首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.  相似文献   

2.
Increased levels of endothelin-1 (ET-1) in the carotid body (CB) contribute to the enhancement of chemosensory responses to acute hypoxia in cats exposed to chronic intermittent hypoxia (CIH). However, it is not known if the ET receptor types A (ETA-R) and B (ETB-R) are upregulated. Thus, we studied the expression and localization of ETA-R and ETB-R using Western blot and immunohistochemistry (IHC) in CBs from cats exposed to cyclic hypoxic episodes, repeated during 8 hr for 4 days. In addition, we determined if ET-1 is expressed in the chemoreceptor cells using double immunofluorescence for ET-1 and tyrosine hydroxylase (TH). We found that ET-1 expression was ubiquitous in the blood vessels and CB parenchyma, although double ET-1 and TH-positive chemoreceptor cells were mostly found in the parenchyma. ETAR was expressed in most chemoreceptor cells and blood vessels of the CB vascular pole. ETB-R was expressed in chemoreceptor cells, parenchymal capillaries, and blood vessels of the vascular pole. CIH upregulated ETB-R expression by approximately 2.1 (Western blot) and 1.6-fold (IHC) but did not change ETA-R expression. Present results suggest that ET-1,ETA-R, and ETB-R are involved in the enhanced CB chemosensory responses to acute hypoxia induced by CIH.  相似文献   

3.
AD Chen  XQ Xiong  XB Gan  F Zhang  YB Zhou  XY Gao  Y Han 《PloS one》2012,7(7):e40748

Background

Cardiac sympathetic afferent reflex (CSAR) is a positive-feedback, sympathoexcitatory reflex. Paraventricular nucleus (PVN) is an important component of the central neurocircuitry of the CSAR. The present study is designed to determine whether endothelin-1 (ET-1) in the PVN modulates the CSAR and sympathetic activity, and whether superoxide anions are involved in modulating the effects of ET-1 in the PVN in rats.

Methodology/Principal Findings

In anaesthetized Sprague–Dawley rats with cervical vagotomy and sinoaortic denervation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the responses of the RSNA and MAP to epicardial application of capsaicin. Microinjection of ET-1 into the bilateral PVN dose-dependently enhanced the CSAR, increased the baseline RSNA and MAP. The effects of ET-1 were blocked by PVN pretreatment with the ETA receptor antagonist BQ-123. However, BQ-123 alone had no significant effects on the CSAR, the baseline RSNA and MAP. Bilateral PVN pretreatment with either superoxide anion scavenger tempol or polyethylene glycol-superoxide dismutase (PEG-SOD) inhibited the effects of ET-1 on the CSAR, RSNA and MAP. Microinjection of ET-1 into the PVN increased the superoxide anion level in the PVN, which was abolished by PVN pretreatment with BQ-123. Epicardial application of capsaicin increased superoxide anion level in PVN which was further enhanced by PVN pretreatment with ET-1.

Conclusions

Exogenous activation of ETA receptors with ET-1 in the PVN enhances the CSAR, increases RSNA and MAP. Superoxide anions in PVN are involved in the effects of ET-1 in the PVN.  相似文献   

4.
Patients with obstructive sleep apnea (OSA) show augmented ventilatory, sympathetic and cardiovascular responses to hypoxia. The facilitatory effect of chronic intermittent hypoxia (CIH) on the hypoxic ventilatory response has been attributed to a potentiation of the carotid body (CB) chemosensory response to hypoxia. However, it is a matter of debate whether the effects induced by CIH on ventilatory responses to hypoxia are due to an enhanced CB activity. Recently, we studied the effects of short cyclic hypoxic episodes on cat cardiorespiratory reflexes, heart rate variability, and CB chemosensory activity. Cats were exposed to cyclic hypoxic episodes repeated during 8 hours for 4 days. Our results showed that CIH selectively enhanced ventilatory and carotid chemosensory responses to acute hypoxia. Exposure to CIH did not increase basal arterial pressure, heart rate, or their changes induced by acute hypoxia. However, the spectral analysis of heart rate variability of CIH cats showed a marked increase of the low/high frequency ratio and an increased variability in the low frequency band of heart rate variability, similar to what is observed in OSA patients. Thus, it is likely that the enhanced CB reactivity to hypoxia may contribute to the augmented ventilatory response to hypoxia.  相似文献   

5.
We previously showed that endothelin-1 (ET-1) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells, and that protein kinase C (PKC)-dependent p44/p42 mitogen-activated protein (MAP) kinase plays a part in the IL-6 synthesis. In the present study, we investigated the effect of (-)-epigallocatechin gallate (EGCG), one of the major flavonoids containing in green tea, on ET-1-induced IL-6 synthesis in osteoblasts and the underlying mechanism. EGCG significantly reduced the synthesis of IL-6 stimulated by ET-1 in MC3T3-E1 cells as well primary cultured mouse osteoblasts. SB203580, a specific inhibitor of p38 MAP kinase, but not SP600125, a specific SAPK/JNK inhibitor, suppressed ET-1-stimulated IL-6 synthesis. ET-1-induced phosphorylation of p38 MAP kinase was not affected by EGCG. On the other hand, EGCG suppressed the phosphorylation of p44/p42 MAP kinase induced by ET-1. Both the IL-6 synthesis and the phosphorylation of p44/p42 MAP kinase stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA), a direct activator of PKC, were markedly suppressed by EGCG. The phosphorylation of MEK1/2 and Raf-1 induced by ET-1 or TPA were also inhibited by EGCG. These results strongly suggest that EGCG inhibits ET-1-stimulated synthesis of IL-6 via suppression of p44/p42 MAP kinase pathway in osteoblasts, and the inhibitory effect is exerted at a point between PKC and Raf-1 in the ET-1 signaling cascade.  相似文献   

6.
We previously reported that endothelin-1 (ET-1) stimulates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of ET-1 on the synthesis of vascular endothelial growth factor (VEGF) in these cells. ET-1 significantly stimulated VEGF secretion time-dependently 18 hours after the stimulation. The stimulatory effect was dose-dependent in the range between 0.1 nM and 0.1 micro;M. BQ123, an antagonist of endothelin(A) (ET(A)) receptor, inhibited the ET-1-induced VEGF secretion. The ET-1-induced VEGF secretion was suppressed by SB203580 and PD169316, inhibitors of p38 MAP kinase, but not PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, stimulated VEGF secretion. Calphostin C, a specific PKC inhibitor, suppressed the VEGF secretion by ET-1. TPA-induced VEGF secretion was suppressed by SB203580. Taken together, our results strongly suggest that ET-1 stimulates VEGF synthesis via ET(A) receptor in osteoblasts and that p38 MAP kinase is involved at a point downstream from PKC in the VEGF synthesis.  相似文献   

7.
In myocardial cells (MCs), endothelin-1 (ET-1) exerts various effects such as hypertrophy, and causes cellular injury. Long-term treatment with an endothelin-A (ETA) receptor antagonist improves the survival of rats with heart failure, suggesting that myocardial endothelin system contributes to the progression of heart failure. p38 mitogen-activated kinase (MAPK) is a member of the MAPK family and activated by several forms of environmental stresses. We show here the effect of ET-1 on p38 MAPK activation and the role of ET-1-activated p38 MAPK on morphological changes in MCs. ET-1-stimulated p38 MAPK phosphorylation was detectable within 2 min and maximal at 5 min and was concentration dependent. The maximum effect was obtained at 10 nM. An ETA receptor antagonist, BQ-123, but not an endothelin-B receptor antagonist, BQ-788, inhibited these reactions. A p38 MAPK inhibitor, SB203580, failed to inhibit the morphological changes associated with ET-1-induced myocardial cell hypertrophy. These results indicate that p38 MAPK is activated by ET-1 but does not contribute to the development of ET-1-induced myocardial cell hypertrophy.  相似文献   

8.
Numerous neurohumoral factors such as endothelin (ET)-1 and angiotensin (Ang) II as well as the stretch stimulus act concertedly in the in vivo overloaded heart in inducing hypertrophy and failure. The primary culture of rat neonatal cardiomyocytes is the only in vitro model that allows the comparative analysis of growth responses and signaling events in response to different stimuli. In the present study, we examined stretched rat cardiomyocytes grown on flexible bottomed cultured plates for hypertrophic growth responses (protein synthesis, protein/DNA ratio, and cell volume), F-actin filaments rearrangement (by confocal, laser scanning microscopy), and for signaling events (activation of phospholipase C [PLC-β, protein kinase C [PKC], mitogenactivated protein [MAP] kinases] and compared these responses with ET-1 (10−8 M)-stimulated cells. Cyclic stretch for 48 h induced hypertrophic growth in cardiomyocytes indicated by increases in the rate of protein synthesis, cell volume, and diameter, which were less pronounced in comparison to stimulation by ET-1. During cyclic stretch, we observed disoriented F-actin, particularly stress-fibers whereas during ET-1 stimulation, F-actins rearranged clearly in alignment with sarcomeres and fibers. The upstream part of signaling by cyclic stretch did not follow the PLCβ-PKC cascade, which, in contrast, was strongly activated during ET-1 stimulation. Cyclic stretch and, to greater extent, ET-1 stimulated downstream signaling through ERK, p38 MAP kinase, and JNK pathways, but the, involvement of tyrosine kinase and PI3 kinase-Akt signaling during cyclic stretch could not be proven. Taken together, our results demonstrate that both cyclic stretch and ET-1 induce hypertrophic responses in cardiomyocytes with different effects on organization of F-actin stress fibers in case of stretch. Furthermore, on the short-term basis, cyclical stretch, unlike ET-1, mediates its hypertrophic response not through activation of PLC-β and PKC but more likely through integrin-linked pathways, which both lead to downstream activation of the MAP kinase family.  相似文献   

9.
Effects of growth hormone (GH), insulin-like growth factor I (IGF-I), and endothelin-1 (ET-1) on endothelial cell migration and the underlying molecular mechanisms were explored using a human umbilical cord endothelial cell line, ECV304 cells, in vitro. Treatment of the cells with IGF-I or ET-1, but not GH, stimulated the cell migration. Interestingly, however, ET-1-induced, but not IGF-I-induced, migration of the cells was inhibited by GH. Both ET-1 and IGF-I caused activation of mitogen-activated protein kinase (MAPK) in the cells, and GH eliminated the MAPK activation produced by ET-1 but not that produced by IGF-I. On the other hand, migration of the cells was stimulated by protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate. ET-1 promoted PKC activity, and a PKC inhibitor, GF-109203X, blocked ET-1-induced cell migration. Although GH inhibited ET-1-induced cell migration and MAPK activity, it did not block ET-1-induced PKC activation. Thus ET-1 stimulation of endothelial cell migration appears to be mediated by PKC/MAPK pathway, and GH may inhibit the MAPK activation by ET-1 at the downstream of PKC.  相似文献   

10.
Intermittent hypoxia (IH) resulting from sleep apnea causes both systemic and pulmonary hypertension. Enhanced endothelin-1 (ET-1)-induced vasoconstrictor reactivity is thought to play a central role in the systemic hypertensive response to IH. However, whether IH similarly increases pulmonary vasoreactivity and the signaling mechanisms involved are unknown. The objective of the present study was to test the hypothesis that IH augments ET-1-induced pulmonary vasoconstrictor reactivity through a PKCβ-dependent signaling pathway. Responses to ET-1 were assessed in endothelium-disrupted, pressurized pulmonary arteries (~150 μm inner diameter) from eucapnic-IH [(E-IH) 3 min cycles, 5% O(2)-5% CO(2)/air flush, 7 h/day; 4 wk] and sham (air-cycled) rats. Arteries were loaded with fura-2 AM to monitor vascular smooth muscle (VSM) intracellular Ca(2+) concentration ([Ca(2+)](i)). E-IH increased vasoconstrictor reactivity without altering Ca(2+) responses, suggestive of myofilament Ca(2+) sensitization. Consistent with our hypothesis, inhibitors of both PKCα/β (myr-PKC) and PKCβ (LY-333-531) selectively decreased vasoconstriction to ET-1 in arteries from E-IH rats and normalized responses between groups, whereas Rho kinase (fasudil) and PKCδ (rottlerin) inhibition were without effect. Although E-IH did not alter arterial PKCα/β mRNA or protein expression, E-IH increased basal PKCβI/II membrane localization and caused ET-1-induced translocation of these isoforms away from the membrane fraction. We conclude that E-IH augments pulmonary vasoconstrictor reactivity to ET-1 through a novel PKCβ-dependent mechanism that is independent of altered PKC expression. These findings provide new insights into signaling mechanisms that contribute to vasoconstriction in the hypertensive pulmonary circulation.  相似文献   

11.
Zheng HZ  An GS  Nie SH  Tang CS  Liu NK  Wang SH 《生理学报》1998,50(4):379-384
培养的家兔胸主动脉血管平滑肌细胞(VSMC)分别以内皮素(ET-1)、一氧化氮(NO)前体L-Arg和NO供体SIN-1刺激,或用ET-1+L-Arg、ET-1+SIN-1联合刺激,测VSMC^3H-TdR掺入、丝裂素活化蛋白激酶(MAPK)活性及蛋白激酶C(PKC)活性的改变,以研究NO抑制ET-1促VSMC增殖作用的信号转导途径。结果表明:(1)ET-1 10^-8mol/L单独刺激,^3H-  相似文献   

12.
In addition to causing overt nociception, intraplantar (ipl) endothelin (ET)-1 injection into the rat hind paw induces hyperalgesia to mechanical stimuli, mediated via local ET(B) receptors coupled to protein kinase (PK) C, but not PKA. The present study further examines the intracellular signaling mechanisms underlying this effect of ET-1. ET-1 (30 pmol) or phospate-buffered saline (PBS) was injected ipl in rats and the threshold of responsiveness to mechanical stimulation was assessed repeatedly each hour up to 8 hrs and 24 hrs, using the dynamic plantar aesthesiometer test, which detects the minimal pressure required to evoke paw withdrawal. Different groups were treated, 15 mins before ET-1 administration, with ipsilateral injection of selective inhibitors of either phospholipase (PL) A2 (1 nmol PACOCF3), PLC (30 pmol U73122), PKC (1 nmol GF109203X), p38 mitogen-activated protein kinase (MAPK; 30 nmol SB203580), extracellular signal-regulated kinase (ERK1/2; 30 nmol PD98059), c-Jun N-terminal kinase (JNK; 30 nmol SP600125), or vehicle, to assess their influence on the hyperalgesic response. The mechanical hyperalgesia caused by ET-1 started 2 hrs after injection, peaked at 5 hrs (PBS, 29 +/- 0.5 g; ET-1, 17 +/- 1.3 g) and lasted up to 8 hrs. The inhibitors of PLC, PKC, p38 MAPK, ERK1/2, and JNK caused long-lasting reductions of the mechanical hyperalgesia (inhibitions at 4 hrs of 100%, 90%, 97%, 90%, and 100%, respectively), but the PLA2 inhibitor reduced hyperalgesia only at 4 hrs (by 58%). Thus, mechanical hyperalgesia triggered by ET-1 in the rat hind paw depends importantly on signaling pathways involving PLC, PKC, p38 MAPK, ERK1/2, and JNK, whereas the contribution of PLA2 is relatively minor.  相似文献   

13.
Thapsigargin and EGTA inhibit endothelin-1-induced glucose transport   总被引:2,自引:2,他引:0  
We have previously demonstrated that ET-1 may enhance glucose transport in 3T3-L1 adipocytes, secondarily to its stimulatory effect on GLUT1 gene expression by a mitogen-activated protein kinase (MAPK)-dependent pathway. In the present study, we further tested the involvement of Ca2+ in glucose uptake in response to ET-1. Among a variety of Ca2+-related agents tested, EGTA and thapsigargin were found to suppress both the glucose uptake and intracellular Ca2+ mobilization induced by ET-1, as determined by Fura-2 analysis. However, a phospholipase C inhibitor, U73122, also eliminated the intracellular calcium mobilization induced by ET-1, but had no effect on ET-1-stimulated glucose uptake. The finding that neither EGTA nor thapsigargin had any influence on ET-1-induced MAPK activation implies that some mechanism downstream of MAPK activation is involved. Further investigation showed that both agents exerted global inhibitory effects on protein and RNA syntheses. Since both thapsigargin and EGTA may deplete endoplasmic reticulum (ER) Ca2+ stores, our results suggest that (1) ET-1-induced glucose transport is independent of ET-1's effect on Ca2+ mobilization and (2) depletion of ER Ca2+ stores per se may interfere with ET-1's effect on GLUT1 expression.  相似文献   

14.
Chronic intermittent hypoxia (CIH) is known to induce hypertension, but the mechanism is not well understood. We hypothesized that sensory plasticity of the carotid body (CB) and oxidative stress in the paraventricular nucleus (PVN) are involved in CIH-induced hypertension. In this study, rats were exposed to CIH for 28 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 hr/day) and then randomly grouped for intracerebroventricular injection of 5-HT2 receptor antagonist ritanserin, Rho-associated protein kinase (ROCK) inhibitor Y-27632, and NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI), respectively. We found that CIH increased blood pressure (BP), elevated carotid sinus nerve (CSN) and renal sympathetic nerve (RSN) activities, oxidative stress, and cell apoptosis in PVN. NOX-derived reactive oxygen species (ROS) production and cell apoptosis decreased when CIH-induced activation of 5-HT/5-HT2AR/PKC signaling was inhibited by ritanserin. In addition, RhoA expression was downregulated when oxidative stress was attenuated by DPI, while Y-27632 decreased the expression of endothelin-1, which is overexpressed in the vascular wall during hypertension. Moreover, treatment with ritanserin, DPI or Y-27632 attenuated the sensory plasticity and sympathetic hyperactivity as well as CIH-induced elevation of BP. In conclusion, CIH-induced activation of 5-HT/5-HT2AR/PKC signaling contributes to NOX-derived oxidative stress in PVN, which may cause sensory plasticity of CB, RSN hyperactivity, and elevated BP.  相似文献   

15.
Elucidation of protective mechanisms against ischemia-reperfusion injury is vital to the advancement of therapeutics for ischemic heart disease. Our laboratory has previously shown that cardiac-specific overexpression of fibroblast growth factor-2 (FGF2) results in increased recovery of contractile function and decreased infarct size following ischemia-reperfusion injury and has established a role for the mitogen-activated protein kinase (MAPK) signaling cascade in the cardioprotective effect of FGF2. We now show an additional role for the protein kinase C (PKC) signaling cascade in the mediation of FGF2-induced cardioprotection. Overexpression of FGF2 (FGF2 Tg) in the heart resulted in decreased translocation of PKC-delta but had no effect on PKC-alpha, -epsilon, or -zeta. In addition, multiple alterations in PKC isoform translocation occur during ischemia-reperfusion injury in FGF2 Tg hearts as assessed by Western blot analysis and confocal immunofluorescent microscopy. Treatment of FGF2 Tg and nontransgenic (NTg) hearts with the PKC inhibitor bisindolylmaleimide (1 micromol/l) revealed the necessity of PKC signaling for FGF2-induced reduction of contractile dysfunction and myocardial infarct size following ischemia-reperfusion injury. Western blot analysis of FGF2 Tg and NTg hearts subjected to ischemia-reperfusion injury in the presence of a PKC pathway inhibitor (bisindolylmaleimide, 1 micromol/l), an mitogen/extracellular signal-regulated kinase/extracellular signal-regulated kinase (MEK/ERK) pathway inhibitor (U-0126, 2.5 micromol/l), or a p38 pathway inhibitor (SB-203580, 2 micromol/l) revealed a complicated signaling network between the PKC and MAPK signaling cascades that may participate in FGF2-induced cardioprotection. Together, these data suggest that FGF2-induced cardioprotection is mediated via a PKC-dependent pathway and that the PKC and MAPK signaling cascades are integrally connected downstream of FGF2.  相似文献   

16.
Excessive production of endothelin-1 (ET-1), a potent vasoconstrictor, occurs with several forms of pulmonary hypertension. In addition to modulating vasomotor tone, ET-1 can potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. It is well established that changes in cell proliferation and migration in PASMCs are associated with alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE). In the systemic vasculature, ET-1 increases pHi, Na+/H+ exchange activity and stimulates cell growth via a mechanism dependent on protein kinase C (PKC). These results, coupled with data describing elevated levels of ET-1 in hypertensive animals/humans, suggest that ET-1 may play an important role in modulating pHi and smooth muscle growth in the lung; however, the effect of ET-1 on basal pHi and NHE activity has yet to be examined in PASMCs. Thus, we used fluorescent microscopy in transiently (3–5 days) cultured rat PASMCs and the pH-sensitive dye, BCECF-AM, to measure changes in basal pHi and NHE activity induced by increasing concentrations of ET-1 (10−10 to 10−8 M). We found that application of exogenous ET-1 increased pHi and NHE activity in PASMCs and that the ET-1-induced augmentation of NHE was prevented in PASMCs pretreated with an inhibitor of Rho kinase, but not inhibitors of PKC. Moreover, direct activation of PKC had no effect on pHi or NHE activity in PASMCs. Our results indicate that ET-1 can modulate pH homeostasis in PASMCs via a signaling pathway that includes Rho kinase and that, in contrast to systemic vascular smooth muscle, activation of PKC does not appear to be an important regulator of PASMC pHi.  相似文献   

17.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide with mitogenic actions linked to activation of tyrosine kinase signaling pathways. ET-1 induces cyclooxygenase-2 (COX-2), an enzyme that converts arachidonic acid to pro-inflammatory eicosanoids. Activation of each of the three major mitogen-activated protein kinase (MAPK) pathways, ERK1/2, JNK/SAPK, and p38 MAPK (p38), have been shown to enhance the expression of COX-2. Negative regulation of MAPK may occur via a family of dual specificity phosphatases referred to as mitogen-activated protein kinase phosphatases (MKP). The goal of this work was to test the hypothesis that wild type MKP-1 regulates the expression of ET-1-induced COX-2 expression by inhibiting the activation of p38 in cultured glomerular mesangial cells (GMC). An adenovirus expressing both wild type and a catalytically inactive mutant of MKP-1 (MKP-1/CS) were constructed to study ET-1-regulated MAPK signaling and COX-2 expression in cultured GMC. ET-1 stimulated the phosphorylation of ERK and p38 alpha MAPK and induced the expression of COX-2. Expression of COX-2 was partially blocked by U0126, a MEK inhibitor, and SB 203580, a p38 MAPK inhibitor. Adenoviral expression of MKP-1/CS augmented basal and ET-1-induced phosphorylation of p38 alpha MAPK with less pronounced effects on ERK1/2 phosphorylation. Ectopic expression of wild type MKP-1 blocked the phosphorylation of p38 alpha MAPK by ET-1 but increased the phosphorylation of p38 gamma MAPK. Co-precipitation studies demonstrated association of MKP-1 with p38 alpha MAPK and ERK1/2. Immunofluorescent image analysis demonstrated trapping of phospho-p38 MAPK in the cytoplasm by MKP-1/CS/green fluorescent protein. ET-1-stimulated expression of COX-2 was increased in MKP-1/CS versus LacZ or green fluorescent protein-infected control cells. These results indicate that MKP-1 demonstrates a relative selectivity for p38 alpha MAPK versus p38 gamma MAPK in GMC and is likely to indirectly regulate the expression of COX-2.  相似文献   

18.
Endothelin-1 (ET-1) is a potent vasoconstrictive peptide produced and secreted mainly by endothelial cells. Recent studies indicate that ET-1 can regulate lipid metabolism, which may increase the risk of insulin resistance. Our previous studies revealed that ET-1 induced lipolysis in adipocytes, but the underlying mechanisms were unclear. 3T3-L1 adipocytes were used to investigate the effect of ET-1 on lipolysis and the underlying mechanisms. Glycerol levels in the incubation medium and hormone-sensitive lipase (HSL) phosphorylation were used as indices for lipolysis. ET-1 significantly increased HSL phosphorylation and lipolysis, which were completely inhibited by ERK inhibitor (PD98059) and guanylyl cyclase (GC) inhibitor (LY83583). LY83583 reduced ET-1-induced ERK phosphorylation. A Ca2+-free medium and PLC inhibitor caused significant decreases in ET-1-induced lipolysis as well as ERK and HSL phosphorylation, and IP3 receptor activator (D-IP3) increased lipolysis. ET-1 increased cGMP production, which was not affected by depletion of extracellular Ca2+. On the other hand, LY83583 diminished the ET-1-induced Ca2+ influx. Transient receptor potential vanilloid-1 (TRPV-1) antagonist and shRNA partially inhibited ET-1-induced lipolysis. ET-1-induced lipolysis was completely suppressed by CaMKIII inhibitor (NH-125). These results indicate that ET-1 stimulates extracellular Ca2+ entry and activates the intracellular PLC/IP3/Ca2+ pathway through a cGMP-dependent pathway. The increased cytosolic Ca2+ that results from ET-1 treatment stimulates ERK and HSL phosphorylation, which subsequently induces lipolysis. ET-1 induces HSL phosphorylation and lipolysis via the GC/cGMP/Ca2+/ERK/CaMKIII signaling pathway in 3T3-L1 adipocytes.  相似文献   

19.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

20.
We previously reported that endothelin-1 (ET-1) activates both p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that not p44/p42 MAP kinase but p38 MAP kinase participates in the ET-1-induced vascular endothelial growth factor (VEGF) synthesis. In the present study, we investigated the involvement of stress-activated protein kinase/c-Jun N-terminal kinase (JNK) in ET-1-induced VEGF synthesis in these cells. ET-1 significantly induced the phosphorylation of JNK in a dose-dependent manner in the range between 0.1 and 100 nM. SP600125, an inhibitor of JNK, markedly reduced the ET-1-induced VEGF synthesis. A combination of SP600125 and SB203580 additively reduced the ET-1-stimulated VEGF synthesis. SP600125 suppressed the ET-1-induced phosphorylation of JNK, while having no effect on the phosphorylation of p38 MAP kinase elicited by ET-1. SB203580, an inhibitor of p38 MAP kinase, hardly affected the ET-1-induced phosphorylation of JNK. These results strongly suggest that JNK plays a role in ET-1-induced VEGF synthesis in addition to p38 MAP kinase in osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号