首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Upon DNA replication stress, stalled DNA replication forks serve as a platform to recruit many signaling proteins, leading to the activation of the DNA replication checkpoint. Activation of Rad53, a key effector kinase in the budding yeast Saccharomyces cerevisiae, is essential for stabilizing DNA replication forks during replication stress. Using an activity-based assay for Rad53, we found that Mrc1, a replication fork-associated protein, cooperates with Mec1 to activate Rad53 directly. Reconstitution of Rad53 activation using purified Mec1 and Mrc1 showed that the addition of Mrc1 stimulated a more than 70-fold increase in the ability of Mec1 to activate Rad53. Instead of increasing the catalytic activity of Mec1, Mrc1 was found to facilitate the phosphorylation of Rad53 by Mec1 via promotion of a stronger enzyme-substrate interaction between them. Further, the conserved C-terminal domain of Mrc1 was found to be required for Rad53 activation. These results thus provide insights into the role of the adaptor protein Mrc1 in activating Rad53 in the DNA replication checkpoint.Faithful replication of the genome is important for the survival of all organisms. During DNA replication, replication stress can arise from a variety of situations, including intrinsic errors made by DNA polymerases, difficulties in replicating repeated DNA sequences, and failures to repair damaged DNA caused by either endogenous oxidative agents or exogenous mutagens such as UV light and DNA-damaging chemicals (13). In eukaryotes, there is an evolutionarily conserved DNA replication checkpoint that becomes activated in response to DNA replication stress. It helps to stabilize DNA replication forks, block late replication origin firing, and delay mitosis and ultimately helps recovery from stalled replication forks after DNA repair (47). Defects in the DNA replication checkpoint could result in elevated genomic instabilities, cancer development, or cell death (8, 9).Aside from replicating the genome, the DNA replication forks also provide a platform to assemble many signaling proteins that function in the DNA replication checkpoint. In the budding yeast Saccharomyces cerevisiae, Mec1, an ortholog of human ATR,2 is a phosphoinositide 3-kinase-like kinase (PIKK) involved in sensing stalled DNA replication forks. Mec1 forms a protein complex with Ddc2 (ortholog of human ATRIP). The Mec1-Ddc2 complex is recruited to stalled replication forks through replication protein A (RPA)-coated single-stranded DNA (10, 11). The Mec3-Rad17-Ddc1 complex, a proliferating cell nuclear antigen (PCNA)-like checkpoint clamp and ortholog of the human 9-1-1 complex, was shown to be loaded onto the single- and double-stranded DNA junction of the stalled replication forks by the clamp loader Rad24-RFC complex (12). Once loaded, the Mec3-Rad17-Ddc1 complex stimulates Mec1 kinase activity (13). Dbp11 and its homolog TopBP1 in vertebrates are known components of the replication machinery (14). In addition to regulating the initiation of DNA replication, they were found to play a role in the DNA replication checkpoint (1517). They interact with the 9-1-1 complex and directly stimulate Mec1/ATR activity in vitro (1820). Thus, the assembly of multiple protein complexes at stalled DNA replication forks appears to facilitate activation of the DNA replication checkpoint (13, 18).Mrc1 (for mediator of replication checkpoint) was originally identified to be important for cells to respond to hydroxyurea in S. cerevisiae and Schizosaccharomyces pombe (21, 22). Mrc1 is a component of the DNA replisome and travels with the replication forks along chromosome during DNA synthesis (2325). Deletion of MRC1 causes defects in DNA replication, indicating its role in the normal progression of DNA replication (23). Interestingly, when DNA replication is blocked by hydroxyurea, Mrc1 undergoes Mec1- and Rad3 (S. pombe ortholog of Mec1)-dependent phosphorylation (21, 22). In S. cerevisiae, mutations of Mrc1 at the (S/T)Q sites, which are consensus phosphorylation sites of the Mec1/ATR family kinases, abolishes hydroxyurea-induced Mrc1 phosphorylation in vivo, suggesting a direct phosphorylation of Mrc1 by Mec1 (21, 22).Rad53 and Cds1, homologs of human Chk2, are the major effector kinases in the DNA replication checkpoints in S. cerevisiae and S. pombe, respectively. Activation of Rad53 is a hallmark of DNA replication checkpoint activation and is important for the maintenance of DNA replication forks in response to DNA replication stress (5, 6). Thus, it is important to understand how Rad53 activity is controlled. Interestingly, mutation of all the (S/T)Q sites of Mrc1 not only abolishes the phosphorylation of Mrc1 by Mec1 but also compromises hydroxyurea-induced Rad53 activation in S. cerevisiae (21). Similarly, mutation of the TQ sites of Mrc1 in S. pombe was shown to abolish the binding between Cds1 and Mrc1 as well as Cds1 activation (22). Further, mutation of specific TQ sites of Mrc1 in S. pombe abolishes its binding to Cds1 in vitro and the activation of Cds1 in vivo (26). Thus, Mec1/Rad3-dependent phosphorylation of Mrc1 is responsible for Mrc1 binding to Rad53/Cds1, which is essential for Rad53/Cds1 activation.An intriguing property of the Chk2 family kinases is their ability to undergo autophosphorylation and activation in the absence of other proteins in vitro (27, 28). First, autophosphorylation of a conserved threonine residue in the activation loop of Chk2 family kinase was found to be an essential part of their activation processes (26, 2931). Second, a direct and trans-phosphorylation of the N-terminal TQ sites of the Chk2 family kinases by the Mec1/ATR family kinases is also important for their activation in vivo. Analogous to the requirement of N-terminal TQ site phosphorylation of Chk2 by ATR in human (32), the activation of Rad53/Cds1 in vivo requires phosphorylation of TQ sites in their N termini by Mec1/Rad3 (33, 34).Considering that Mec1, Mrc1, and many other proteins are recruited at stalled DNA replication forks and have been shown to be involved in DNA replication checkpoint activation, a key question remains unresolved: what is the minimal system that is capable of activating Rad53 directly? Given the direct physical interaction between Mrc1 and Rad53 and the requirement of Mrc1 and Mec1 in vivo, it is likely that they both play a role in Rad53 activation. Furthermore, what is the molecular mechanism of Rad53 activation by its upstream activators? To address these questions, a faithful reconstitution of the activation of Rad53 using purified proteins is necessary. In this study, we developed an activity-based assay consisting of the Dun1 kinase, a downstream substrate of Rad53, and Sml1, as a substrate of Dun1, to quantitatively measure the activity of Rad53. Using this coupled kinase assay from Rad53 to Dun1 and then to Sml1, we screened for Mrc1 and its associated factors to see whether they could directly activate Rad53 in vitro. Our results showed that Mec1 and Mrc1 collaborate to constitute a minimal system in direct activation of Rad53.  相似文献   

5.
6.
7.
8.
9.
Phosphorylation of simian virus 40 large tumor (T) antigen on threonine 124 is essential for viral DNA replication. A mutant T antigen (T124A), in which this threonine was replaced by alanine, has helicase activity, assembles double hexamers on viral-origin DNA, and locally distorts the origin DNA structure, but it cannot catalyze origin DNA unwinding. A class of T-antigen mutants with single-amino-acid substitutions in the DNA binding domain (class 4) has remarkably similar properties, although these proteins are phosphorylated on threonine 124, as we show here. By comparing the DNA binding properties of the T124A and class 4 mutant proteins with those of the wild type, we demonstrate that mutant double hexamers bind to viral origin DNA with reduced cooperativity. We report that T124A T-antigen subunits impair the ability of double hexamers containing the wild-type protein to unwind viral origin DNA, suggesting that interactions between hexamers are also required for unwinding. Moreover, the T124A and class 4 mutant T antigens display dominant-negative inhibition of the viral DNA replication activity of the wild-type protein. We propose that interactions between hexamers, mediated through the DNA binding domain and the N-terminal phosphorylated region of T antigen, play a role in double-hexamer assembly and origin DNA unwinding. We speculate that one surface of the DNA binding domain in each subunit of one hexamer may form a docking site that can interact with each subunit in the other hexamer, either directly with the N-terminal phosphorylated region or with another region that is regulated by phosphorylation.

The initiation of simian virus 40 (SV40) DNA replication by the viral T antigen is a complex series of events that begins when T antigen binds specifically to a palindromic arrangement of four GAGGC pentanucleotide sequences in the minimal origin of viral DNA replication (recently reviewed in references 1, 2, 3, 22, and 48). In the presence of Mg-ATP, T antigen assembles cooperatively on the two halves of the palindrome as a double hexamer (10, 11, 13, 24, 30, 38, 51, 53). The DNA conformation flanking the T-antigen binding sites is locally distorted upon hexamer assembly (reference 7 and references therein). One pair of pentanucleotides is sufficient to direct double-hexamer assembly and local distortion of the origin DNA but not to initiate DNA replication (25). ATP hydrolysis by T-antigen hexamers then catalyzes bidirectional unwinding of the parental DNA (reference 53 and references therein). A mutant origin with a single nucleotide insertion in the center of the palindromic T-antigen binding site prevents cooperative interactions between hexamers and cannot support bidirectional origin unwinding (8, 51), suggesting that both processes require interactions between T-antigen hexamers. After assembly of the two replication forks, bidirectional replication is carried out by 10 cellular proteins and T antigen, which remains at the forks as the only essential helicase (reviewed in references 3, 22, and 48).The phosphorylation state of SV40 T antigen governs its ability to initiate viral DNA replication (reviewed in references 15 to 17 and 39). T antigen contains two clusters of phosphorylation sites located at the N and C termini (40, 41). Phosphorylation of T antigen on threonine 124 in the N-terminal cluster was shown to be essential for viral DNA replication in monkey cells and in vitro (5, 14, 3236, 44). Efforts to define what step in viral DNA replication requires modification of threonine 124 revealed that Mg-ATP-induced hexamer formation of T antigen in solution and DNA helicase activity of T antigen did not require phosphorylation at this site (33, 36). Origin DNA binding of T antigen lacking the modification at residue 124 was weaker than that of the modified T antigen (33, 34, 36, 44), but the reduction in binding was modest under the conditions used for SV40 DNA replication in vitro (36). Moreover, a mutant T antigen containing alanine in place of the phosphorylated threonine (T124A) assembled as a double hexamer on the viral origin and altered the conformation of the early palindrome and AT-rich sequences flanking the T-antigen binding sites in the viral origin in the same manner as the wild-type protein, except that higher concentrations were required (36). However, even at an elevated concentration, these mutant double hexamers were unable to unwind closed circular duplex DNA containing the viral origin (33, 36), suggesting that the defect in unwinding was responsible for the inability of T124A T antigen to replicate SV40 DNA. One possible explanation for the unwinding defect of the mutant T antigen, despite its helicase activity, was that some essential interaction between the two hexamers during bidirectional unwinding depended upon phosphorylation of threonine 124. Electron micrographs of SV40 DNA unwinding intermediates, which showed two single-stranded DNA loops protruding between two hexamers of T antigen, provided support for this explanation, implying that a double hexamer pulled the parental duplex DNA into the protein complex and spooled the single-stranded DNA out (53). Furthermore, double-hexamer formation significantly enhanced the helicase activity of T antigen (47, 47a).Most of the T antigen isolated from mammalian cells is in a hyperphosphorylated form, containing multiple phosphoserines, as well as two phosphothreonines, and supports SV40 DNA replication in vitro poorly but can be stimulated by treatment with alkaline phosphatase or protein phosphatase 2A (19, 28, 37, 42, 49, 50). Hyperphosphorylated T antigen is unable to unwind duplex closed circular duplex DNA harboring the viral origin (4, 6, 51). Dephosphorylation of serines 120 and 123 restores its ability to unwind origin DNA (14, 43, 51). Studies of double-hexamer assembly on the origin indicate that phosphorylation of T antigen on serines 120 and 123 also impairs the cooperativity of double-hexamer assembly (14, 51). These results demonstrate that hyperphosphorylation of T antigen interferes with interactions between hexamers that are required for origin unwinding and raise the question of whether the phosphorylation state of threonine 124 might also affect the cooperativity of double-hexamer assembly on the viral origin.One class of T antigen mutants with single-amino-acid substitutions in the DNA binding domain (class 4) has been reported to display properties similar to those of the T124A mutant and the hyperphosphorylated form of T antigen (54). Class 4 mutant proteins are defective in viral DNA replication in vivo and in vitro, bind to the viral origin as double hexamers and alter the local DNA conformation, and have helicase activity but do not unwind closed circular duplex viral DNA. The replication and unwinding defects could be due to faulty phosphorylation patterns or to other malfunctions not dependent on phosphorylation status.The work presented here was undertaken to reevaluate the assembly of wild-type and T124A T antigen on SV40 origin DNA by using more-sensitive quantitative assays and to compare them with the class 4 mutants. We report that cooperativity of T124A T antigen in double-hexamer assembly on the viral origin is impaired. The class 4 mutant T antigens were also found to have defects in cooperativity of double-hexamer assembly. T124A T antigen inhibited the ability of the wild-type protein to unwind closed circular duplex origin DNA. Both T124A and the class 4 mutants displayed dominant-negative phenotypes in viral DNA replication in vitro. Based on these observations, we propose that the N-terminal cluster of phosphorylation sites and the DNA binding domain mediate cooperative hexamer-hexamer interactions during assembly on the viral origin and speculate that these regions of T antigen may interact during origin DNA unwinding.  相似文献   

10.
Proliferating cell nuclear antigen (PCNA) has been demonstrated to interact with multiple proteins involved in several metabolic pathways such as DNA replication and repair. However, there have been fewer reports about whether these PCNA-binding proteins influence stability of PCNA. Here, we observed a physical interaction between PCNA and MutT homolog2 (MTH2), a new member of the MutT-related proteins that hydrolyzes 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP). In several unstressed human cancer cell lines and in normal human fibroblast cells, PCNA and MTH2 formed a complex and their mutual binding fragments were confirmed. It was intriguing that PCNA and MTH2 were dissociated dependent on acetylation of PCNA, which in turn induced degradation of PCNA in response to UV irradiation, but not in response to other forms of DNA-damaging stress. To further explore the link between dissociation of PCNA-MTH2 and degradation of PCNA, RNAi against MTH2 was performed to mimic the dissociated status of PCNA to evaluate changes in the half-life of PCNA. Knockdown of MTH2 significantly promoted degradation of PCNA, suggesting that the physiological interaction of PCNA-MTH2 may confer protection from degradation for PCNA, whereas UV irradiation accelerates PCNA degradation by inducing dissociation of PCNA-MTH2. Moreover, secondary to degradation of PCNA, UV-induced inhibition of DNA synthesis or cell cycle progression was enhanced. Collectively, our data demonstrate for the first time that PCNA is protected by this newly identified partner molecule MTH2, which is related to DNA synthesis and cell cycle progression.Proliferating cell nuclear antigen (PCNA)3 is a member of the DNA sliding clamp family and consists of a ring-shaped trimeric complex (13). Three PCNA monomers, each comprising two similar domains, are joined in a head-to-tail arrangement to form a closed ring (4, 5). Because of this unique structure, PCNA encircles the DNA double helix and slides freely along it. PCNA was originally characterized as a DNA polymerase processivity factor and it increases the processivity of DNA synthesis by interacting with polymerase δ (6, 7). Subsequent studies revealed that PCNA plays an important role in DNA replication (8, 9). For example, PCNA not only functions as a protein binding platform to interact with the DNA polymerases, flap endonuclease-1 (Fen1) or DNA ligase I (1012), but also coordinates complicated processes in DNA replication (2, 13). In addition, PCNA also plays a role in DNA damage repair (1417) and cell cycle control (1820).Because PCNA is essential for DNA synthesis both in DNA replication and repair, a dynamic balance between PCNA synthesis and degradation is critical for maintaining normal DNA synthesis. Up-regulation of PCNA accelerates DNA synthesis and promotes cell proliferation, such that PCNA is regarded as a general proliferation marker in tumor development. On the other hand, degradation of PCNA leads to inhibition of DNA synthesis (9, 21). In this case, in response to inhibition of DNA synthesis by PCNA degradation, both cell proliferation and DNA repair are inhibited, and cells are thus subject to death.In Escherichia coli, MutT protein encoded by the mutT gene has 8-oxo-dGTPase activity, and hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, which is nonutilizable for DNA synthesis, thus preventing misincorporation of 8-oxo-dGTP into DNA (22). 8-Oxo-dGTP is a product of dGTP oxidation and can be inserted into opposite dA or dC residues of template DNA at almost equal efficiencies. As a result, G:C to T:A or T:A to G:C transversion mutations occur (2224). In a mutT-deficient strain, the rate of spontaneous occurrence of A:T to C:G transversion increases by 1000-fold compared with that of cells with wild type mutT (2527). Therefore, MutT protein is required for preventing mutations and maintaining high fidelity of DNA replication (28). In addition, RibA is a backup enzyme for MutT in E. coli and also plays a role in maintaining high fidelity of DNA replication (29). The MutT homologue MTH1 is the first MutT-related protein found in mammalian cells (30). The spontaneous mutation frequency in MTH1-deficient cells showed an increase of ∼2-fold as compared with that in wild type MTH1 cells (31). Comparing the mutation frequency in mutT-deficient E. coli cells with that in MTH1-deficient mammalian cells suggests that there must be other proteins responsible for preventing occurrence of high numbers of oxidative damage induced mutations in mammalian cells. By searching the GenBankTM EST data base, our research group and others (32) have cloned a new member of MutT-related protein, MTH2. The increased mutation frequency in mutT-deficient cells was significantly reduced by overexpression of MTH2 cDNA (32). Therefore, MTH2 may help to ensure cells achieve accurate DNA synthesis. However, aside from the activity of 8-oxo-dGTPase, the exact mechanism by which MTH2 influences DNA synthesis has not been explored.The functions of both PCNA and MTH2 partially overlap in DNA synthesis, thus warranting exploration of whether MTH2 works together with PCNA to regulate DNA replication or repair. In this study, we found that MTH2 directly interacts with PCNA, and this interaction enhances PCNA stability. However, when cells were exposed to UV light, the interaction of MTH2 and PCNA was disrupted, and PCNA degradation was accelerated. Consequently, DNA synthesis was reduced, and cell cycling was arrested.  相似文献   

11.
12.
13.
The Dbf4-Cdc7 kinase (DDK) is required for the activation of the origins of replication, and DDK phosphorylates Mcm2 in vitro. We find that budding yeast Cdc7 alone exists in solution as a weakly active multimer. Dbf4 forms a likely heterodimer with Cdc7, and this species phosphorylates Mcm2 with substantially higher specific activity. Dbf4 alone binds tightly to Mcm2, whereas Cdc7 alone binds weakly to Mcm2, suggesting that Dbf4 recruits Cdc7 to phosphorylate Mcm2. DDK phosphorylates two serine residues of Mcm2 near the N terminus of the protein, Ser-164 and Ser-170. Expression of mcm2-S170A is lethal to yeast cells that lack endogenous MCM2 (mcm2Δ); however, this lethality is rescued in cells harboring the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Mcm2 is required for cell growth.The Cdc7 protein kinase is required throughout the yeast S phase to activate origins (1, 2). The S phase cyclin-dependent kinase also activates yeast origins of replication (35). It has been proposed that Dbf4 activates Cdc7 kinase in S phase, and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6). However, it is not known how Dbf4-Cdc7 (DDK)2 acts during S phase to trigger the initiation of DNA replication. DDK has homologs in other eukaryotic species, and the role of Cdc7 in activation of replication origins during S phase may be conserved (710).The Mcm2-7 complex functions with Cdc45 and GINS to unwind DNA at a replication fork (1115). A mutation of MCM5 (mcm5-bob1) bypasses the cellular requirements for DBF4 and CDC7 (16), suggesting a critical physiologic interaction between Dbf4-Cdc7 and Mcm proteins. DDK phosphorylates Mcm2 in vitro with proteins purified from budding yeast (17, 18) or human cells (19). Furthermore, there are mutants of MCM2 that show synthetic lethality with DBF4 mutants (6, 17), suggesting a biologically relevant interaction between DBF4 and MCM2. Nevertheless, the physiologic role of DDK phosphorylation of Mcm2 is a matter of dispute. In human cells, replacement of MCM2 DDK-phosphoacceptor residues with alanines inhibits DNA replication, suggesting that Dbf4-Cdc7 phosphorylation of Mcm2 in humans is important for DNA replication (20). In contrast, mutation of putative DDK phosphorylation sites at the N terminus of Schizosaccharomyces pombe Mcm2 results in viable cells, suggesting that phosphorylation of S. pombe Mcm2 by DDK is not critical for cell growth (10).In budding yeast, Cdc7 is present at high levels in G1 and S phase, whereas Dbf4 levels peak in S phase (18, 21, 22). Furthermore, budding yeast DDK binds to chromatin during S phase (6), and it has been shown that Dbf4 is required for Cdc7 binding to chromatin in budding yeast (23, 24), fission yeast (25), and Xenopus (9). Human and fission yeast Cdc7 are inert on their own (7, 8), but Dbf4-Cdc7 is active in phosphorylating Mcm proteins in budding yeast (6, 26), fission yeast (7), and human (8, 10). Based on these data, it has been proposed that Dbf4 activates Cdc7 kinase in S phase and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6, 9, 18, 2124). However, a mechanistic analysis of how Dbf4 activates Cdc7 has not yet been accomplished. For example, the multimeric state of the active Dbf4-Cdc7 complex is currently disputed. A heterodimer of fission yeast Cdc7 (Hsk1) in complex with fission yeast Dbf4 (Dfp1) can phosphorylate Mcm2 (7). However, in budding yeast, oligomers of Cdc7 exist in the cell (27), and Dbf4-Cdc7 exists as oligomers of 180 and 300 kDa (27).DDK phosphorylates the N termini of human Mcm2 (19, 20, 28), human Mcm4 (10), budding yeast Mcm4 (26), and fission yeast Mcm6 (10). Although the sequences of the Mcm N termini are poorly conserved, the DDK sites identified in each study have neighboring acidic residues. The residues of budding yeast Mcm2 that are phosphorylated by DDK have not yet been identified.In this study, we find that budding yeast Cdc7 is weakly active as a multimer in phosphorylating Mcm2. However, a low molecular weight form of Dbf4-Cdc7, likely a heterodimer, has a higher specific activity for phosphorylation of Mcm2. Dbf4 or DDK, but not Cdc7, binds tightly to Mcm2, suggesting that Dbf4 recruits Cdc7 to Mcm2. DDK phosphorylates two serine residues of Mcm2, Ser-164 and Ser-170, in an acidic region of the protein. Mutation of Ser-170 is lethal to yeast cells, but this phenotype is rescued by the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Ser-170 of Mcm2 is required for budding yeast growth.  相似文献   

14.
15.
During the mitotic cell cycle, Geminin can act both as a promoter and inhibitor of initiation of DNA replication. As a promoter, Geminin stabilizes Cdt1 and facilitates its accumulation leading to the assembly of the pre-replication complex on DNA. As an inhibitor, Geminin prevents Cdt1 from loading the mini-chromosome maintenance complex onto pre-replication complexes in late S, G2, and M phases. Here we show that during meiosis Geminin functions as a stabilizer of Cdt1 promoting its accumulation for the early division cycles of the embryo. Depletion of Geminin in Xenopus immature oocytes leads to a decrease of Cdt1 protein levels during maturation and after activation of these oocytes. Injection of exogenous recombinant Geminin into the depleted oocytes rescues Cdt1 levels demonstrating that Geminin stabilizes Cdt1 during meiosis and after fertilization. Furthermore, Geminin-depleted oocytes did not replicate their DNA after meiosis I indicating that Geminin does not act as an inhibitor of initiation of DNA replication between meiosis I and meiosis II.In eukaryotes, initiation of DNA replication involves the formation and activation of the pre-replication complex (pre-RC)3 at the origins of replication. Pre-RCs are formed by the sequential binding of the origin recognition complex components, Cdc6, Cdt1, and mini-chromosome maintenance complex (MCM 2–7) proteins, to DNA. After loading the MCM complex, the pre-RCs are activated by S phase kinases (Dbf4-dependent kinase and Cdks) to initiate DNA replication (1). Replication of DNA, limited to only once per cell cycle, is critical to maintain genomic stability. Redundant mechanisms exist to ensure that DNA replication is tightly regulated during the cell cycle (1, 2). A small protein named Geminin has been shown to play a significant role in such regulatory mechanisms during mitosis (26). Geminin, a multifunctional 25-kDa protein, was first identified in a screen for proteins degraded during mitosis in Xenopus laevis egg extracts (7). Geminin is present in higher eukaryotes, but its presence in yeast has not yet been reported (710). Geminin plays a major role in regulating the function of Cdt1, one of the pre-RC components (8, 1113). Numerous studies suggest that in higher eukaryotes the interaction between Geminin and Cdt1 is pivotal to restrict DNA replication to only once per cell cycle (6, 1422). Furthermore, in Xenopus egg extracts, the Geminin/Cdt1 ratio seems to control the assembly of pre-RCs at replication origins and to determine whether the origins are licensed or not (23). The positive and negative roles of Geminin in origin licensing and DNA replication are made possible by their temporal separation during the cell cycle. Pre-RC formation occurs during late M and early G1 phase, whereas pre-RC inhibition occurs from late S to mid M phase.As a positive regulator of DNA replication, Geminin has been shown to stabilize Cdt1. In human osteosarcoma cells, silencing of GEMININ expression limits CDT1 accumulation during mitosis and therefore the formation of pre-RCs in the subsequent cell cycle. This stabilizing effect is the result of a direct interaction between CDT1 and GEMININ preventing CDT1 ubiquitination and degradation (13). Similar findings were also recently observed in normal human cells and various cancer cells (24). However, in both human normal and tumor cells, the low level of CDT1, generated by the absence of GEMININ, did not always prevent cellular proliferation or re-replication of the genome (5, 24, 25). Therefore, one might question the importance of the role of GEMININ in stabilizing CDT1 in human cells. Beyond its role as a stabilizer of Cdt1 levels, Geminin has also been shown to participate directly in the formation of pre-RCs in Xenopus egg extracts. A complex between Cdt1 and Geminin binds to chromatin and supports pre-RC assembly. However, the recruitment of additional Geminin molecules to this complex on the chromatin blocks further pre-RC formation. These results indicate that the stoichiometry of Cdt1 and Geminin in this complex regulates its activity as a promoter or inhibitor of pre-RC assembly and DNA replication (23, 26). Several mechanisms have been shown to modulate the Geminin/Cdt1 balance on the chromatin. In Xenopus the binding of Cdt1 to the MCM9 protein seems to block the recruitment of an excess of Geminin to the chromatin and therefore favors pre-RC assembly (27). Similarly, the inactivation of Geminin by either ubiquitination or degradation also has a positive effect on pre-RC assembly (8, 11, 2830). On the other hand, the replication-dependent degradation of Cdt1 has the opposite effect and prevents refiring of replication origins during S and G2 phases of the mitotic cell cycle (18, 20, 31).Although the role of Geminin during mitosis has been extensively studied, not much is known about its function during meiosis. The expression pattern of Geminin during oocyte maturation is unclear. The presence of Geminin in immature stage VI Xenopus oocytes is controversial, but the protein is fully expressed in mature oocytes arrested in metaphase of meiosis II (7, 32). To form haploid gametes, DNA replication has to be inhibited between meiosis I (MI) and meiosis II (MII). In Xenopus oocytes, cyclin B-dependent kinase 1 (Cdk1) also known as maturation-promoting factor (MPF) plays a role in preventing DNA replication between the two meiotic divisions (3336). Inhibition of Cdk1 activity between MI and MII leads to the formation of interphase nucleus and DNA replication. However, the role of Geminin in preventing DNA replication between meiotic divisions has not been tested so far. Finally, the possibility that Geminin stabilizes Cdt1 during meiosis and ensures its accumulation for the early embryonic divisions has not been formally examined.Here we show that the levels of Geminin and Cdt1 proteins increase significantly during meiosis in Xenopus oocytes and that the primary role of geminin is to promote the accumulation of Cdt1 and not to repress DNA replication between meiosis I and meiosis II. Depletion of Geminin in Xenopus immature oocytes does not lead to DNA replication after the first meiotic division but to a decrease in Cdt1 stability during the maturation and activation of these oocytes. Rescue of Cdt1 levels in these Geminin-depleted oocytes is achieved by injection of exogenous recombinant Geminin protein confirming the role of Geminin as a stabilizer of Cdt1 during meiosis and the early embryonic division cycles. These results provide further support for the idea that Geminin functions universally in stabilizing Cdt1. Although the stabilizing role of Geminin might not be its most important function in somatic cells, we show here that stabilizing Cdt1 is a dominant function for Geminin in Xenopus oocytes undergoing meiosis. This stabilizing role of Geminin is essential for the stockpiling of Cdt1 before fertilization that is required to sustain the rapid divisions of the early embryo.  相似文献   

16.
17.
18.
Coordinated execution of DNA replication, checkpoint activation, and postreplicative chromatid cohesion is intimately related to the replication fork machinery. Human AND-1/chromosome transmission fidelity 4 is localized adjacent to replication foci and is required for efficient DNA synthesis. In S phase, AND-1 is phosphorylated in response to replication arrest in a manner dependent on checkpoint kinase, ataxia telangiectasia-mutated, ataxia telangiectasia-mutated and Rad3-related protein, and Cdc7 kinase but not on Chk1. Depletion of AND-1 increases DNA damage, delays progression of S phase, leads to accumulation of late S and/or G2 phase cells, and induces cell death in cancer cells. It also elevated UV-radioresistant DNA synthesis and caused premature recovery of replication after hydroxyurea arrest, indicating that lack of AND-1 compromises checkpoint activation. This may be partly due to the decreased levels of Chk1 protein in AND-1-depleted cells. Furthermore, AND-1 interacts with cohesin proteins Smc1, Smc3, and Rad21/Scc1, consistent with proposed roles of yeast counterparts of AND-1 in sister chromatid cohesion. Depletion of AND-1 leads to significant inhibition of homologous recombination repair of an I-SceI-driven double strand break. Based on these data, we propose that AND-1 coordinates multiple cellular events in S phase and G2 phase, such as DNA replication, checkpoint activation, sister chromatid cohesion, and DNA damage repair, thus playing a pivotal role in maintenance of genome integrity.Replication fork is not only the site of DNA synthesis but also the center for coordinated execution of various chromosome transactions. The preparation for replication forks starts in the G1 phase, when the prereplicative complex composed of origin recognition and minichromosome maintenance assembles on the chromosome. At the G1-S boundary, Cdc45, GINS complex, and other factors join the prereplicative complex to generate a complex capable of initiating DNA replication. A series of phosphorylation events mediated by cyclin-dependent kinase and Cdc7 kinase play crucial roles in this process and facilitate the generation of active replication forks (16). Purification of the putative replisome complex in yeast indicated the presence of the checkpoint mediator Mrc1 and fork protection complex proteins Tof1 and Csm3 in the replication fork machinery (7), consistent with a previous report on the genome-wide analyses with chromatin immunoprecipitation analyses on chip (microarray) (8). Mcm10 is another factor present in the isolated complex, required for loading of replication protein A (RPA)2 and primase-DNA polymerase α onto the replisome complex (7, 9, 10).Replication fork machinery can cope with various stresses, including shortage of the cellular nucleotide pool and replication fork blockages that interfere with its progression. Stalled replication forks activate checkpoint pathways, leading to cell cycle arrest, DNA repair, restart of DNA replication, or cell death in some cases (1114). Single-stranded DNAs coated with RPA at the stalled replication forks are recognized by the ATR-ATR-interacting protein kinase complex and Rad17 for loading of the Rad9-Rad1-Hus1 checkpoint clamp (1416). Factors present in the replisome complex are also known to be required for checkpoint activation. Claspin, Tim, and Tipin functionally and physically associate with sensor and effector kinases and serve as mediator/adaptors (1723). Mcm7, a component of the replicative DNA helicase in eukaryotes, was reported to associate with the checkpoint clamp loader Rad17 (24) and to have a distinct function in checkpoint (24, 25). We recently reported that Cdc7 kinase, known to be required for DNA replication initiation, plays a role in activation of DNA replication checkpoint possibly through regulating Claspin phosphorylation (26). Thus, it appears that DNA replication and checkpoint activation functionally and physically interact with each other.Another crucial cellular event for maintenance of genome stability is sister chromatid cohesion. The cohesin complex, a conserved apparatus required for sister chromatid cohesion, contains Smc1, Smc3, and Rad21/Scc1/Mcd1 proteins. The assembled cohesin complexes are loaded onto chromatin prior to DNA replication in G1 phase and link the sister chromosomes during S and G2 phase until mitosis when they separate (27, 28). The mitotic cohesion defects are not rescued by supplementing cohesin in G2 phase, and it has been suggested that establishment of sister chromatid cohesion is coupled with DNA replication (29, 30). Indeed, yeast mutants in some replisome components show defect in sister chromosome cohesion or undergo chromosome loss (3133). Cdc7 kinase is also required for efficient mitotic chromosome cohesion (34, 35).Human AND-1 is the putative homolog of budding yeast CTF4/Pob1/CHL15 and fission yeast Mcl1/Slr3. The budding yeast counterpart was identified as a replisome component described above (7), which travels along with the replication fork (29). CTF4 is nonessential for viability, but its interactions with primase, Rad2 (FEN1 family of nuclease), and Dna2 have implicated CTF4 in lagging strand synthesis and/or Okazaki fragment processing (3639). Yeast CTF4 and Mcl1 are involved in chromosome cohesion (33, 40, 41) and genetically interact with a cohesin, Mcd1/Rad21 (40, 42). Recently, it was reported that human AND-1 protein interacts with human primase-DNA polymerase α and Mcm10 and is required for DNA synthesis (43).Here we confirm that human AND-1 protein is required for DNA replication and efficient progression of S phase, and we further show that it facilitates replication checkpoint. Depletion of AND-1 causes accumulation of DNA damage and cell cycle arrest at late S to G2 phase, ultimately leading to cell death. Furthermore, we also show that human AND-1 physically interacts with cohesin proteins Smc1, Smc3, Rad21/Scc1, suggesting a possibility that AND-1 may physically and functionally link replisome and cohesin complexes in vivo. Recent studies indicate that sister chromatid cohesion is required for recombinational DNA repair (4447). Thus, we examined the requirement of AND-1 for repair of artificially induced double-stranded DNA breaks and showed that AND-1 depletion leads to significant reduction of the double strand break repair. Possible roles of AND-1 in coordination of various chromosome transactions at a replication fork and in maintenance of genome integrity during S phase will be discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号