首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. The ability of the liver to regenerate after parenchymal damage is usually accomplished by the ephemeral entry of normally proliferatively quiescent (G0) hepatocytes into the cell cycle. However, when hepatocyte regeneration is defective, arborizing ductules which are continuous with the biliary tree, proliferate and migrate into the surrounding parenchyma. In man these biliary cells have variously been referred to as ductular structures, neoductules and neocholangioles, and have been observed in many forms of chronic liver disease, including cancer. In experimental animals similar ductal cells are usually called oval cells, and their association with defective regeneration has led to the belief that these cells represent a progenitor cell population. Oval cells are thought to take over the burden of regenerative growth after substantial hepatocyte loss, suggesting that they are the progeny of facultative stem cells. The liver is not, however, generally considered as a stem cellfed hierarchy, although this is disputed by others. Despite this, the subject of oval cells has aroused intense interest as these cells may represent a target population for hepatic carcinogens, and they may be useful vehicles for ex vivo gene therapy. This review proposes that the liver does harbour stem cells which are located throughout the biliary epithelium, and that oval cells represent the progeny of these stem cells and function as an amplification compartment for the generation of ‘new’hepatocytes. This is a conditional process which only occurs when the regenerative capacity of hepatocytes is overwhelmed and thus, unlike the intestinal epithelium, the liver is not behaving as a classical continually renewing stem cell-fed lineage. We focus on the biliary network, not merely as a conduit for bile, but also as a cell compartment with the potential to proliferate under appropriate conditions and give rise to fully differentiated hepatocytes and other cell types.  相似文献   

2.
Hepatic oval 'stem' cell in liver regeneration   总被引:30,自引:0,他引:30  
Hepatic oval cell activation, proliferation, and differentiation has been observed under certain physiological conditions, mainly when the proliferation of existing hepatocytes has been inhibited followed by severe hepatic injury. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes and bile ductular cells. Bone marrow stem cells have recently been shown to be a potential source of the hepatic oval cells and that reconstitution of an injured liver from a purified stem cell population is possible. The focus of this review is on the studies involving the activation, proliferation, and differentiation of these hepatic oval cells and the role that they play in regeneration of the damaged liver. In order to present the potentiality of the hepatic oval cell, an experimental model that involves the inhibition of normal hepatic growth and division as well as severe hepatic injury via chemical or surgical means has been employed. In this model, an as yet undetermined signal or perhaps the lack of regenerative capability in the hepatocytes activates the hepatic oval cell compartment. However, other than understanding a potential origin of these cells and some of the markers that characterize them, it still remains unclear as to how these cells migrate ('home') into the damaged areas and how they begin their differentiation into mature and functioning hepatic cells.  相似文献   

3.
Oval cells are hypothesized to be the progeny of intrahepatic stem cells, also referred to as adult liver stem cells. The mechanisms by which these cells are activated to proliferate and differentiate during liver regeneration is important for the development of new therapies to treat liver disease. Oval cell activation is the first step in progenitor-dependent liver regeneration in response to certain types of injury. This review describes what is currently known about the factors involved in oval cell activation, proliferation, migration, and differentiation.  相似文献   

4.
The role of hepatocytes and oval cells in liver regeneration and repopulation   总被引:44,自引:0,他引:44  
The liver has the unique capacity to regulate its growth and mass. In rodents and humans, it grows rapidly after resection of more than 50% of its mass. This growth process, as well as that following acute chemical injury is known as liver regeneration, although growth takes place by compensatory hyperplasia rather than true regeneration. In addition to hepatocytes and non-parenchymal cells, the liver contains intra-hepatic "stem" cells which can generate a transit compartment of precursors named oval cells. Liver regeneration after partial hepatectomy does not involve intra or extra-hepatic (hemopoietic) stem cells but depends on the proliferation of hepatocytes. Transplantation and repopulation experiments have demonstrated that hepatocytes, which are highly differentiated and long-lived cells, have a remarkable capacity for multiple rounds of replication. In this article, we review some aspects of the regulation of hepatocyte proliferation as well as the interrelationships between hepatocytes and oval cells in different liver growth processes. We conclude that in the liver, normally quiescent differentiated cells replicate rapidly after tissue resection, while intra-hepatic precursor cells (oval cells) proliferate and generate lineage only in situations in which hepatocyte proliferation is blocked or delayed. Although bone marrow stem cells can generate oval cells and hepatocytes, transdifferentiation is very rare and inefficient.  相似文献   

5.
Hepatic stem cells: from inside and outside the liver?   总被引:21,自引:0,他引:21  
The liver is normally proliferatively quiescent, but hepatocyte loss through partial hepatectomy, uncomplicated by virus infection or inflammation, invokes a rapid regenerative response from all cell types in the liver to perfectly restore liver mass. Moreover, hepatocyte transplants in animals have shown that a certain proportion of hepatocytes in foetal and adult liver can clonally expand, suggesting that hepatoblasts/hepatocytes are themselves the functional stem cells of the liver. More severe liver injury can activate a potential stem cell compartment located within the intrahepatic biliary tree, giving rise to cords of bipotential transit amplifying cells (oval cells), that can ultimately differentiate into hepatocytes and biliary epithelial cells. A third population of stem cells with hepatic potential resides in the bone marrow; these haematopoietic stem cells may contribute to the albeit low renewal rate of hepatocytes, but can make a more significant contribution to regeneration under a very strong positive selection pressure. In such instances, cell fusion rather than transdifferentiation appears to be the underlying mechanism by which the haematopoietic genome becomes reprogrammed.  相似文献   

6.
In case of hepatic damage, the liver uses a unique regeneration mechanism through proliferation of hepatocytes. If this process is inhibited, bipotent oval stem cells proliferate and differentiate to hepatocytes and bile ducts, thus restoring liver mass. Although oval cell accumulation in the liver is often associated with inflammatory processes, the role of lymphocytes in oval cell-mediated hepatic regeneration is poorly understood. We treated wild-type and immunodeficient mice with an oval cell-inducing diet: in the absence of T cells (CD3epsilon(-/-) and Rag2(-/-)) there were fewer oval cells, whereas in alymphoid mice (Rag2(-/-)gamma(c)(-/-)) a strongly reduced oval cell response and higher mortality, due to liver failure, was observed. Adoptive transfer of T cells into alymphoid mice protected them from liver failure, but was insufficient to restore the oval cell response. Treatment of Rag2(-/-) mice with an NK cell-depleting Ab resulted in a significantly diminished oval cell response. These genetic experiments point to a major role for NK and T cells in oval cell expansion. In wild-type mice, oval cell proliferation is accompanied by an intrahepatic inflammatory response, characterized by the recruitment of Kupffer, NK, NKT, and T cells. Under these conditions, lymphocytes produce T(H)1 proinflammatory cytokines (IFN-gamma and TNF-alpha) that are mitogenic for oval cells. Our data suggest that T and NK lymphocytes stimulate oval cell expansion by local cytokine secretion. This beneficial cross-talk between the immune system and liver stem cells operates under noninfectious conditions and could promote tissue regeneration following acute liver damage.  相似文献   

7.
Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16(INK4a).Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells.For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16(INK4a) in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli.We could show that the liver specific expression of p16(INK4a) leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function.  相似文献   

8.
The liver is a unique organ with the potential to regenerate from injury. Hepatic stem cells contribute to liver regeneration when surviving hepatocytes in injured liver are unable to proliferate. To investigate the mechanism of liver regeneration in vitro, we established hepatic stem cell lines named HY1, HY2 and HY3, derived from a healthy liver of adult rat. HY cells showed an expression pattern similar to oval cells, and efficiently induced hepatic differentiation following sequential treatment with type I collagen, transforming growth factor-beta1 (TGF-beta1), and hepatocyte growth factor (HGF) or oncostatin M (OSM). These results suggested that HY cells are liver stem cells representing an excellent tool for in vitro studies on liver regeneration.  相似文献   

9.
Progenitor cells of the biliary epithelial cell lineage   总被引:12,自引:0,他引:12  
Stem-like cells have been identified in liver that are able to differentiate in vivo and in culture to biliary epithelial cells (BEC), hepatocytes and oval cells. The growth factors/cytokines and signal pathways required for the differentiation processes are beginning to be evaluated. There is increasing evidence to suggest that these stem-like cells may originate from both the bone marrow population or from a precursor remnant from liver embryogenesis, as they share many of the same markers (CD34, c-kit, CD45). Most recently, it has been shown that a population of progenitor cells can copurify with mesenchymal bone marrow cells and differentiate under specific culture conditions to form both hepatic epithelial and also endothelial cells. The interaction of haemopoietic and mesenchymal stem cells needs further evaluation. The close association of ductular reactive cells and neovessels in end-stage cholestatic liver diseases and the relation to Jagged/Notch signalling pathway may be important in the regulation of stem cells to form both biliary epithelial and endothelial cells.  相似文献   

10.
Liver stem cells give rise to both hepatocytes and bile duct epithelial cells also known as cholangiocytes. During liver development hepatoblasts emerge from the foregut endoderm and give rise to both cell types. Colony-forming cells are present in the liver primordium and clonally expanded cells differentiate into either hepatocytes or cholangiocytes depending on culture conditions, showing stem cell characteristics. The growth and differentiation of hepatoblasts are regulated by various extrinsic signals. For example, periportal mesenchymal cells provide a cue for bipotential hepatoblasts to become cholangiocytes, and mesothelial cells covering the parenchyma support the expansion of foetal hepatocytes by producing growth factors. The adult liver has an extraordinary capacity to regenerate, and after 70% hepatectomy the liver recovers its original mass by replication of the remaining hepatocytes without the activation of liver stem cells. However, in certain types of liver injury models, liver stem/progenitor-like cells, known as oval cells in rodents, proliferate around the portal vein, while the roles of such cells in liver regeneration remain a matter of debate. Clonogenic and bipotential cells are also present in the normal adult liver. In this minireview we describe recent studies on liver stem/progenitor cells by focusing on extracellular signals.  相似文献   

11.
Different types of stem cells have a role in liver regeneration or fibrous repair during and after several liver diseases. Otherwise, the origin of hepatic and/or extra‐hepatic stem cells in reactive liver repopulation is under controversy. The ability of the human body to self‐repair and replace the cells and tissues of some organs is often evident. It has been estimated that complete renewal of liver tissue takes place in about a year. Replacement of lost liver tissues is accomplished by proliferation of mature hepatocytes, hepatic oval stem cells differentiation, and sinusoidal cells as support. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes, and bile ductular cells. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy, and acute or chronic hepatopaties. In the future, pluripotent plasticity of stem cells will open a variety of clinical application strategies for the treatment of tissue injuries, degenerated organs. The promise of liver stem cells lie in their potential to provide a continuous and readily available source of liver cells that can be used for gene therapy, cell transplant, bio‐artificial liver‐assisted devices, drug toxicology testing, and use as an in vitro model to understand the developmental biology of the liver. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Stromal derived factor-1 alpha (SDF-1alpha) and its receptor CXCR4 have been shown to play a role in the systematic movement of hematopoietic stem cells (HSC) in the fetal and adult stages of hematopoiesis. Under certain physiological conditions liver oval cells can participate in the regeneration of the liver. We have shown that a percentage of oval cells are of hematopoietic origin. Others have shown that bone marrow derived stem cells can participate in liver regeneration as well. In this study we examined the role of SDF-1alpha and its receptor CXCR4 as a possible mechanism for oval cell activation in oval cell aided liver regeneration. In massive liver injury models where oval cell repair is involved hepatocytes up-regulate the expression of SDF-1alpha, a potent chemoattractant for hematopoietic cells. However, when moderate liver injury occurs, proliferation of resident hepatocytes repairs the injury. Under these conditions SDF-1alpha expression is not up-regulated and oval cells are not activated in the liver. In addition, we show that oval cells express CXCR4, the only known receptor for SDF-1alpha. Lastly, in vitro chemotaxis assays demonstrated that oval cells migrate along a SDF-1alpha gradient which suggests that the SDF-1alpha/CXCR4 interaction is a mechanism by which the oval cell compartment could be activated and possibly recruit a second wave of bone marrow stem cells to the injured liver. In conclusion, these experiments begin to shed light on a possible mechanism, which may someday lead to a better understanding of the hepatic and hematopoietic interaction in oval cell aided liver regeneration.  相似文献   

13.
To explore glutamine family amino acid metabolism of eight liver cell types in rat liver regeneration, eight kinds of rat regenerating liver cells were isolated by using the combination of Percoll density gradient centrifugation and immunomagnetic bead methods, then Rat Genome 230 2.0 Array was used to detect the expression profiles of the genes associated with metabolism of glutamine family amino acid in rat liver regeneration and finally how these genes involved in activities of eight regenerating liver cell types were analysed by the methods of bioinformatics and systems biology. The results showed that in the priming stage of liver regeneration, hepatic stellate cells and sinusoidal endothelial cells transformed proline and glutamine into glutamate; hepatocytes, hepatic stellate cells, sinusoidal endothelial cells and dendritic cells catabolized glutamate to 2‐oxoglutarate or succinate; hepatic stellate cells and sinusoidal endothelial cells catalysed glutamate into glutamyl‐tRNA for protein synthesis; urea cycle, which degraded from arginine, was enhanced in biliary epithelia cells, sinusoidal endothelial cells and dendritic cells; synthesis of polyamines from arginine was enhanced in biliary epithelia cells, sinusoidal endothelial cells, Kupffer cells and dendritic cells; the content of NO was increased in sinusoidal endothelial cells and dendritic cells; degradation of proline was enhanced in hepatocytes and biliary epithelia cells. In the progress stage, biliary epithelia cells converted glutamine into GMP and glucosamine 6‐phosphate; oval cells converted glutamine into glucosamine 6‐phosphate; hepatic stellate cells converted glutamine into NAD; the content of NO, which degraded from arginine, was increased in biliary epithelia cells, oval cells, pit cells and dendritic cells. In the termination stage, oval cells converted proline into glutamate; glutamate degradation, which degraded from arginine, was enhanced in hepatocytes and dendritic cells; the content of NO was increased in oval cells, sinusoidal endothelial cells, pit cells and dendritic cells. The synthesis of creatine phosphate was enhanced in hepatocytes, biliary epithelia cells, pit cells and dendritic cells in both progress and termination stages. In summary, glutamine family amino acid metabolism has some differences in liver regeneration in different liver cells.  相似文献   

14.
Stem cells, cell transplantation and liver repopulation   总被引:3,自引:0,他引:3  
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.  相似文献   

15.
The differentiated state of specialized cells appears to be dependent on interactions between the extracellular microenvironment, cytoplasmic signals and DNA. Perturbations in these interactions lead to phenotypic alterations of the cell—referred to as transdifferentiation. Copper deficiency in rats leads to global acinar cell loss due to apoptosis possibly leading to perturbations in cell–cell interactions and the microenvironment. Acinar cell loss is associated with the proliferation of ductular epithelial and oval cells. Massive depletion of the acinar cell pool creates severe expansion pressure on oval and ductular cells to fill the vacuity. This probably causes a change in the commitment of these cells resulting in transdifferentiation into hepatocytes. Pancreatic hepatocytes exhibit all the morphological and functional properties of liver parenchymal cells.  相似文献   

16.
17.
The cell of origin of the nonparenchymal epithelioid cells that emerge in liver cell cultures is unknown. Cultures of rat hepatocytes and several types of nonparenchymal cells obtained by selective tissue dispersion procedures were typed with monoclonal antibodies to rat liver cytokeratin and vimentin, polyvalent antibodies to cow hoof cytokeratins and porcine lens vimentin, and monoclonal antibodies to surface membrane components of ductular oval cells and hepatocytes. Immunoblot analysis revealed that, in cultured rat liver nonparenchymal epithelial cells, the anti-rat hepatocyte cytokeratin antibody recognized a cytokeratin of relative mass (Mr) 55,000 and the anti-cow hoof cytokeratin antibody reacted with a cytokeratin of Mr 52,000, while the anti-vimentin antibodies detected vimentin in both cultured rat fibroblasts and nonparenchymal epithelial cells. Analyses on the specificity of anti-cytokeratin and anti-vimentin antibodies toward the various cellular structures of liver by double immunofluorescence staining of frozen tissue sections revealed unique reactivity patterns. For example, hepatocytes were only stained with anti-Mr 55,000 cytokeratin antibody, while the sinusoidal cells reacted only with the anti-vimentin antibodies. In contrast, epithelial cells of the bile ductular structures and mesothelial cells of the Glisson capsula reacted with all the anti-cytokeratin and anti-vimentin antibodies. It should be stressed, however, that the reaction of the anti-vimentin antibodies on bile ductular cells was weak. The same analysis on tissue sections using the anti-ductular oval cell antibody revealed that it reacted with bile duct structures but not with the Glisson capsula. The anti-hepatocyte antibody reacted only with the parenchymal cells. The differential reactivity of the anti-cytokeratin and anti-vimentin antibodies with the various liver cell compartments was confirmed in primary cultures of hepatocytes, sinusoidal cells, and bile ductular cells, indicating that the present panel of antibodies to intermediate filament constituants allowed a clear-cut distinction between cultured nonparenchymal epithelial cells, hepatocytes, and sinusoidal cells. Indirect immunofluorescence microscopy on nonfixed and paraformaldehyde-fixed cultured hepatocytes and bile ductular cells further confirmed that both anti-hepatocyte and anti-ductular oval cell antibodies recognized surface-exposed components on the respective cell types.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Liver stem cells   总被引:1,自引:0,他引:1  
Matthews VB  Yeoh GC 《IUBMB life》2005,57(8):549-553
The concept of a liver stem cell or progenitor cell has not been widely accepted until the last decade. Studies investigating liver regeneration under conditions which totally or substantially preclude hepatocyte proliferation report the proliferation of a subpopulation of small, oval-shaped cells, which are first observed in the portal triad, adjacent to the terminal ducts. These cells, termed liver progenitor oval cells (LPCs) are shown to participate in liver regeneration in a variety of rodent models of chronic liver damage. They express markers common to hepatocytes and cholangiocytes suggesting they are a common precursor of both liver cell lineages. Supporting evidence for liver stem cells has also come from cell tracing studies which show transdifferentiation of bone marrow cells into hepatocytes in both human and animal models. Another important issue is the link between LPCs and hepatocellular carcinoma (HCC). The widening liver donor-recipient gap; a consequence of poor donation rates coupled with increasing incidence of liver disease highlights the importance of establishing the utility of cell transplant as an alternative to treat liver disease. In this regard, liver stem cells and progenitor cells may have a significant role to play. To successfully utilize liver stem cells or LPCs for cell therapy, we have to first develop methods for maintaining and differentiating them in culture. This technology must be based on a thorough understanding of conditions which regulate their behaviour in vitro. In particular, we need to know which growth factors and cytokines affect them and their mechanism of action. Since they are a potential source of HCC, it is also necessary to understand the mechanisms which underlie their transformation to cancer.  相似文献   

19.
胎肝中肝干细胞的免疫组织化学研究   总被引:3,自引:0,他引:3  
目的采用免疫组织化学方法显示不同时期人胚胎肝脏的干细胞,分析肝干细胞的形态与分布特点及发育过程中干细胞在肝脏中的迁徙,探讨肝脏的发生发育及肝内干细胞的来源。方法不同发育时期胎儿肝脏,取材、固定、制成石蜡切片,ABC法检测肝干细胞特异性的表面标记物CD34、CK19、C-11和OV6。结果胎肝内汇管区周边界板处有卵圆样细胞表达CD34、C-11、CK19和OV6,阳性细胞紧密排列成管,呈鞘样包绕着早期汇管区,部分包绕着初级汇管区,随着次级汇管区的成熟,卵圆样干细胞逐渐局限于赫令氏管周围;此外,胚胎发育的不同阶段均可见CD34、OV6阳性的单核样细胞分散在肝索、肝血窦之内,多见于汇管区的问充质组织之内,肝血管内鲜见。结论胚胎发育早期汇管区周边界板处含有丰富的干细胞,可能是肝脏发育的起点,这些干细胞逐渐分化为胆管上皮样细胞,然后分化为肝细胞和胆管上皮细胞;造血干细胞是肝内的另一干细胞来源,造血干细胞在肝内受到诱导作用分化为小部分的肝实质细胞。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号