首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Bacillus cereus 569 (ATCC 10876) germinates in response to inosine or to l-alanine, but the most rapid germination response is elicited by a combination of these germinants. Mutants defective in their germination response to either inosine or to l-alanine were isolated after Tn917-LTV1 mutagenesis and enrichment procedures; one class of mutant could not germinate in response to inosine as a sole germinant but still germinated in response to l-alanine, although at a reduced rate; another mutant germinated normally in response to inosine but was slowed in its germination response to l-alanine. These mutants demonstrated that at least two signal response pathways are involved in the triggering of germination. Stimulation of germination in l-alanine by limiting concentrations of inosine and stimulation of germination in inosine by low concentrations of l-alanine were still detectable in these mutants, suggesting that such stimulation is not dependent on complete functionality of both these germination loci. Two transposon insertions that affected inosine germination were found to be located 2.2 kb apart on the chromosome. This region was cloned and sequenced, revealing an operon of three open reading frames homologous to those in the gerA and related operons of Bacillus subtilis. The individual genes of this gerI operon have been named gerIA, gerIB, and gerIC. The GerIA protein is predicted to possess an unusually long, charged, N-terminal domain containing nine tandem copies of a 13-amino-acid glutamine- and serine-rich sequence.Bacillus species have the ability, under certain nutrient stresses, to undergo a complex differentiation process resulting in the formation of a highly resistant dormant endospore (6). These spores can then persist in the environment for prolonged periods until a sensitive response mechanism detects specific environmental conditions, initiating the processes of germination and outgrowth (9, 21, 25). Germination can be initiated by a variety of agents (12), including nutrients, enzymes, or physical factors, such as abrasion or hydrostatic pressure.The molecular genetics of spore germination has been most extensively studied in Bacillus subtilis 168 (21). B. subtilis spores can be triggered to germinate in response to either l-alanine or to a combination (29) of asparagine, glucose, fructose, and potassium ions (AGFK). Mutants of B. subtilis which are defective in germination responses to one or to both types of germinant have been isolated previously (20, 27). Analysis of these mutants suggests that the germinants interact with separate germinant-specific complexes within the spore (21). This in some way leads to activation of components of the germination apparatus common to both responses, such as germination-specific cortex lytic enzymes, leading in turn to complete germination of the spore (10, 22). The mutations within the gerA operon of B. subtilis specifically block germination initiated by l-alanine (34). The predicted amino acid sequences of the three GerA proteins encoded in the operon suggest that these proteins could be membrane associated, and they are the most likely candidates to represent the germinant receptor for alanine (21).The amino acid l-alanine has been identified as a common but not universal germinant in a variety of Bacillus species, often requiring the presence of adjuncts such as electrolytes and sugars. Ribosides, such as inosine, represent another type of common germinant, although many species are unable to germinate rapidly in response to these without the addition of l-alanine (9).The food-borne pathogen Bacillus cereus is a major cause of food poisoning of an emetic and diarrheal type (13, 16). The germination and growth of Bacillus cereus spores during food storage can lead to food spoilage and the potential to cause food poisoning (16). B. cereus has been shown to germinate in response to l-alanine and to ribosides (11, 18, 23). Spore germination can be triggered by l-alanine alone, but at high spore densities this response becomes inhibited by d-alanine, generated by the alanine racemase activity associated with the spores (8, 11). This auto-inhibition of l-alanine germination can be reduced by the inclusion of a racemase inhibitor (O-carbamyl-d-serine) with the germinating spores (11).Inosine is the most effective riboside germinant for B. cereus T, while adenosine and guanosine are less potent (28). The rate of riboside-triggered germination has been reported to be enhanced dramatically by the addition of l-alanine (18). It is unclear whether ribosides can act as a sole germinant, or whether there is an absolute requirement for l-alanine (28).An attempt has been made to analyze genetically the molecular components of the germination apparatus in B. cereus in order to dissect the germination responses of this species and to determine whether riboside-induced germination involves components related to those already described for amino acid and sugar germinants in B. subtilis.  相似文献   

4.
Peptidoglycan structural dynamics during endospore germination of Bacillus subtilis 168 have been examined by muropeptide analysis. The first germination-associated peptidoglycan structural changes are detected within 3 min after the addition of the specific germinant l-alanine. We detected in the spore-associated material new muropeptides which, although they have slightly longer retention times by reversed-phase (RP)-high-pressure liquid chromatography (HPLC) than related ones in dormant spores, show the same amino acid composition and molecular mass. Two-dimensional nuclear magnetic resonance (NMR) analysis shows that the chemical changes to the muropeptides on germination are minor and are probably limited to stereochemical inversion. These new muropeptides account for almost 26% of the total muropeptides in spore-associated material after 2 h of germination. The exudate of germinated spores of B. subtilis 168 contains novel muropeptides in addition to those present in spore-associated material. Exudate-specific muropeptides have longer retention times, have no reducing termini, and exhibit a molecular mass 20 Da lower than those of related reduced muropeptides. These new products are anhydro-muropeptides which are generated by a lytic transglycosylase, the first to be identified in a gram-positive bacterium. There is also evidence for the activity of a glucosaminidase during the germination process. Quantification of muropeptides in spore-associated material indicates that there is a heterogeneous distribution of muropeptides in spore peptidoglycan. The spore-specific residue, muramic δ-lactam, is proposed to be a major substrate specificity determinant of germination-specific lytic enzymes, allowing cortex hydrolysis without any effect on the primordial cell wall.The extreme heat resistance of dormant bacterial endospores has made them an important problem in the production of safe foodstuffs (3). The spore cell wall peptidoglycan is considered to play a major role in the maintenance of heat resistance and dormancy (6). Bacillus subtilis spore peptidoglycan is composed of two layers. A thin, inner layer called the primordial cell wall retains the basic vegetative cell peptidoglycan structure. The primordial cell wall represents 2 to 4% of the total endospore peptidoglycan, is not digested during germination, and serves as the initial cell wall during outgrowth (2, 5, 25, 29). The outer thick layer of peptidoglycan, known as the cortex, is characterized by several unique spore-specific features. Approximately 50% of the muramic acid residues in the glycan strands are present in the δ-lactam form (2, 24). Muramic acid side chains are composed of 26 and 23% of tetrapeptide and single l-alanine, respectively (2).Despite their extreme dormancy and thermostability, bacterial endospores retain an alert sensory mechanism enabling them to respond within minutes to the presence of specific germinants. Spores of B. subtilis respond to at least two different types of germinative stimuli: (i) l-alanine and (ii) a combination of l-asparagine, glucose, fructose, and KCl (AGFK) (34). The germination response is initiated by the interaction of a receptor protein with specific germinants which triggers the loss of spore-specific properties and the transformation of a dormant resistant bacterial spore into a metabolically active vegetative cell. The germination process is characterized by sequential, interrelated biochemical events. The specific hydrolysis of peptidoglycan in the spore cortex layer is an essential event in germination (2, 25). Its degradation removes the physical constraints of the cortex and allows core expansion and outgrowth (9, 25). As a consequence of cortex hydrolysis, peptidoglycan fragments can be detected in the germination exudate (13, 33).A number of bacterial spore germination-specific cortex-lytic enzymes (GSLEs) have been reported to be involved in cortex hydrolysis (9, 1820). A gene homologous to that encoding the GSLE from Bacillus cereus has been identified and inactivated in B. subtilis, and the resulting mutant germinates more slowly than the wild type (22). Recently a germination-specific muramidase isolated from a germination extract of Clostridium perfringens S40 has been purified and characterized (4).GSLEs have a high substrate specificity, requiring intact spore cortex for activity (9, 23). The muramidase from C. perfringens S40, however, hydrolyzes cortical fragments but has a strict requirement for the presence of the muramic δ-lactam residues (4). Thus, the GSLEs are highly specialized and may exist as proforms which are specifically activated during germination (9).Very little is known about the mechanism by which the cortex is hydrolyzed during germination and the autolytic enzymes involved. Muropeptide analysis provides a method for fine chemical structural determination of spore cortex (2, 24, 25). In this paper, we report the use of muropeptide analysis to determine the peptidoglycan structural dynamics which occur during spore germination of B. subtilis 168 and the evidence for a number of different enzyme activities.  相似文献   

5.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

6.
7.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

8.
9.
10.
Bacillus cereus spores are assembled with a series of concentric layers that protect them from a wide range of environmental stresses. The outermost layer, or exosporium, is a bag-like structure that interacts with the environment and is composed of more than 20 proteins and glycoproteins. Here, we identified a new spore protein, ExsM, from a β-mercaptoethanol extract of B. cereus ATCC 4342 spores. Subcellular localization of an ExsM-green fluorescent protein (GFP) protein revealed a dynamic pattern of fluorescence that follows the site of formation of the exosporium around the forespore. Under scanning electron microscopy, exsM null mutant spores were smaller and rounder than wild-type spores, which had an extended exosporium (spore length for the wt, 2.40 ± 0.56 μm, versus that for the exsM mutant, 1.66 ± 0.38 μm [P < 0.001]). Thin-section electron microscopy revealed that exsM mutant spores were encased by a double-layer exosporium, both layers of which were composed of a basal layer and a hair-like nap. Mutant exsM spores were more resistant to lysozyme treatment and germinated with higher efficiency than wild-type spores, and they had a delay in outgrowth. Insertional mutagenesis of exsM in Bacillus anthracis ΔSterne resulted in a partial second exosporium and in smaller spores. In all, these findings suggest that ExsM plays a critical role in the formation of the exosporium.Bacillus cereus and Bacillus anthracis are closely related members of the Bacillus cereus group (47). Although B. cereus is mainly an apathogenic organism, certain isolates can cause two different types of food poisoning, emetic syndrome and diarrheal disease (18). The emetic syndrome is caused by ingestion of cereulide, a heat-resistant toxin produced by vegetative cells contaminating the food (30), while the diarrheal disease occurs when spores germinate in the intestinal tract. Spores are also the infective agent in anthrax, a disease caused by B. anthracis (64).B. cereus and B. anthracis differentiate into spores when faced with nutrient deprivation. The spore is a dormant cell type that can remain viable for decades until favorable conditions induce germination and the resumption of vegetative growth. The remarkable resistance properties of the spore result from its unique architecture, consisting of a series of concentric protective layers (51). The spore core contains the genetic material and is surrounded by the cortex, a thick layer of modified peptidoglycan that promotes a highly dehydrated state. Encasing the core and the cortex, the coat is a multilayer protein shell that provides mechanical and chemical resistance. In addition, both the cortex and coat contribute to spore germination (17). Separated from the coat by an interspace, the exosporium encloses the rest of the spore, and it is composed of an inner basal layer and an outer hair-like nap (25).Being the most external layer of the spore, the exosporium interacts directly with the environment and as such provides a semipermeable barrier that may exclude large molecules, like antibodies and hydrolytic enzymes (3, 23, 24, 54). However, the exosporium does not appear to contribute to the typical resistance properties of the spore (6, 35, 60). Also, the exosporium is not necessary in anthrax pathogenesis when tested under laboratory conditions (7, 27, 59), although it is able to down-modulate the innate immune response to spores and mediate adhesion to host tissues (4, 8, 43, 44). The exosporium may also help the spore avoid premature germination in unsustainable environments, since it contains two enzymes, alanine racemase (Alr) and inosine hydrolase (Iunh), that can inactivate low quantities of the germinants l-alanine and inosine, respectively (6, 48, 55, 61). However, regulation of germination by the exosporium is poorly understood. Mutation of exosporial proteins has resulted in only negligible and inconsistent germination phenotypes (2, 5, 27, 28, 52, 54).The exosporium is composed of at least 20 proteins and glycoproteins in tight or loose association (48, 53, 57, 61, 65). These proteins are synthesized in the mother cell and always start self-assembly at the forespore pole near the middle of the mother cell, concurrently with the cortex and coat formation (42). Exosporium assembly is discontinuous and starts with a synthesis of a substructure known as the cap, which likely contains only a subset of the proteins present in the exosporium (55). After cap formation, construction of the rest of the exosporium requires the expression of ExsY (6). BclA is the main component of the hair-like nap on the external side of the exosporium, and it is linked to the basal layer through interaction with ExsFA/BxpB (54, 58). In addition, CotE participates in the correct attachment of the exosporium to the spore (27).Despite these findings, exosporium assembly continues to be a poorly understood process, and many questions remain regarding its composition and the regulation of its synthesis. In this study, we characterized a new spore protein, ExsM, which plays a key role in assembly of the exosporium. In B. cereus, inactivation of exsM resulted in spores with an unusual double-layer exosporium, and a similar phenotype was also observed in B. anthracis exsM null mutant spores. Finally, double-layer exosporium spores allowed us to study the role of the exosporium in germination and outgrowth.  相似文献   

11.
Leptospira spp., the causative agents of leptospirosis, adhere to components of the extracellular matrix, a pivotal role for colonization of host tissues during infection. Previously, we and others have shown that Leptospira immunoglobulin-like proteins (Lig) of Leptospira spp. bind to fibronectin, laminin, collagen, and fibrinogen. In this study, we report that Leptospira can be immobilized by human tropoelastin (HTE) or elastin from different tissues, including lung, skin, and blood vessels, and that Lig proteins can bind to HTE or elastin. Moreover, both elastin and HTE bind to the same LigB immunoglobulin-like domains, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12 as demonstrated by enzyme-linked immunosorbent assay (ELISA) and competition ELISAs. The LigB immunoglobulin-like domain binds to the 17th to 27th exons of HTE (17–27HTE) as determined by ELISA (LigBCon4, KD = 0.50 μm; LigBCen7′–8, KD = 0.82 μm; LigBCen9, KD = 1.54 μm; and LigBCen12, KD = 0.73 μm). The interaction of LigBCon4 and 17–27HTE was further confirmed by steady state fluorescence spectroscopy (KD = 0.49 μm) and ITC (KD = 0.54 μm). Furthermore, the binding was enthalpy-driven and affected by environmental pH, indicating it is a charge-charge interaction. The binding affinity of LigBCon4D341N to 17–27HTE was 4.6-fold less than that of wild type LigBCon4. In summary, we show that Lig proteins of Leptospira spp. interact with elastin and HTE, and we conclude this interaction may contribute to Leptospira adhesion to host tissues during infection.Pathogenic Leptospira spp. are spirochetes that cause leptospirosis, a serious infectious disease of people and animals (1, 2). Weil syndrome, the severe form of leptospiral infection, leads to multiorgan damage, including liver failure (jaundice), renal failure (nephritis), pulmonary hemorrhage, meningitis, abortion, and uveitis (3, 4). Furthermore, this disease is not only prevalent in many developing countries, it is reemerging in the United States (3). Although leptospirosis is a serious worldwide zoonotic disease, the pathogenic mechanisms of Leptospira infection remain enigmatic. Recent breakthroughs in applying genetic tools to Leptospira may facilitate studies on the molecular pathogenesis of leptospirosis (58).The attachment of pathogenic Leptospira spp. to host tissues is critical in the early phase of Leptospira infection. Leptospira spp. adhere to host tissues to overcome mechanical defense systems at tissue surfaces and to initiate colonization of specific tissues, such as the lung, kidney, and liver. Leptospira invade hosts tissues through mucous membranes or injured epidermis, coming in contact with subepithelial tissues. Here, certain bacterial outer surface proteins serve as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs)2 to mediate the binding of bacteria to different extracellular matrices (ECMs) of host cells (9). Several leptospiral MSCRAMMs have been identified (1018), and we speculate that more will be identified in the near future.Lig proteins are distributed on the outer surface of pathogenic Leptospira, and the expression of Lig protein is only found in low passage strains (14, 16, 17), probably induced by environmental cues such as osmotic or temperature changes (19). Lig proteins can bind to fibrinogen and a variety of ECMs, including fibronectin (Fn), laminin, and collagen, thereby mediating adhesion to host cells (2023). Lig proteins also constitute good vaccine candidates (2426).Elastin is a component of ECM critical to tissue elasticity and resilience and is abundant in skin, lung, blood vessels, placenta, uterus, and other tissues (2729). Tropoelastin is the soluble precursor of elastin (28). During the major phase of elastogenesis, multiple tropoelastin molecules associate through coacervation (3032). Because of the abundance of elastin or tropoelastin on the surface of host cells, several bacterial MSCRAMMs use elastin and/or tropoelastin to mediate adhesion during the infection process (3335).Because leptospiral infection is known to cause severe pulmonary hemorrhage (36, 37) and abortion (38), we hypothesize that some leptospiral MSCRAMMs may interact with elastin and/or tropoelastin in these elastin-rich tissues. This is the first report that Lig proteins of Leptospira interact with elastin and tropoelastin, and the interactions are mediated by several specific immunoglobulin-like domains of Lig proteins, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12, which bind to the 17th to 27th exons of human tropoelastin (HTE).  相似文献   

12.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

13.
14.
15.
16.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号