首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
A better understanding of the immune response to live and formalin-inactivated respiratory syncytial virus (RSV) is important for developing nonlive vaccines. In this study, major histocompatibility complex (MHC) class I- and II-restricted, RSV-specific cytotoxic T-lymphocyte precursor (CTLp) frequencies were determined in bronchoalveolar lavage (BAL) samples and spleen lymphocytes of BALB/c mice intranasally infected with live RSV or intramuscularly inoculated with formalin-inactivated RSV (FI-RSV). After RSV infection, both class I- and class II-restricted CTLps were detected by day 4 or 5 postinfection (p.i.). Peak CTLp frequencies were detected by day 7 p.i. The class II-restricted CTLp frequencies in the BAL following RSV infection were less than class I-restricted CTLp frequencies through day 14 p.i., during which class I-restricted CTLp frequencies remained elevated, but then declined by 48 days p.i. The frequencies of class II-restricted CTLps in the BAL were 2- to 10-fold less than those of class I-restricted CTLps. For spleen cells, frequencies of both MHC class I- and II-restricted CTLps to live RSV were similar. In contrast, class II-restricted CTLps predominated in FI-RSV-vaccinated mice. RSV challenge of vaccinated mice resulted in an increase in the frequency of class I-restricted CTLps at day 3 p.i. but did not enhance class II-restricted CTLp frequencies. These studies demonstrate differences in the CTLp response to live RSV infection compared with FI-RSV immunization and help define possible mechanisms of enhanced disease after FI-RSV immunization. In addition, these studies provide a quantitative means to address potential vaccine candidates by examining both MHC class I- and II-restricted CTLp frequencies.Respiratory syncytial virus (RSV) infection in infants and young children often results in lower respiratory tract disease and is a high priority for vaccine development (1, 2). Attempts to develop an effective live, inactivated, or subunit vaccine have been unsuccessful (24, 25, 28). Early efforts at vaccinating young children with a formalin-inactivated RSV (FI-RSV) vaccine failed to protect the children from naturally acquired infection and actually enhanced lower respiratory tract disease upon later virus infection (2, 15, 24, 25). This enhanced disease has created concern about the safety of any nonlive RSV vaccine and, consequently, understanding the pathogenesis of FI-RSV-induced enhanced disease is critically important to vaccine development. Studies with BALB/c mice suggest that induction of memory T cells producing Th2-like cytokines, as a result of FI-RSV vaccination, may be key to the pathogenesis of enhanced disease (6, 16, 28, 32, 40). Th2-like cytokine mRNA has been demonstrated in cells from lung tissue or bronchoalveolar lavage (BAL) specimens after RSV challenge of FI-RSV-immunized mice (17, 32, 40). In addition, in vivo studies using antibody (Ab) blockade showed that the enhanced histopathology in FI-RSV-immune mice challenged with live virus could be eliminated by using anti-interleukin-4 (IL-4) and anti-IL-10 Abs but not anti-IL-12 Abs (6). Recent evidence suggests that CD8+ T lymphocytes may be important in directing the type of inflammatory response to RSV in challenge of G glycoprotein-sensitized mice (21, 31).One aspect of the FI-RSV immune response that has not been well characterized is the cytotoxic T-lymphocyte (CTL) response. There is limited information on major histocompatibility complex (MHC) class I-restricted CTLs after FI-RSV immunization (29), while the information about the CTL response after live-RSV infection has been well documented. Several studies have shown class I-restricted CTLs to kill predominantly target cells expressing the M, N, or F RSV protein (5, 7, 9, 26, 29, 41). The role of CTLs in the immune response to RSV is well illustrated by in vivo depletion studies with BALB/c mice (8, 18, 30). These studies suggest that both CD4+ (class II) and CD8+ lymphocytes are important for clearing RSV and that both contribute to the inflammatory response associated with infection. A vaccinia virus construct expressing RSV membrane-associated, nonglycosylated protein M2 has been affiliated with short-term protection in the BALB/c mouse (7). This protein does not induce neutralizing Abs, and therefore, protection likely is mediated by CTLs. Passive transfer of CD8+ T lymphocytes has been associated with both clearance of the virus and enhanced histopathology (1).In this report, we describe studies of CTL precursor (CTLp) frequencies in both live-RSV-infected and FI-RSV-immunized mice for MHC class I- and class II-restricted target cells. These studies demonstrate clear differences in the CTLp response between RSV and FI-RSV immunizations and provide additional approaches to identifying potential FI-RSV-induced enhanced disease mechanisms.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号