首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Relationships among biochemical signaling processes involved in Ca2+/calmodulin (CaM)-dependent phosphorylation of smooth muscle myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) were determined. A genetically-encoded biosensor MLCK for measuring Ca2+-dependent CaM binding and activation was expressed in smooth muscles of transgenic mice. We performed real-time evaluations of the relationships among [Ca2+]i, MLCK activation, and contraction in urinary bladder smooth muscle strips neurally stimulated for 3 s. Latencies for the onset of [Ca2+]i and kinase activation were 55 ± 8 and 65 ± 6 ms, respectively. Both increased with RLC phosphorylation at 100 ms, whereas force latency was 109 ± 3 ms. [Ca2+]i, kinase activation, and RLC phosphorylation responses were maximal by 1.2 s, whereas force increased more slowly to a maximal value at 3 s. A delayed temporal response between RLC phosphorylation and force is probably due to mechanical effects associated with elastic elements in the tissue. MLCK activation partially declined at 3 s of stimulation with no change in [Ca2+]i and also declined more rapidly than [Ca2+]i during relaxation. The apparent desensitization of MLCK to Ca2+ activation appears to be due to phosphorylation in its calmodulin binding segment. Phosphorylation of two myosin light chain phosphatase regulatory proteins (MYPT1 and CPI-17) or a protein implicated in strengthening membrane adhesion complexes for force transmission (paxillin) did not change during force development. Thus, neural stimulation leads to rapid increases in [Ca2+]i, MLCK activation, and RLC phosphorylation in phasic smooth muscle, showing a tightly coupled Ca2+ signaling complex as an elementary mechanism initiating contraction.Increases in [Ca2+]i3 in smooth muscle cells lead to Ca2+/CaM-dependent MLCK activation and RLC phosphorylation. Phosphorylation of RLC increases actin-activated myosin MgATPase activity leading to myosin cross-bridge cycling with force development (13).The activation of smooth muscle contraction may be affected by multiple cellular processes. Previous investigations show that free Ca2+/CaM is limiting for kinase activation despite the abundance of total CaM (46). The extent of RLC phosphorylation is balanced by the actions of MLCK and myosin light chain phosphatase, which is composed of three distinct protein subunits (7). The myosin phosphatase targeting subunit, MYPT1, in smooth muscle binds to myosin filaments, thus targeting the 37-kDa catalytic subunit (type 1 serine/threonine phosphatase, PP1c) to phosphorylated RLC. RLC phosphorylation and muscle force may be regulated by additional signaling pathways involving phosphorylation of RLC by Ca2+-independent kinase(s) and inhibition of myosin light chain phosphatase, processes that increase the contraction response at fixed [Ca2+]i (Ca2+-sensitization) (814). Many studies indicate that agonist-mediated Ca2+-sensitization most often reflects decreased myosin light chain phosphatase activity involving two major pathways including MYPT1 phosphorylation by a Rho kinase pathway and phosphorylation of CPI-17 by PKC (8, 1416). Additionally, phosphorylation of MLCK in its calmodulin-binding sequence by a Ca2+/calmodulin-dependent kinase pathway has been implicated in Ca2+ desensitization of RLC phosphorylation (1719). How these signaling pathways intersect the responses of the primary Ca2+/CaM pathway during physiological neural stimulation is not known.There is also evidence that smooth muscle contraction requires the polymerization of submembranous cytoskeletal actin filaments to strengthen membrane adhesion complexes involved in transmitting force between actin-myosin filaments and external force-transmitting structures (2023). In tracheal smooth muscle, paxillin at membrane adhesions undergoes tyrosine phosphorylation in response to contractile stimulation by an agonist, and this phosphorylation increases concurrently with force development in response to agonist. Expression of nonphosphorylatable paxillin mutants in tracheal muscle suppresses acetylcholine-induced tyrosine phosphorylation of paxillin, tension development, and actin polymerization without affecting RLC phosphorylation (24, 25). Thus, paxillin phosphorylation may play an important role in tension development in smooth muscle independently of RLC phosphorylation and cross-bridge cycling.Specific models relating signaling mechanisms in the smooth muscle cell to contraction dynamics are limited when cells in tissues are stimulated slowly and asynchronously by agonist diffusing into the preparation. Field stimulation leading to the rapid release of neurotransmitters from nerves embedded in the tissue avoids these problems associated with agonist diffusion (26, 27). In urinary bladder smooth muscle, phasic contractions are brought about by the parasympathetic nervous system. Upon activation, parasympathetic nerve varicosities release the two neurotransmitters, acetylcholine and ATP, that bind to muscarinic and purinergic receptors, respectively. They cause smooth muscle contraction by inducing Ca2+ transients as elementary signals in the process of nerve-smooth muscle communication (2830). We recently reported the development of a genetically encoded, CaM-sensor for activation of MLCK. The CaM-sensor MLCK contains short smooth muscle MLCK fused to two fluorophores, enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, linked by the MLCK calmodulin binding sequence (6, 14, 31). Upon dimerization, there is significant FRET from the donor enhanced cyan fluorescent protein to the acceptor enhanced yellow fluorescent protein. Ca2+/CaM binding dissociates the dimer resulting in a decrease in FRET intensity coincident with activation of kinase activity (31). Thus, CaM-sensor MLCK is capable of directly monitoring Ca2+/CaM binding and activation of the kinase in smooth muscle tissues where it is expressed specifically in smooth muscle cells of transgenic mice. We therefore combined neural stimulation with real-time measurements of [Ca2+]i, MLCK activation, and force development in smooth muscle tissue from these mice. Additionally, RLC phosphorylation was measured precisely at specific times following neural stimulation in tissues frozen by a rapid-release electronic freezing device (26, 27). Results from these studies reveal that physiological stimulation of smooth muscle cells by neurotransmitter release leads to rapid increases in [Ca2+]i, MLCK activation, and RLC phosphorylation at similar rates without the apparent activities of Ca2+-independent kinases, inhibition of myosin light chain phosphatase, or paxillin phosphorylation. Thus, the elemental processes for phasic smooth muscle contraction are represented by this tightly coupled Ca2+ signaling complex.  相似文献   

6.
7.
Leptospira spp., the causative agents of leptospirosis, adhere to components of the extracellular matrix, a pivotal role for colonization of host tissues during infection. Previously, we and others have shown that Leptospira immunoglobulin-like proteins (Lig) of Leptospira spp. bind to fibronectin, laminin, collagen, and fibrinogen. In this study, we report that Leptospira can be immobilized by human tropoelastin (HTE) or elastin from different tissues, including lung, skin, and blood vessels, and that Lig proteins can bind to HTE or elastin. Moreover, both elastin and HTE bind to the same LigB immunoglobulin-like domains, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12 as demonstrated by enzyme-linked immunosorbent assay (ELISA) and competition ELISAs. The LigB immunoglobulin-like domain binds to the 17th to 27th exons of HTE (17–27HTE) as determined by ELISA (LigBCon4, KD = 0.50 μm; LigBCen7′–8, KD = 0.82 μm; LigBCen9, KD = 1.54 μm; and LigBCen12, KD = 0.73 μm). The interaction of LigBCon4 and 17–27HTE was further confirmed by steady state fluorescence spectroscopy (KD = 0.49 μm) and ITC (KD = 0.54 μm). Furthermore, the binding was enthalpy-driven and affected by environmental pH, indicating it is a charge-charge interaction. The binding affinity of LigBCon4D341N to 17–27HTE was 4.6-fold less than that of wild type LigBCon4. In summary, we show that Lig proteins of Leptospira spp. interact with elastin and HTE, and we conclude this interaction may contribute to Leptospira adhesion to host tissues during infection.Pathogenic Leptospira spp. are spirochetes that cause leptospirosis, a serious infectious disease of people and animals (1, 2). Weil syndrome, the severe form of leptospiral infection, leads to multiorgan damage, including liver failure (jaundice), renal failure (nephritis), pulmonary hemorrhage, meningitis, abortion, and uveitis (3, 4). Furthermore, this disease is not only prevalent in many developing countries, it is reemerging in the United States (3). Although leptospirosis is a serious worldwide zoonotic disease, the pathogenic mechanisms of Leptospira infection remain enigmatic. Recent breakthroughs in applying genetic tools to Leptospira may facilitate studies on the molecular pathogenesis of leptospirosis (58).The attachment of pathogenic Leptospira spp. to host tissues is critical in the early phase of Leptospira infection. Leptospira spp. adhere to host tissues to overcome mechanical defense systems at tissue surfaces and to initiate colonization of specific tissues, such as the lung, kidney, and liver. Leptospira invade hosts tissues through mucous membranes or injured epidermis, coming in contact with subepithelial tissues. Here, certain bacterial outer surface proteins serve as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs)2 to mediate the binding of bacteria to different extracellular matrices (ECMs) of host cells (9). Several leptospiral MSCRAMMs have been identified (1018), and we speculate that more will be identified in the near future.Lig proteins are distributed on the outer surface of pathogenic Leptospira, and the expression of Lig protein is only found in low passage strains (14, 16, 17), probably induced by environmental cues such as osmotic or temperature changes (19). Lig proteins can bind to fibrinogen and a variety of ECMs, including fibronectin (Fn), laminin, and collagen, thereby mediating adhesion to host cells (2023). Lig proteins also constitute good vaccine candidates (2426).Elastin is a component of ECM critical to tissue elasticity and resilience and is abundant in skin, lung, blood vessels, placenta, uterus, and other tissues (2729). Tropoelastin is the soluble precursor of elastin (28). During the major phase of elastogenesis, multiple tropoelastin molecules associate through coacervation (3032). Because of the abundance of elastin or tropoelastin on the surface of host cells, several bacterial MSCRAMMs use elastin and/or tropoelastin to mediate adhesion during the infection process (3335).Because leptospiral infection is known to cause severe pulmonary hemorrhage (36, 37) and abortion (38), we hypothesize that some leptospiral MSCRAMMs may interact with elastin and/or tropoelastin in these elastin-rich tissues. This is the first report that Lig proteins of Leptospira interact with elastin and tropoelastin, and the interactions are mediated by several specific immunoglobulin-like domains of Lig proteins, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12, which bind to the 17th to 27th exons of human tropoelastin (HTE).  相似文献   

8.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

9.
The budding yeast formins, Bnr1 and Bni1, behave very differently with respect to their interactions with muscle actin. However, the mechanisms underlying these differences are unclear, and these formins do not interact with muscle actin in vivo. We use yeast wild type and mutant actins to further assess these differences between Bnr1 and Bni1. Low ionic strength G-buffer does not promote actin polymerization. However, Bnr1, but not Bni1, causes the polymerization of pyrene-labeled Mg-G-actin in G-buffer into single filaments based on fluorometric and EM observations. Polymerization by Bnr1 does not occur with Ca-G-actin. By cosedimentation, maximum filament formation occurs at a Bnr1:actin ratio of 1:2. The interaction of Bnr1 with pyrene-labeled S265C Mg-actin yields a pyrene excimer peak, from the cross-strand interaction of pyrene probes, which only occurs in the context of F-actin. In F-buffer, Bnr1 promotes much faster yeast actin polymerization than Bni1. It also bundles the F-actin in contrast to the low ionic strength situation where only single filaments form. Thus, the differences previously observed with muscle actin are not actin isoform-specific. The binding of both formins to F-actin saturate at an equimolar ratio, but only about 30% of each formin cosediments with F-actin. Finally, addition of Bnr1 but not Bni1 to pyrene-labeled wild type and S265C Mg-F actins enhanced the pyrene- and pyrene-excimer fluorescence, respectively, suggesting Bnr1 also alters F-actin structure. These differences may facilitate the ability of Bnr1 to form the actin cables needed for polarized delivery of nutrients and organelles to the growing yeast bud.Bni1 and Bnr1 are the two formin isoforms expressed in Saccharomyces cerevisiae (1, 2). These proteins, as other isoforms in the formin family, are large multidomain proteins (3, 4). Several regulatory domains, including one for binding the G-protein rho, are located at the N-terminal half of the protein (47). FH1, FH2, and Bud6 binding domains are located in the C-terminal half of the protein (8). The formin homology 1 (FH1)2 domain contains several sequential poly-l-proline motifs, and it interacts with the profilin/actin complex to recruit actin monomers and regulate the insertion of actin monomers at the barbed end of actin (911). The fomin homology domain 2 (FH2) forms a donut-shaped homodimer, which wraps around actin dimers at the barbed end of actin filaments (12, 13). One important function of formin is to facilitate actin polymerization by stabilizing actin dimers or trimers under polymerization conditions and then to processively associate with the barbed end of the elongating filament to control actin filament elongation kinetics (1318).A major unsolved protein in the study of formins is the elucidation of the individual functions of different isoforms and their regulation. In vivo, these two budding yeast formins have distinct cellular locations and dynamics (1, 2, 19, 20). Bni1 concentrates at the budding site before the daughter cell buds from the mother cell, moves along with the tip of the daughter cell, and then travels back to the neck between daughter and mother cells at the end of segregation. Bnr1 localizes only at the neck of the budding cell in a very short period of time after bud emergence. Although a key cellular function of these two formins in yeast is to promote actin cable formation (8, 18), the roles of the individual formins in different cellular process is unclear because deleting either individual formin gene has limited impact on cell growth and deleting both genes together is lethal (21).Although each of the two formins can nucleate actin filament formation in vitro, the manner in which they affect polymerization is distinctly isoform-specific. Most of this mechanistic work in vitro has used formin fragments containing the FH1 and FH2 domains. Bni1 alone processively caps the barbed end of actin filaments partially inhibiting polymerization at this end (14, 16, 18). The profilin-actin complex, recruited to the actin barbed end through its binding to Bni1 FH1 domain, possibly raises the local actin concentration and appears to allow this inhibition to be overcome, thereby, accelerating barbed end polymerization. It has also been shown that this complex modifies the kinetics of actin dynamics at the barbed end (9, 11, 18, 22). Moreover, Bni1 participation leads only to the formation of single filaments (8). In comparison, the Bnr1 FH1-FH2 domain facilitates actin polymerization much more efficiently than does Bni1. Moseley and Goode (8) showed Bnr1 accelerates actin polymerization up to 10 times better than does Bni and produces actin filament bundles when the Bnr1/actin molar ratio is above 1:2. Finally, the regulation of Bni1 and Bnr1 by formin binding is different. For example, Bud 6/Aip3, a yeast cell polarity factor, binds to Bni1, but not Bnr1, and also stimulates its activity in vitro.For their studies, Moseley and Goode (8) utilized mammalian skeletal muscle actin instead of the S. cerevisiae actin with which the yeast formins are designed to function. It is entirely possible that the differences observed with the two formins are influenced quantitatively or qualitatively by the nature of the actin used in the study. This possibility must be seriously considered because although yeast and muscle actins are 87% identical in sequence, they display marked differences in their polymerization behavior (23). Yeast actin nucleates filaments better than muscle actin (24, 25). It appears to form shorter and more flexible filaments than does muscle actin (26, 27). Finally, the disposition of the Pi released during the hydrolysis of ATP that occurs during polymerization is different. Yeast actin releases its Pi concomitant with hydrolysis of the bound ATP whereas muscle actin retains the Pi for a significant amount of time following nucleotide hydrolysis (28, 29). This difference is significant because ADP-Pi F-actin has been shown to be more stable than ADP F-actin (30). Another example of this isoform dependence is the interaction of yeast Arp2/3 with yeast versus muscle actins (31). Yeast Arp2/3 complex accelerates polymerization of muscle actin only in the presence of a nucleation protein factor such as WASP. However, with yeast actin, no such auxiliary protein is required. In light of these actin behavioral differences, to better understand the functional differences of these two formins in vivo, we have studied the behavior of Bni 1 and Bnr 1 with WT and mutant yeast actins, and we have also explored the molecular basis underlying the Bnr 1-induced formation of actin nuclei from G-actin.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号