首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The impact of Nα-terminal acetylation on protein stability and protein function in general recently acquired renewed and increasing attention. Although the substrate specificity profile of the conserved enzymes responsible for Nα-terminal acetylation in yeast has been well documented, the lack of higher eukaryotic models has hampered the specificity profile determination of Nα-acetyltransferases (NATs) of higher eukaryotes. The fact that several types of protein N termini are acetylated by so far unknown NATs stresses the importance of developing tools for analyzing NAT specificities. Here, we report on a method that implies the use of natural, proteome-derived modified peptide libraries, which, when used in combination with two strong cation exchange separation steps, allows for the delineation of the in vitro specificity profiles of NATs. The human NatA complex, composed of the auxiliary hNaa15p (NATH/hNat1) subunit and the catalytic hNaa10p (hArd1) and hNaa50p (hNat5) subunits, cotranslationally acetylates protein N termini initiating with Ser, Ala, Thr, Val, and Gly following the removal of the initial Met. In our studies, purified hNaa50p preferred Met-Xaa starting N termini (Xaa mainly being a hydrophobic amino acid) in agreement with previous data. Surprisingly, purified hNaa10p preferred acidic N termini, representing a group of in vivo acetylated proteins for which there are currently no NAT(s) identified. The most prominent representatives of the group of acidic N termini are γ- and β-actin. Indeed, by using an independent quantitative assay, hNaa10p strongly acetylated peptides representing the N termini of both γ- and β-actin, and only to a lesser extent, its previously characterized substrate motifs. The immunoprecipitated NatA complex also acetylated the actin N termini efficiently, though displaying a strong shift in specificity toward its known Ser-starting type of substrates. Thus, complex formation of NatA might alter the substrate specificity profile as compared with its isolated catalytic subunits, and, furthermore, NatA or hNaa10p may function as a post-translational actin Nα-acetyltransferase.The multisubunit and ribosome-associated protein Nα-acetyltransferases (NATs)1 are omnipresent enzyme complexes that catalyze the transfer of the acetyl moiety from acetyl-CoA to the primary α-amines of N termini of nascent proteins (13). As up to 50 to 60% of yeast proteins and 80 to 90% of human proteins are modified in this manner, Nα-acetylation is a widespread protein modification in eukaryotes (47), and the pattern of modification has remained largely conserved throughout evolution (4, 8). NATs belong to a subfamily of the Gcn5-related N-acetyltransferase superfamily of N-acetyltransferases, additionally encompassing the well-studied histone acetyltransferases that are implicated in epigenetic imprinting.In yeast and humans, three main NAT complexes, NatA, NatB, and NatC were found to be responsible for the majority of Nα-terminal acetylations (1). The NatA complex, responsible for cotranslational Nα-terminal acetylation of proteins with Ser, Ala, Thr, Gly, and Val N termini, is composed of two main subunits, the catalytic subunit Naa10p (previously known as Ard1p) and the auxiliary subunit Naa15p (previously known as Nat1p/NATH) (911). Furthermore, a third catalytic subunit Naa50p (previously known as Nat5)—an acetyltransferase shown to function in chromosome cohesion and segregation (1214)—was found to physically interact with the NatA complex of yeast (2), fruit fly (12), and human (15). Recently, human Naa50p (hNaa50p) was reported to display lysine or Nε-acetyltransferase as well as NAT activity (16), the latter was defined as NatE activity (16). Interestingly, the chaperone-like, Huntingtin interacting protein HYPK, identified as a novel stable interactor of human NatA, was functionally implicated in the N-terminal acetylation of an in vivo NatA substrate, demonstrating that NAT complex formation and composition may have an overall influence on the observed (degree of) Nα-acetylation (17). Further, subunits of the human NatA complex have been coupled to cancer-related processes and differentiation, with altered subunit expression reported in papillary thyroid carcinoma, neuroblastoma, and retinoic acid induced differentiation. Furthermore, the NatA catalytic subunit was found to be implicated in processes such as hypoxia-response and the β-catenin pathway (18, 19). Of note is that in line with the differential localization patterns of the individual NatA subunits (9, 13, 20, 21), other data indicate that these subunits might well exert NatA-independent enzymatic functions (13, 22, 23). Given that a significant fraction of hNaa10p and hNaa15p are nonribosomal (9), and given the multitude of postulated post-translational in vivo N-acetylation events recently reported (2426), these observations argue in favor of the existence of NAT complexes and/or catalytic NAT-subunits acting post-translationally.Similar to NatA, the NatB and NatC complexes, composed of the catalytic subunit Naa20p or Naa30p and the auxiliary subunits Naa25p or Naa35p and Naa38p respectively, are conserved from yeast to higher eukaryotes concerning their subunit composition as well as their substrate specificity. Both these complexes display activity toward methionine-starting N termini, with NatB preferring acidic residues as well as Asn and Gln at P2′-sites2, whereas NatC prefers hydrophobic amino acid residues at substrate P2′-sites (1, 27, 28).Nα-acetylation affects various protein functions such as localization, activity, association, and stability (29, 30). Only recently a more generalized function of protein Nα-acetylation in generating so-called N-terminal degrons marking proteins for removal was put forward (31). The lack of mouse models in addition to the fact that (combined) knockdown of individual components of Nα-acetyltransferases only marginally affect the overall Nα-acetylation status (4) have so far hampered the molecular characterization of the substrate specificity profile of (yet uncharacterized) NATs. To date, all eukaryote Nα-acetylation events are assumed to be catalyzed by the five known NATs (32). However, an additional level of complexity is imposed by the fact that in contrast to yeast, higher eukaryotes express multiple splice variants of various NAT subunits as well as paralogs thereof (33, 34), further implicating that a specific NAT''s substrate specificity might be altered in this way, in addition to the possible existence of substrate redundancy. Moreover, regulation of substrate specificity and stability of NAT activity can be imposed by differential complex formation and post-translational modifications including phosphorylation, auto-acetylation, and specific proteolytic cleavage of the catalytic subunits (9, 16, 17). As such, a detailed understanding of the substrate specificity of NATs, and the regulation thereof, could help unravel the physiological substrate repertoires as well as the associated physiological roles of NATs in the normal and the disease state.The specificity of Nα-acetyltransferases and their endogenous substrates were originally studied by two-dimensional-PAGE: Nα-acetylation neutralizes the N-terminal positive charge, resulting in an altered electrophoretic protein migration during isoelectric focusing (3538). Recently, this altered biophysical property was also exploited to enrich for protein N-termini using low pH strong cation exchange (SCX) chromatography (24, 39). As an example, SCX prefractionation combined with N-terminal combined fractional diagonal chromatography, a targeted proteomics technology negatively selecting for protein N-terminal peptides, stable isotope labeling of amino acids in cell culture, and amino-directed modifiers (40), was used to study the in vivo substrate repertoires of human as well as yeast NatA (4).Nevertheless, the various methods reported today to study in detail Nα-terminal acetylation and thus the specificities of different NATs make use of a limited and therefore somewhat biased set of synthesized peptide substrates and comprise the rather laborious detection of radioactive acetylated products as well as enzyme-coupled methods quantifying acetyl-CoA conversion. Because (proteome-derived) peptide libraries have been used extensively to study epitope mapping (41), protein-protein interactions (42), protein modifications such as phosphorylation (43), and proteolysis (44, 45), as well as for determining the substrate specificity of the Nα-deblocking peptide deformylase (46), we reckoned that the development of an oligopeptide-based acetylation assay should allow for more comprehensive screening of NAT-like activities. We here report on the development of a peptide-based method to systematically screen for the in vitro sequence specificity profile of individual NATs as well as endogenous NAT complexes. In summary, SCX enriched, Nα-free peptide libraries, derived from natural proteomes build up the peptide substrate pool. And, upon incubation, NAT Nα-acetylated peptides are enriched by a second SCX fractionation step, resulting in a positive selection of NAT-specific peptide substrates. By use of this proteome-derived peptide library approach, we here delineated (differences in) the specificity profiles of hNaa50p and hNaa10p as isolated hNatA components, as well as of assayed their combined activity when in their native hNatA complex.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Presentation of the Mtv-1 superantigen (vSag1) to specific Vβ-bearing T cells requires association with major histocompatibility complex class II molecules. The intracellular route by which vSag1 trafficks to the cell surface and the site of vSag1-class II complex assembly in antigen-presenting B lymphocytes have not been determined. Here, we show that vSag1 trafficks independently of class II to the plasma membrane by the exocytic secretory pathway. At the surface of B cells, vSag1 associates primarily with mature peptide-bound class II αβ dimers, which are stable in sodium dodecyl sulfate. vSag1 is unstable on the cell surface in the absence of class II, and reagents that alter the surface expression of vSag1 and the conformation of class II molecules affect vSag1 stimulation of superantigen reactive T cells.

T lymphocytes respond to peptide antigens presented by either major histocompatibility complex (MHC) class I or class II molecules. Many viruses have evolved sophisticated strategies that interfere with antigen presentation by infected cells in order to escape recognition by T lymphocytes. Most strategies studied rely on disrupting MHC class I presentation, either by affecting components of the processing machinery that generate and transport viral peptides into the endoplasmic reticulum (ER) or by retarding transport or targeting class I molecules into the degradation pathway (for a review, see reference 73).In contrast, mouse mammary tumor virus (MMTV) utilizes T-cell stimulation to promote its life cycle. MMTVs encode within their 3′ long terminal repeat a viral superantigen (vSag), and coexpression of the Sag glycoprotein with MHC class II molecules on the surface of virally infected B cells induces Vβ-specific T-cell stimulation, generating an immune response which is critical for amplification of MMTV and ensures vertical transmission of virus to the next generation (13, 29, 30). In the absence of B cells, MHC class II, or Sag-reactive T cells, the infection is short-lived (5, 6, 24, 28). The assembly and functional expression of vSag-class II complexes are therefore essential to the viral life cycle. When inherited as germ line elements, Mtv proviruses expressing vSags during ontogeny trigger Vβ-specific clonal elimination of immature T cells and profoundly shape the T-cell repertoire (for a review, see reference 1).vSags are type II integral membrane glycoproteins (14, 36). They possess up to six potential N-linked glycosylation sites, and carbohydrate addition is essential for vSag stability and activity (45). Their protein sequence is highly conserved among all MMTV strains except at the C-terminal 29 to 32 residues, which vary and confer T-cell Vβ specificity (77). Biochemical analyses of vSag7 (minor lymphocyte stimulating locus 1, Mls-1a) molecular forms after transfection into a murine B-cell line have identified a predominant 45-kDa endo-β-N-acetylglucosaminidase H (endo H)-sensitive ER-resident glycoprotein, as well as multiple highly glycosylated forms (74). It is thought that an 18-kDa C-terminal fragment binds MHC class II products (75). It has also been suggested that vSags associate weakly with class II in the ER and that proteolytic processing is required for the efficient assembly of vSag-class II complexes for presentation to T cells (46, 49, 75). As yet, the intracellular route that vSags take to the cell surface, the compartment in which they bind class II, and whether they associate with peptide-loaded class II dimers have been enigmatic.Newly synthesized MHC class II αβ heterodimers assemble with invariant chain (Ii), a type II integral membrane protein, to form an oligomeric complex in the ER (37). Ii prevents class II heterodimers from binding peptides in the ER and Golgi complex (55), and signals in its cytoplasmic tail sort the complex into the endocytic pathway (4, 42). In this acidic, protease-rich compartment, Ii is degraded and class II binds antigenic peptides. After the formation of peptide-class II dimers, the complexes are exported to the plasma membrane (8, 48). In the absence of Ii, class II αβ heterodimers exhibit defective post-ER transport, and their conversion into functionally mature, sodium dodecyl sulfate (SDS)-stable compact dimers by peptide antigens is affected (7, 16, 22, 70).A specialized endosomal compartment where class II peptide loading occurs, termed the MHC class II-enriched compartment (MIIC or CIIV), has been found recently in antigen-presenting cells (2, 50, 53, 58, 68, 71). Whether nascent Ii-class II complexes traffic directly to the MIIC from the trans-Golgi network (TGN) or transit first to early endosomes, either directly or via the cell surface, before entering late endocytic vesicles and MIIC is still under debate (26, 56, 57). Transport by all these routes most probably occurs to ensure the capture and loading of antigenic peptides throughout the endocytic pathway (12). MIIC vesicles are positive for lysosome-associated membrane proteins (LAMPs) and cathepsin D and are enriched for HLA-DM or H-2M (18, 32, 59), proteins that facilitate the catalytic exchange of class II-associated invariant peptide chain (CLIP) for antigenic peptides (19, 61, 62). The ultrastructural colocalization of DM with intracellular peptide-class II complexes suggests that the MIIC is a main site where class II dimers bind exogenous and endogenous peptide antigens (47, 58).Determining the route by which vSag protein(s) trafficks to the cell surface and the cellular location where vSag1 processing and assembly with class II molecules occurs is central to understanding the mechanism whereby vSags activate T cells to maintain the viral life cycle. It has been unclear whether vSags traffic independently by the constitutive exocytic pathway or with class II and Ii to the MIIC before reaching the cell surface. Reagents that alter class II expression have been shown to affect vSag presentation (43, 46). Furthermore, mice lacking Ii show reduced intrathymic Vβ-specific T-cell deletion (70), suggesting that Ii may play a role, either by ensuring proper maturation of class II dimers or by targeting vSag-class II complexes to the MIIC, in promoting efficient vSag-induced immune responses.To investigate these issues, we used immunochemical detection of vSag1 protein in combination with subcellular fractionation and surface reexpression assays. We show that class II is required for stable vSag1 surface expression. vSag1 trafficks directly to the cell surface independently of class II, and reagents that alter the conversion of newly synthesized class II into peptide-loaded SDS-stable dimers affect functional vSag1 surface expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号