首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Pseudomonas fluorescens ATCC 17400 shows in vitro activity against Pythium debaryanum under conditions of iron limitation. A lacZ reporter gene introduced by transposon mutagenesis into the P. fluorescens ATCC 17400 trehalase gene (treA) was induced by a factor released by the phytopathogen Pythium debaryanum. The induction of the lacZ gene was lost upon treatment of the Pythium supernatant with commercial trehalase. A trehalose concentration as low as 1 microM could induce the expression of treA. The mutation did not affect the wild-type potential for fungus antagonism but drastically decreased the osmotolerance of the mutant in liquid culture and suppressed the ability of P. fluorescens ATCC 17400 to utilize trehalose as a carbon source. A subsequent transposon insertion in treP, one of the trehalose phosphotransferase genes upstream of treA, silenced the lacZ gene. This double mutant restricted fungal growth only under conditions of high osmolarity, which probably results in internal trehalose accumulation. These data confirm the role of the disaccharide trehalose in osmotolerance, and they indicate its additional role as an initiator of or a signal for fungal antagonism.  相似文献   

3.
Pseudomonas fluorescens ATCC 17400 produces pyoverdine under iron-limiting conditions. A Tn 5 mutant, 2G11, produced lower amounts of different pyoverdine forms and was unable to grow under iron limitation caused by ethylenediamine-di( o -hydroxy-phenylacetic acid) (EDDHA) or zinc. This mutant was complemented by a 9.6 kb Hin dIII– Bam HI DNA fragment that contained eight contiguous open reading frames (ORFs cytA to cytH  ) . The proteins possibly encoded by this polycistronic gene cluster were all similar to the products of cytochrome c biogenesis genes from, amongst others, Rhodobacter capsulatus and Bradyrhizobium japonicum , not only in terms of amino acid sequence, but also in the overall hydropathy index of these proteins. By Tn phoA mutagenesis and site-specific gene replacement it was found that the first three ORFs ( cytA to cytC  ) were essential for cytochrome c production while only the product of cytA was needed for normal pyoverdine production. The presence of a putative haem-binding site in the CytA protein (WGSWWVWD) was confirmed. From analysis of a constructed phoA fusion, a periplasmic location was found for this motif. The ability of the cytA gene to restore both cytochrome c and pyoverdine production suggests the involvement of this particular gene both in haem and in pyoverdine transport in P. fluorescens .  相似文献   

4.
5.
Here we show that during the meiotic maturation of Xenopus oocytes, histone H3 becomes phosphorylated on serine-10 at about the time of maturation promoting factor activation and meiosis I entry. However, overexpression of cAMP-dependent protein kinase that blocks entry into M phase, also leads to massive serine-10 phosphorylation of histone H3 in intact Xenopus oocytes but does not cause chromosome condensation. We also show that the phosphorylation of histone H3 during oocyte maturation requires the activation of the mitogen-activated protein kinase/p90Rsk pathway. Our results indicate that in G2-arrested oocytes, which are about to enter M phase, histone H3 phosphorylation is not sufficient for chromosome condensation.  相似文献   

6.
Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of 59Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine.  相似文献   

7.
Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of (59)Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine.  相似文献   

8.
Kynurenine 3-monooxygenase (KMO) is an NADPH-dependent flavoprotein hydroxylase that catalyzes the conversion of l-Kynurenine (L-Kyn) to 3-hydroxykynurenine (3OHKyn). The reaction is central to the tryptophan degradative pathway and takes place within microglial cells defining cellular concentrations of the N-methyl-d-aspatate (NMDA) receptor agonist quinolinate and antagonist kynurenate. The influence over the cellular concentrations of these NMDA receptor effectors makes KMO an attractive target for the treatment of ischemic stroke. Pseudomonas fluorescens str 17400, expresses five activities of tryptophan catabolism including that of KMO. The KMO gene from P. fluorescens was cloned into the pET-17b plasmid using incorporated NdeI and XhoI restriction sites. This construct yielded PfKMO to 20% of total cell protein after 12h of expression at 22 degrees C without induction by isopropyl-beta-thiogalactopyranoside (IPTG). The enzyme could be readily purified using ammonium sulfate fractionation and ion exchange chromatography, resulting in pure KMO with a turnover number of 5.0 s(-1). PfKMO activity was dependent on the reduction state of the enzyme. Preparation and storage benefited from the presence of a reductant such as dithiothreitol or beta-mercaptoethanol. The loss of activity was found to be directly related to the oxidation of thiols as measured by dinitrothiobenzoate assay. Steady-state assays monitoring the consumption of dioxygen were used to measure apparent kinetic parameters and ligand perturbation of flavin fluorescence was used to determine a Kd value for both L-Kyn and the inhibitor m-nitrobenzoylalanine. PfKMO is offered as prototypical bacterial form of the enzyme to serve as a viable platform on which to base future KMO studies.  相似文献   

9.
The inner membrane protein CcmC (CytA) of Pseudomonas fluorescens ATCC17400, which has homologues in several bacteria and plant mitochondria, is needed for the biogenesis of cytochrome c . A CcmC-deficient mutant is also compromised in the production and utilization of pyoverdine, the high-affinity fluorescent siderophore. A topological model for CcmC, based on the analysis of alkaline phosphatase fusions, predicts six membrane-spanning regions with three periplasmic loops. Site-directed mutagenesis was used in order to assess the importance of some periplasm-exposed residues, conserved in all CcmC homologues, for cytochrome c biogenesis, and pyoverdine production/utilization. Despite the conservation of the residues His-61, Val-62 and Pro-63 in the first periplasmic loop, and Leu-184, His-185 and Gln-186 in the third periplasmic loop, their simultaneous replacement with Ala only partially affected cytochrome c biogenesis and pyoverdine production/utilization. Simultaneous replacements of residues Trp-115 and Gly-116 in the second periplasmic loop substantially affected pyoverdine production/utilization but not cytochrome c production. An Ala substitution of Asp-127, in the second periplasmic loop, resulted in decreased production of cytochrome c , slower growth in conditions of anaerobiosis and reduced pyoverdine production. On the other hand, a mutation in Trp-126, also in the second periplasmic loop, totally suppressed the production of cytochrome c , whereas it had no effect on the production and utilization of pyoverdine. These results show a differential involvement of amino acid residues in periplasmic domains of CcmC in cytochrome c biogenesis and pyoverdine production/utilization.  相似文献   

10.
11.
Aldehyde binding to liver alcohol dehydrogenase in the absence and presence of coenzymes has been characterized by spectrometric equilibrium methods, using auramine O and bipyridine as reporter ligands. Free enzyme shows a significant affinity for aldehydes, and equilibrium constants for dissociation of the binary complexes formed with typical aldehyde substrates are reported. Binary-complex formation does not lead to any detectable inner-sphere coordination of aldehydes to the catalytic zinc ion of the enzyme subunit. Complex formation with NAD+ or NADH increases the affinity of the enzyme for aromatic aldehydes by a factor of 1.8 - 3.5 and 6-17, respectively. Benzaldehyde and dimethylaminocinnamaldehyde binding to the enzyme . NAD+ complex is not detectably associated with inner-sphere coordination of the aldehyde to zinc. It is concluded that binding of NADH is required to induce catalytically adequate bonding interactions between enzyme and aromatic aldehydes. The effect of reduced coenzyme in this respect is attributed to hydrophobic interactions leading to dehydration of the active-site region, which allows aldehyde substrates to compete successfully with water for inner-sphere coordination to the catalytic zinc ion. Oxidized coenzyme is proposed to have a similar promoting effect on metal coordination of aldehydes which function as substrates for the dismutase activity of the enzyme.  相似文献   

12.
In the environment, many microorganisms coexist in communities competing for resources, and they are often associated as biofilms. The investigation of bacterial ecology and interactions may help to improve understanding of the ability of biofilms to persist. In this study, the behaviour of Bacillus cereus and Pseudomonas fluorescens in the planktonic and sessile states was compared. Planktonic tests were performed with single and dual species cultures in growth medium with and without supplemental FeCl3. B. cereus and P. fluorescens single cultures had equivalent growth behaviours. Also, when in co-culture under Fe-supplemented conditions, the bacteria coexisted and showed similar growth profiles. Under Fe limitation, 8 h after co-culture and over time, the number of viable B. cereus cells decreased compared with P. fluorescens. Spores were detected during the course of the experiment, but were not correlated with the decrease in the number of viable cells. This growth inhibitory effect was correlated with the release of metabolite molecules by P. fluorescens through Fe-dependent mechanisms. Biofilm studies were carried out with single and dual species using a continuous flow bioreactor rotating system with stainless steel (SS) substrata. Steady-state biofilms were exposed to a series of increasing shear stress forces. Analysis of the removal of dual species biofilms revealed that the outer layer was colonised mainly by B. cereus. This bacterium was able to grow in the outermost layers of the biofilm due to the inhibitory effect of P. fluorescens being decreased by the exposure of the cells to fresh culture medium. B. cereus also constituted the surface primary coloniser due to its favourable adhesion to SS. P. fluorescens was the main coloniser of the middle layers of the biofilm. Single and dual species biofilm removal data also revealed that B. cereus biofilms had the highest physical stability, followed by P. fluorescens biofilms. This study highlights the inadequacy of planktonic systems to mimic the behaviour of bacteria in biofilms and shows how the culturing system affects the action of antagonist metabolite molecules because dilution and consequent loss of activity occurred in continuously operating systems. Furthermore, the data demonstrate the biocontrol potential of P. fluorescens on the planktonic growth of B. cereus and the ability of the two species to coexist in a stratified biofilm structure.  相似文献   

13.
14.
All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.  相似文献   

15.
Abstract Pseudomonas fluorescens was found to grow in a mineral medium supplemented with up to 50 mM aluminum, complexed to citrate, the sole source of carbon. At stationary phase while virtually no diminution in cellular yield was observed in the presence of 1.0 mM aluminum, only 31% of bacterial yield was recorded in media with 50 mM aluminum. The decrease in soluble aluminum in the culture fluid was concomitant with the formation of a gelatinous residue. At later stages of growth, the trivalent metal was immobilized in this deposit. This bioprecipitate consisted of lipid moieties but was apparently devoid of proteins and carbohydrates. X-ray fluorescence spectroscopy and colorimetric assays also revealed the presence of aluminum and phosphorus. X-ray diffraction spectroscopy indicated that the biomineral was amorphous. Examination of the gelatinous residue by scanning electron microscopy and energy dispersive X-ray microanalysis aided in the identification of aluminum, oxygen and phosphorus rich irregular bodies that were associated with carbon containing thread-like structures.  相似文献   

16.
Two repeated DNA sequences of European strains of the symbiotic fungus Tuber melanosporum were isolated and characterized. One of these, SS14, representing about 0.05% of the fungal genome, was shown to be a T. melanosporum-specific sequence by Southern and dot-blot hybridization. The second one, named SS15, is about 0.0025% of the entire genome, and it is specific not only to T. melanosporum but also to the Asian black truffle Tuber indicum. Neither of these two fragments hybridizes with any of the other European truffle species tested. By sequence analysis of these two fragments, PCR primers were designed and used to selectively amplify DNA from T. melanosporum ascocarps and ectomycorrhizae by simple and multiplex PCR. No amplification products were obtained with DNA from either mycorrhizal roots or fruit bodies of other ectosymbiotic fungi. The two identified genomic traits also provided useful information for a better understanding of the phylogenetic relationships among black truffle species and for testing T. melanosporum intraspecific variability.  相似文献   

17.
18.
Forty-seven isolates representing all biovars of Pseudomonas fluorescens (biovars I to VI) were collected from the rhizosphere of field-grown sugar beet plants to select candidate strains for biological control of preemergence damping-off disease. The isolates were tested for in vitro antagonism toward the plant-pathogenic microfungi Pythium ultimum and Rhizoctonia solani in three different plate test media. Mechanisms of fungal inhibition were elucidated by tracing secondary-metabolite production and cell wall-degrading enzyme activity in the same media. Most biovars expressed a specific mechanism of antagonism, as represented by a unique antibiotic or enzyme production in the media. A lipopeptide antibiotic, viscosinamide, was produced independently of medium composition by P. fluorescens bv. I, whereas the antibiotic 2,4-diacetylphloroglucinol was observed only in glucose-rich medium and only in P. fluorescens bv. II/IV. Both pathogens were inhibited by the two antibiotics. Finally, in low-glucose medium, a cell wall-degrading endochitinase activity in P. fluorescens bv. I, III, and VI was the apparent mechanism of antagonism toward R. solani. The viscosinamide-producing DR54 isolate (bv. I) was shown to be an effective candidate for biological control, as tested in a pot experiment with sugar beet seedlings infested with Pythium ultimum. The assignment of different patterns of fungal antagonism to the biovars of P. fluorescens is discussed in relation to an improved selection protocol for candidate strains to be used in biological control.  相似文献   

19.
The adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and negatively polarized thin films of gold was studied in situ by contrast microscopy using a thin-film electrochemical flow cell. The influence of the electrochemical potential was evaluated at two different ionic strengths (0.01 and 0.1 M NaCl; pH 7) under controlled flow. Adhesion to nonpolarized gold surfaces readily increased with the time of exposition at both ionic-strength values. At negative potentials (−0.2 and −0.5 V [Ag/AgCl-KCl saturated {sat.}]), on the other hand, bacterial adhesion was strongly inhibited. At 0.01 M NaCl, the inhibition was almost total at both negative potentials, whereas at 0.1 M NaCl the inhibition was proportional to the magnitude of the potential, being almost total at −0.5 V. The existence of reversible adhesion was investigated by carrying out experiments under stagnant conditions. Reversible adhesion was observed only at potential values very close to the potential of zero charge of the gold surface (0.0 V [Ag/AgCl-KCl sat.]) at a high ionic strength (0.1 M NaCl). Theoretical calculations of the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy for the bacteria-gold interaction were in good agreement with experimental results at low ionic strength (0.01 M). At high ionic strength (0.1 M), deviations from DLVO behavior related to the participation of specific interactions were observed, when surfaces were polarized to negative potentials.  相似文献   

20.
With partially purified enzyme preparations from cell-free extracts of Pseudomonas fluorescens, 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid are substrates for glucose oxidase (EC 1.1.3.4.) and gluconate dehydrogenase (EC 1.1.99.3), with K-m values 18.2 mM and 11.8 mM, respectively. The same enzymes that oxidize glucose and gluconic acid probably oxidize 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid. The latter fluorinated carbohydrates and the presumed formation of 3-deoxy-3-fluoro-2-keto-D-gluconic acid, which has been isolated as a calcium salt and characterizied, are not substrates for gluconokinase (EC 2.7.1.12). Both 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid act as competitive inhibitors of this enzyme preparation for gluconate, with K-i values 47.5 mM and 14.8 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号