group required to elongate the DNA chain, DNA replication is terminated. The triphosphorylated form of ACV is a much better substrate for the viral DNA polymerase than it is for the cellular DNA polymerase; thus, very little ACV triphosphate is incorporated into cellular DNA. Although ACV has proven to be safe and successful at reducing the duration, severity, and in some cases recurrence of HSV infections, eradication of the infection symptoms is far from complete and latent virus can reactivate frequently (5558). In addition, primarily as a result of poor patient compliance with inconvenient ACV dosage regimens, virulent HSV strains resistant to ACV that contain mutations in either the viral TK or DNA polymerase gene have arisen (6, 7, 9, 26, 39). More potent and efficacious drugs that target other essential components of the virus replicative cycle would be invaluable as therapeutic agents to treat HSV and ACV-resistant HSV infections.To identify novel inhibitors of the HSV helicase-primase enzyme, we developed a high-throughput in vitro helicase assay and screened >190,000 samples. Using this biochemical approach, we identified T157602, a 2-amino thiazole, as a specific inhibitor of HSV replication. By generating and analyzing T157602-resistant viruses, we further demonstrate genetically that the molecular target of T157602 is the UL5 component of the HSV helicase-primase complex.  相似文献   

13.
The Friend spleen focus-forming virus (SFFV) env gene encodes a glycoprotein with apparent Mr of 55,000 that binds to erythropoietin receptors (EpoR) to stimulate erythroblastosis. A retroviral vector that does not encode any Env glycoprotein was packaged into retroviral particles and was coinjected into mice in the presence of a nonpathogenic helper virus. Although most mice remained healthy, one mouse developed splenomegaly and polycythemia at 67 days; the virus from this mouse reproducibly caused the same symptoms in secondary recipients by 2 to 3 weeks postinfection. This disease, which was characterized by extramedullary erythropoietin-independent erythropoiesis in the spleens and livers, was also reproduced in long-term bone marrow cultures. Viruses from the diseased primary mouse and from secondary recipients converted an erythropoietin-dependent cell line (BaF3/EpoR) into factor-independent derivatives but had no effect on the interleukin-3-dependent parental BaF3 cells. Most of these factor-independent cell clones contained a major Env-related glycoprotein with an Mr of 60,000. During further in vivo passaging, a virus that encodes an Mr-55,000 glycoprotein became predominant. Sequence analysis indicated that the ultimate virus is a new SFFV that encodes a glycoprotein of 410 amino acids with the hallmark features of classical gp55s. Our results suggest that SFFV-related viruses can form in mice by recombination of retroviruses with genomic and helper virus sequences and that these novel viruses then evolve to become increasingly pathogenic.The independently isolated Friend and Rauscher erythroleukemia viruses (18, 48) are complexes of a replication competent murine leukemia virus (MuLV) and a replication-defective spleen focus-forming virus (SFFV) (39, 42, 47). The SFFVs encode Env glycoproteins (gp55) that are inefficiently processed to form larger cell surface derivatives (gp55p) (19). The gp55 binds to erythropoietin receptors (EpoR) to cause erythroblast proliferation and splenomegaly in susceptible mice. Evidence has suggested that the critical mitogenic interaction occurs exclusively on cell surfaces (7, 16).SFFVs are structurally closely related to mink cell focus-inducing viruses (MCFs) (2, 5, 10, 50), a class of replication-competent murine retroviruses that has a broad host range termed polytropic (15, 21). Although MCFs are not inherited as replication-competent intact proviruses, the mouse genome contains numerous dispersed polytropic env gene sequences (8, 17, 27). MCFs apparently readily form de novo by recombination when ecotropic host range MuLVs replicate in mice (14, 15, 26, 43). MCF env genes typically are hybrid recombinants that contain a 5′ polytropic-specific region and a 3′ ecotropic-specific portion (26). They encode a gPr90 Env glycoprotein that is cleaved by partial proteolysis to form the products gp70 surface (SU) glycoprotein plus p15E transmembrane (TM) protein (32, 39, 47). In addition, MCFs often differ from ecotropic MuLVs in their long terminal repeat (LTR) sequences (8, 20, 26, 28, 29, 45).Based on their sequences, SFFVs could have derived from MCFs by a 585-base deletion and by a single-base addition in the ecotropic-specific portion of the env gene (10). Evidence suggests that both the 585-bp deletion and the frameshift mutation probably contribute to SFFV pathogenesis (3, 49). Several pathogenic differences among SFFV strains have also been ascribed to amino acid sequence differences in the ecotropic-specific portion of the Env glycoproteins (9, 41).This report describes the origin and rapid stepwise evolution of a new SFFV. This new pathogenic virus initially formed in a mouse that had been injected with an ecotropic strain of MuLV in the presence of a retroviral vector that does not encode any Env glycoprotein. The mouse developed erythroleukemia, splenomegaly, and polycythemia after a long lag phase. At that time the spleen contained viruses with env genes that were able to activate EpoR. Serial passage of this initial virus isolate resulted in selection of a novel SFFV that encodes a gp55 glycoprotein of 410 amino acids. This experimental system provides a method for isolating new SFFVs and for mapping the stages in their genesis.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) uses a variety of chemokine receptors as coreceptors for virus entry, and the ability of the virus to be neutralized by antibody may depend on which coreceptors are used. In particular, laboratory-adapted variants of the virus that use CXCR4 as a coreceptor are highly sensitive to neutralization by sera from HIV-1-infected individuals, whereas primary isolates that use CCR5 instead of, or in addition to, CXCR4 are neutralized poorly. To determine whether this dichotomy in neutralization sensitivity could be explained by differential coreceptor usage, virus neutralization by serum samples from HIV-1-infected individuals was assessed in MT-2 cells, which express CXCR4 but not CCR5, and in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), where multiple coreceptors including CXCR4 and CCR5 are available for use. Our results showed that three of four primary isolates with a syncytium-inducing (SI) phenotype and that use CXCR4 and CCR5 were neutralized poorly in both MT-2 cells and PBMC. The fourth isolate, designated 89.6, was more sensitive to neutralization in MT-2 cells than in PBMC. We showed that the neutralization of 89.6 in PBMC was not improved when CCR5 was blocked by having RANTES, MIP-1α, and MIP-1β in the culture medium, indicating that CCR5 usage was not responsible for the decreased sensitivity to neutralization in PBMC. Consistent with this finding, a laboratory-adapted strain of virus (IIIB) was significantly more sensitive to neutralization in CCR5-deficient PBMC (homozygous Δ32-CCR5 allele) than were two of two SI primary isolates tested. The results indicate that the ability of HIV-1 to be neutralized by sera from infected individuals depends on factors other than coreceptor usage.Human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS, utilizes the HLA class II receptor, CD4, as its primary receptor to gain entry into cells (17, 30). Entry is initiated by a high-affinity interaction between CD4 and the surface gp120 of the virus (32). Subsequent to this interaction, conformational changes that permit fusion of the viral membrane with cellular membranes occur within the viral transmembrane gp41 (9, 58, 59). In addition to CD4, one or more recently described viral coreceptors are needed for fusion to take place. These coreceptors belong to a family of seven-transmembrane G-protein-coupled proteins and include the CXC chemokine receptor CXCR4 (3, 4, 24, 44), the CC chemokine receptors CCR5 (1, 12, 13, 18, 21, 23, 45) and, less commonly, CCR3 and CCR2b (12, 21), and two related orphan receptors termed BONZO/STRL33 and BOB (19, 34). Coreceptor usage by HIV-1 can be blocked by naturally occurring ligands, including SDF-1 for CXCR4 (4, 44), RANTES, MIP-1α, and MIP-1β in the case of CCR5 (13, 45), and eotaxin for CCR3 (12).The selective cellular tropisms of different strains of HIV-1 may be determined in part by coreceptor usage. For example, all culturable HIV-1 variants replicate initially in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), but only a minor fraction are able to infect established CD4+ T-cell lines (43). This differential tropism is explained by the expression of CXCR4 together with CCR5 and other CC chemokine coreceptors on PBMC and the lack of expression of CCR5 on most T-cell lines (5, 10, 19, 35, 39, 50, 53). Indeed, low-passage field strains (i.e., primary isolates) of HIV-1 that fail to replicate in T-cell lines use CCR5 as their major coreceptor and are unable to use CXCR4 (1, 12, 18, 21, 23, 28). Because these isolates rarely produce syncytia in PBMC and fail to infect MT-2 cells, they are often classified as having a non-syncytium-inducing (NSI) phenotype. Primary isolates with a syncytium-inducing (SI) phenotype are able to use CXCR4 alone or, more usually, in addition to CCR5 (16, 20, 51). HIV-1 variants that have been passaged multiple times in CD4+ T-cell lines, and therefore considered to be laboratory adapted, exhibit a pattern of coreceptor usage that resembles that of SI primary isolates. Most studies have shown that the laboratory-adapted strain IIIB uses CXCR4 alone (3, 13, 20, 24, 51) and that MN and SF-2 use CXCR4 primarily and CCR5 to a lesser degree (11, 13). Sequences within the V3 loop of gp120 have been shown to be important, either directly or indirectly, for the interaction of HIV-1 with both CXCR4 (52) and CCR5 (12, 14, 54, 60). This region of gp120 contains multiple determinants of cellular tropism (43) and is a major target for neutralizing antibodies to laboratory-adapted HIV-1 but not to primary isolates (29, 46, 57).It has been known for some time that the ability of sera from HIV-1-infected individuals to neutralize laboratory-adapted strains of HIV-1 does not predict their ability to neutralize primary isolates in vitro (7). In general, the former viruses are highly sensitive to neutralization whereas the latter viruses are neutralized poorly by antibodies induced in response to HIV-1 infection (7, 43). Importantly, neutralizing antibodies generated by candidate HIV-1 subunit vaccines have been highly specific for laboratory-adapted viruses (26, 37, 38). In principle, the dichotomy in neutralization sensitivity between these two categories of virus could be related to coreceptor usage. To test this, we investigated whether the use of CXCR4 in the absence of CCR5 would render SI primary isolates highly sensitive to neutralization in vitro by sera from HIV-1-infected individuals. Two similar studies using human monoclonal antibodies and soluble CD4 have been reported (31a, 55).  相似文献   

15.
16.
In this study, we used imaging and proteomics to identify the presence of virus-associated cellular proteins that may play a role in respiratory syncytial virus (RSV) maturation. Fluorescence microscopy of virus-infected cells revealed the presence of virus-induced cytoplasmic inclusion bodies and mature virus particles, the latter appearing as virus filaments. In situ electron tomography suggested that the virus filaments were complex structures that were able to package multiple copies of the virus genome. The virus particles were purified, and the protein content was analyzed by one-dimensional nano-LC MS/MS. In addition to all the major virus structural proteins, 25 cellular proteins were also detected, including proteins associated with the cortical actin network, energy pathways, and heat shock proteins (HSP70, HSC70, and HSP90). Representative actin-associated proteins, HSC70, and HSP90 were selected for further biological validation. The presence of β-actin, filamin-1, cofilin-1, HSC70, and HSP90 in the virus preparation was confirmed by immunoblotting using relevant antibodies. Immunofluorescence microscopy of infected cells stained with antibodies against relevant virus and cellular proteins confirmed the presence of these cellular proteins in the virus filaments and inclusion bodies. The relevance of HSP90 to virus infection was examined using the specific inhibitors 17-N-Allylamino-17-demethoxygeldanamycin. Although virus protein expression was largely unaffected by these drugs, we noted that the formation of virus particles was inhibited, and virus transmission was impaired, suggesting an important role for HSP90 in virus maturation. This study highlights the utility of proteomics in facilitating both our understanding of the role that cellular proteins play during RSV maturation and, by extrapolation, the identification of new potential targets for antiviral therapy.Respiratory syncytial virus (RSV)1 belongs to the paramyxovirus group of viruses, and it is the most important respiratory virus causing lower respiratory tract infection in young children and neonates. The mature RSV particle comprises a ribonucleoparticle (RNP) core formed by the interaction between the viral genomic RNA (vRNA), the nucleocapsid (N) protein (42 kDa), the phospho (P) protein (35 kDa), and the large (L) protein (250 kDa). The RNP core is visualized by electron microscopy as a strand of repeating N protein subunits that form a herringbone-like structure of ∼10–20 nm in diameter (1). Although the minimal functional polymerase activity requires an association between the N, P, and L proteins and the virus genome vRNA (24), additional viral proteins called the M2-1 protein (22 kDa), M2-2 protein, and M protein (28 kDa) regulate the activity of the polymerase (58). The virus is surrounded by a lipid envelope that is formed from the host cell during the budding process in which the three virus membrane proteins are inserted. The G protein (90 kDa) mediates attachment of the virus to the cell during virus entry (9), and the fusion (F) protein (10) mediates the fusion of the virus and host cell membranes during virus entry, whereas the role of the SH protein is currently unknown. In addition, two non-structural proteins called NS1 and NS2, which are thought not to be present in the virus particle but play a role in countering the host innate immune response (11), are expressed.During virus infection two distinct virus structures are formed, virus filaments and inclusion bodies. The virus filaments are membrane-bound structures that are ∼150–200 nm thick and can be up to 6 μm in length (1, 1216); they form at the sites of virus assembly and are the progeny viruses. The inclusion bodies form in the cytoplasm and can be several μm in diameter, consisting of accumulations of RNP cores (1719). Inclusion bodies are found in all RSV-infected tissue culture cells, and they have also been observed in biopsy material isolated from RSV-infected patients (20) suggesting a clinical relevance. Although the cellular processes that lead to assembly of the mature virus filaments are still poorly understood, the involvement of lipid raft microdomains and the cortical cytoskeleton network appear to play an important role in this process (16, 2125). For example, rhoA kinase is a raft-associated signaling molecule that is involved in regulating actin structure (26), and it has been implicated in virus filament formation (27, 28). Virus filament formation also requires phosphoinositide 3-kinase (PI3K) activity (25, 29, 30); PI3K is a raft-associated kinase activated by rhoA kinase (31). The identification of cellular proteins that interact with the virus particles should further facilitate the identification of the cellular pathways that are involved in RSV maturation. In this study, we examined virus-host cell interactions during RSV assembly using a combination of advanced imaging techniques and analyzed the protein content of purified virus particles by proteomics technology. Our analysis provides evidence that cellular proteins that regulate actin structures in the cell may also play an important role in formation of infectious RSV particles, and that the HSP90 protein plays an important role in the virus assembly process.  相似文献   

17.
We have investigated whether the identity of the coreceptor (CCR5, CXCR4, or both) used by primary human immunodeficiency virus type 1 (HIV-1) isolates to enter CD4+ cells influences the sensitivity of these isolates to neutralization by monoclonal antibodies and CD4-based agents. Coreceptor usage was not an important determinant of neutralization titer for primary isolates in peripheral blood mononuclear cells. We also studied whether dualtropic primary isolates (able to use both CCR5 and CXCR4) were differentially sensitive to neutralization by the same antibodies when entering U87MG-CD4 cells stably expressing either CCR5 or CXCR4. Again, we found that the coreceptor used by a virus did not greatly affect its neutralization sensitivity. Similar results were obtained for CCR5- or CXCR4-expressing HOS cell lines engineered to express green fluorescent protein as a reporter of HIV-1 entry. Neutralizing antibodies are therefore unlikely to be the major selection pressure which drives the phenotypic evolution (change in coreceptor usage) of HIV-1 that can occur in vivo. In addition, the increase in neutralization sensitivity found when primary isolates adapt to growth in transformed cell lines in vitro has little to do with alterations in coreceptor usage.Human immunodeficiency virus type 1 (HIV-1) enters CD4+ T cells via an interaction with CD4 and coreceptor molecules, the most important of which yet identified are the chemokine receptors CXCR4 and CCR5 (4, 12, 23, 26, 28, 32). CXCR4 is used by T-cell line-tropic (T-tropic) primary isolates or T-cell line-adapted (TCLA) lab strains, whereas CCR5 is used by primary isolates of the macrophage-tropic (M-tropic) phenotype (4, 12, 23, 26, 28, 32). Most T-tropic isolates and some TCLA strains are actually dualtropic in that they can use both CXCR4 and CCR5 (and often other coreceptors such as CCR3, Bonzo/STRL33, and BOB/gpr15), at least in coreceptor-transfected cells (18, 24, 30, 54, 89). The M-tropic and T-tropic/dualtropic nomenclature has often been used interchangeably with the terms “non-syncytium-inducing” (NSI) and “syncytium-inducing” (SI), although it is semantically imprecise to do so.M-tropic viruses are those most commonly transmitted sexually (3, 33, 87, 106) and from mother to infant (2, 72, 81). If T-tropic strains are transmitted, or when they emerge, this is associated with a more rapid course of disease in both adults (17, 37, 46, 51, 52, 76, 78, 82, 92, 101) and children (6, 45, 84, 90). However, T-tropic viruses emerge in only about 40% of infected people, usually only several years after infection (76, 78). A well-documented, albeit anecdotal, study found that when a T-tropic strain was transmitted by direct transfer of blood, its replication was rapidly suppressed: the T-tropic virus was eliminated from the body, and M-tropic strains predominated (20). These results suggest that there is a counterselection pressure against the emergence of T-tropic strains during the early stages of HIV-1 infection in most people. But what is this pressure?Since the M-tropic and T-tropic phenotypes are properties mediated by the envelope glycoproteins whose function is to associate with CD4 and the coreceptors, a selection pressure differentially exerted on M- and T-tropic viruses could, in principle, act at the level of virus entry. In other words, neutralizing antibodies to the envelope glycoproteins, or the chemokine ligands of the coreceptors, could theoretically interfere more potently with the interactions of T-tropic strains with CXCR4 than with M-tropic viruses and CCR5. A differential effect of this nature could suppress the emergence of T-tropic viruses. Consistent with this possibility, neutralizing antibodies are capable of preventing the CD4-dependent association of gp120 with CCR5 (42, 94, 103), and chemokines can also prevent the coreceptor interactions of HIV-1 (8, 13, 23, 28, 70).Here, we explore whether the efficiency of HIV-1 neutralization is affected by coreceptor usage. Although earlier studies have not found T-tropic strains to be inherently more neutralization sensitive than M-tropic ones (20, 40, 44), previously available reagents and techniques may not have been adequate to fully address this question. One major problem is that even single residue changes can drastically affect both antibody binding to neutralization epitopes and the HIV-1 phenotype (25, 55, 62, 67, 83, 91), and so studies using relatively unrelated viruses and a fixed antibody (polyclonal or monoclonal) preparation have two variables to contend with: the viral phenotype (coreceptor use) and the antigenic structure of the virus and hence the efficiency of the antibody-virion interaction.We have used a new experimental strategy to explore whether coreceptor usage affects neutralization sensitivity in the absence of other confounding variables: the use of dualtropic viruses able to enter CD4+ cells via either CCR5 or CXCR4. By using a constant HIV-1 isolate or clone and the same monoclonal antibodies (MAbs) or CD4-based reagents as neutralizing agents, we can ensure that the only variable under study in the neutralization reaction is the nature of the coreceptor used for entry. Our major conclusion is that there is no strong association between coreceptor usage and neutralization sensitivity for primary HIV-1 isolates. Independent studies have reached the same conclusion (53a, 59). The emergence of T-tropic (SI) viruses in vivo may be unlikely to be due to escape from antibody-mediated selection pressure.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号