首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Presentation of the Mtv-1 superantigen (vSag1) to specific Vβ-bearing T cells requires association with major histocompatibility complex class II molecules. The intracellular route by which vSag1 trafficks to the cell surface and the site of vSag1-class II complex assembly in antigen-presenting B lymphocytes have not been determined. Here, we show that vSag1 trafficks independently of class II to the plasma membrane by the exocytic secretory pathway. At the surface of B cells, vSag1 associates primarily with mature peptide-bound class II αβ dimers, which are stable in sodium dodecyl sulfate. vSag1 is unstable on the cell surface in the absence of class II, and reagents that alter the surface expression of vSag1 and the conformation of class II molecules affect vSag1 stimulation of superantigen reactive T cells.

T lymphocytes respond to peptide antigens presented by either major histocompatibility complex (MHC) class I or class II molecules. Many viruses have evolved sophisticated strategies that interfere with antigen presentation by infected cells in order to escape recognition by T lymphocytes. Most strategies studied rely on disrupting MHC class I presentation, either by affecting components of the processing machinery that generate and transport viral peptides into the endoplasmic reticulum (ER) or by retarding transport or targeting class I molecules into the degradation pathway (for a review, see reference 73).In contrast, mouse mammary tumor virus (MMTV) utilizes T-cell stimulation to promote its life cycle. MMTVs encode within their 3′ long terminal repeat a viral superantigen (vSag), and coexpression of the Sag glycoprotein with MHC class II molecules on the surface of virally infected B cells induces Vβ-specific T-cell stimulation, generating an immune response which is critical for amplification of MMTV and ensures vertical transmission of virus to the next generation (13, 29, 30). In the absence of B cells, MHC class II, or Sag-reactive T cells, the infection is short-lived (5, 6, 24, 28). The assembly and functional expression of vSag-class II complexes are therefore essential to the viral life cycle. When inherited as germ line elements, Mtv proviruses expressing vSags during ontogeny trigger Vβ-specific clonal elimination of immature T cells and profoundly shape the T-cell repertoire (for a review, see reference 1).vSags are type II integral membrane glycoproteins (14, 36). They possess up to six potential N-linked glycosylation sites, and carbohydrate addition is essential for vSag stability and activity (45). Their protein sequence is highly conserved among all MMTV strains except at the C-terminal 29 to 32 residues, which vary and confer T-cell Vβ specificity (77). Biochemical analyses of vSag7 (minor lymphocyte stimulating locus 1, Mls-1a) molecular forms after transfection into a murine B-cell line have identified a predominant 45-kDa endo-β-N-acetylglucosaminidase H (endo H)-sensitive ER-resident glycoprotein, as well as multiple highly glycosylated forms (74). It is thought that an 18-kDa C-terminal fragment binds MHC class II products (75). It has also been suggested that vSags associate weakly with class II in the ER and that proteolytic processing is required for the efficient assembly of vSag-class II complexes for presentation to T cells (46, 49, 75). As yet, the intracellular route that vSags take to the cell surface, the compartment in which they bind class II, and whether they associate with peptide-loaded class II dimers have been enigmatic.Newly synthesized MHC class II αβ heterodimers assemble with invariant chain (Ii), a type II integral membrane protein, to form an oligomeric complex in the ER (37). Ii prevents class II heterodimers from binding peptides in the ER and Golgi complex (55), and signals in its cytoplasmic tail sort the complex into the endocytic pathway (4, 42). In this acidic, protease-rich compartment, Ii is degraded and class II binds antigenic peptides. After the formation of peptide-class II dimers, the complexes are exported to the plasma membrane (8, 48). In the absence of Ii, class II αβ heterodimers exhibit defective post-ER transport, and their conversion into functionally mature, sodium dodecyl sulfate (SDS)-stable compact dimers by peptide antigens is affected (7, 16, 22, 70).A specialized endosomal compartment where class II peptide loading occurs, termed the MHC class II-enriched compartment (MIIC or CIIV), has been found recently in antigen-presenting cells (2, 50, 53, 58, 68, 71). Whether nascent Ii-class II complexes traffic directly to the MIIC from the trans-Golgi network (TGN) or transit first to early endosomes, either directly or via the cell surface, before entering late endocytic vesicles and MIIC is still under debate (26, 56, 57). Transport by all these routes most probably occurs to ensure the capture and loading of antigenic peptides throughout the endocytic pathway (12). MIIC vesicles are positive for lysosome-associated membrane proteins (LAMPs) and cathepsin D and are enriched for HLA-DM or H-2M (18, 32, 59), proteins that facilitate the catalytic exchange of class II-associated invariant peptide chain (CLIP) for antigenic peptides (19, 61, 62). The ultrastructural colocalization of DM with intracellular peptide-class II complexes suggests that the MIIC is a main site where class II dimers bind exogenous and endogenous peptide antigens (47, 58).Determining the route by which vSag protein(s) trafficks to the cell surface and the cellular location where vSag1 processing and assembly with class II molecules occurs is central to understanding the mechanism whereby vSags activate T cells to maintain the viral life cycle. It has been unclear whether vSags traffic independently by the constitutive exocytic pathway or with class II and Ii to the MIIC before reaching the cell surface. Reagents that alter class II expression have been shown to affect vSag presentation (43, 46). Furthermore, mice lacking Ii show reduced intrathymic Vβ-specific T-cell deletion (70), suggesting that Ii may play a role, either by ensuring proper maturation of class II dimers or by targeting vSag-class II complexes to the MIIC, in promoting efficient vSag-induced immune responses.To investigate these issues, we used immunochemical detection of vSag1 protein in combination with subcellular fractionation and surface reexpression assays. We show that class II is required for stable vSag1 surface expression. vSag1 trafficks directly to the cell surface independently of class II, and reagents that alter the conversion of newly synthesized class II into peptide-loaded SDS-stable dimers affect functional vSag1 surface expression.  相似文献   

3.
The Major histocompatibility complex (MHC) class I peptidome is thought to be generated mostly through proteasomal degradation of cellular proteins, a notion that is based on the alterations in presentation of selected peptides following proteasome inhibition. We evaluated the effects of proteasome inhibitors, epoxomicin and bortezomib, on human cultured cancer cells. Because the inhibitors did not reduce the level of presentation of the cell surface human leukocyte antigen (HLA) molecules, we followed their effects on the rates of synthesis of both HLA peptidome and proteome of the cells, using dynamic stable isotope labeling in tissue culture (dynamic-SILAC). The inhibitors reduced the rates of synthesis of most cellular proteins and HLA peptides, yet the synthesis rates of some of the proteins and HLA peptides was not decreased by the inhibitors and of some even increased. Therefore, we concluded that the inhibitors affected the production of the HLA peptidome in a complex manner, including modulation of the synthesis rates of the source proteins of the HLA peptides, in addition to their effect on their degradation. The collected data may suggest that the current reliance on proteasome inhibition may overestimate the centrality of the proteasome in the generation of the MHC peptidome. It is therefore suggested that the relative contribution of the proteasomal and nonproteasomal pathways to the production of the MHC peptidome should be revaluated in accordance with the inhibitors effects on the synthesis rates of the source proteins of the MHC peptides.The repertoires and levels of peptides, presented by the major histocompatibility complex (MHC)1 class I molecules at the cells'' surface, are modulated by multiple factors. These include the rates of synthesis and degradation of their source proteins, the transport efficacy of the peptides through the transporter associated with antigen processing (TAP) into the endoplasmic reticulum (ER), their subsequent processing and loading onto the MHC molecules within the ER, and the rates of transport of the MHC molecules with their peptide cargo to the cell surface. The off-rates of the presented peptides, the residence time of the MHC complexes at the cell surface, and their retrograde transport back into the cytoplasm, influence, as well, the presented peptidomes (reviewed in (1)). Even though significant portions of the MHC class I peptidomes are thought to be derived from newly synthesized proteins, including misfolded proteins, defective ribosome products (DRiPs), and short lived proteins (SLiPs), most of the MHC peptidome is assumed to originate from long-lived proteins, which completed their functional cellular roles or became defective (retirees), (reviewed in (2)).The main protease, supplying the MHC peptidome production pipeline, is thought to be the proteasome (3). It is also responsible for generation of the final carboxyl termini of the MHC peptides (4), (reviewed in (5)). The final trimming of the n-termini of the peptides, within the endoplasmic reticulum (ER), is thought to be performed by amino peptidases, such as ERAP1/ERAAP, which fit the peptides into their binding groove on the MHC molecules (6) (reviewed in (7)). Nonproteasomal proteolytic pathways were also suggested as possible contributors to the MHC peptidome, including proteolysis by the ER resident Signal peptide peptidase (8, 9), the cytoplasmic proteases Insulin degrading enzyme (10), Tripeptidyl peptidase (1113), and a number of proteases within the endolysosome pathway (reviewed recently in (1417)). In contrast to the mostly cytoplasmic and ER production of the MHC class I peptidome, the class II peptidome is produced in a special compartment, associated with the endolysosome pathway (1820). This pathway is also thought to participate in the cross presentation of class I peptides, derived from proteins up-taken by professional antigen presenting cells (21), (reviewed in (1517, 22)).The centrality of the proteasomes in the generation of the MHC peptidome was deduced mostly from the observed change in presentation levels of small numbers of selected peptides, following proteasome inhibition (3, 23). Even the location of some of the genes encoding the catalytic subunits of the immunoproteasome (LMP2 and LMP7) (24) within the MHC class II genomic locus, was suggested to support the involvement of the proteasome in the generation of the MHC class I peptidome (25). Similar conclusions were deduced from alterations in peptide presentation, following expression of the catalytic subunits of the immunoproteasome (26), (reviewed in (5)). Yet, although most of the reports indicated reductions in presentation of selected peptides by proteasome inhibition (3, 2729), others have observed only limited, and sometimes even opposite effects (23, 3032).The matter is further complicated by the indirect effects of proteasome inhibition used for such studies on the arrest of protein synthesis by the cells (3335), on the transport rates of the MHC molecules to the cell surface, and on their retrograde transport back to the vesicular system (36) (reviewed in (37)). Proteasome inhibition likely causes shortage of free ubiquitin, reduced supply of free amino acids, and induces an ER unfolded protein response (UPR), which signals the cells to block most (but not all) cellular protein synthesis (reviewed in (38)). Because a significant portion of the MHC peptidome originates from degradation of DRiPs and SLiPs (reviewed in (2)), arrest of new protein synthesis should influence the presentation of their derived MHC peptides. Taken together, these arguments may suggest that merely following the changes in the presentation levels of the MHC molecules, or even of specific MHC peptides, after proteasome inhibition, does not provide the full picture for deducing the relative contribution of the proteasomal pathway to the production of the MHC peptidome (reviewed in (7)).MHC peptidome analysis can be performed relatively easily by modern capillary chromatography combined with mass spectrometry (reviewed in (39)). The peptides are recovered from immunoaffinity purified MHC molecules after detergent solubilization of the cells (40, 41), from soluble MHC molecules secreted to the cells'' growth medium (42, 43) or from patients'' plasma (44). The purified peptides pools are resolved by capillary chromatography and the individual peptides are identified and quantified by tandem mass spectrometry (40), (reviewed in (4547)). In cultured cells, quantitative analysis can also be followed by metabolic incorporation of stable isotope labeled amino acids (SILAC) (48). Furthermore, the rates of de novo synthesis of both MHC peptides and their proteins of origin can be followed using the dynamic-SILAC proteomics approach (49) with its further adaptation to HLA peptidomics (5052).This study attempts to define the relative contribution of the proteasomes to the production of HLA class I peptidome by simultaneously following the effects of proteasome inhibitors, epoxomicin and bortezomib (Velcade), on the rates of de novo synthesis of both the HLA class I peptidome and the cellular proteome of the same MCF-7 human breast cancer cultured cells. The proteasome inhibitors did not reduce the levels of HLA presentations, yet affected the rates of production of both the HLA peptidome and cellular proteome, mostly decreasing, but also increasing some of the synthesis rates of the HLA peptides and cellular proteins. Thus, we suggest that the degree of contribution of the proteasomal pathway to the production of the HLA-I peptidome should be re-evaluated in accordance with their effects on the entire HLA class-I peptidome, while taking into consideration the inhibitors'' effects on the synthesis (and degradation) rates of the source proteins of each of the studied HLA peptides.  相似文献   

4.
5.
Four new monoclonal antibodies (MAbs) that inhibit human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation were produced by immunizing BALB/c mice with HTLV-1-infected MT2 cells. Immunoprecipitation studies and binding assays of transfected mouse cells showed that these MAbs recognize class II major histocompatibility complex (MHC) molecules. Previously produced anti-class II MHC antibodies also blocked HTLV-1-induced cell fusion. Coimmunoprecipitation and competitive MAb binding studies indicated that class II MHC molecules and HTLV-1 envelope glycoproteins are not associated in infected cells. Anti-MHC antibodies had no effect on human immunodeficiency virus type 1 (HIV-1) syncytium formation by cells coinfected with HIV-1 and HTLV-1, ruling out a generalized disruption of cell membrane function by the antibodies. High expression of MHC molecules suggested that steric effects of bound anti-MHC antibodies might explain their inhibition of HTLV-1 fusion. An anti-class I MHC antibody and a polyclonal antibody consisting of several nonblocking MAbs against other molecules bound to MT2 cells at levels similar to those of class II MHC antibodies, and they also blocked HTLV-1 syncytium formation. Dose-response experiments showed that inhibition of HTLV-1 syncytium formation correlated with levels of antibody bound to the surface of infected cells. The results show that HTLV-1 syncytium formation can be blocked by protein crowding or steric effects caused by large numbers of immunoglobulin molecules bound to the surface of infected cells and have implications for the structure of the cellular HTLV-1 receptor(s).Human T-cell lymphotropic virus type 1 (HTLV-1) is a type C retrovirus and the etiologic agent of adult T-cell leukemia (43, 56, 59) and HTLV-1-associated myelopathy or tropical spastic paraparesis (15, 17, 49, 61). Although HTLV-1 shows tropism primarily for T cells, it can infect a variety of cell types including cells from some nonhuman species (6, 9, 27, 46, 48, 60, 62). Infection by free HTLV-1 tends to be highly inefficient, and the virus appears to be transmitted primarily by the cell-to-cell route (37). The HTLV-1 envelope glycoprotein is synthesized as a 61-kDa precursor which is cleaved into surface (gp46) and transmembrane (gp21) proteins (40, 57). gp46 is thought to serve as the virus attachment protein, as does gp120 for human immunodeficiency virus (HIV) (40, 57). Although previous reports have identified host cell molecules which might potentially mediate virus binding (9, 14), the cellular receptor for HTLV-1 has not been definitively identified. A recent study in which affinity chromatography was carried out with a gp46 peptide has provided evidence that the heat shock protein HSC70 binds directly to gp46 and may serve as a virus receptor (47).gp21 contains an N-terminal hydrophobic fusion domain and likely serves as a fusion protein similar to HIV gp41 (12, 61). Like many other retroviruses, HTLV-1 can induce syncytium formation between infected cells and certain uninfected cell types (28, 39). However, there are no data to indicate that virus transmission or virus persistence in vivo depends on syncytium formation. It is thought that cell-cell fusion involves the same receptors and occurs in a manner similar to virus-cell fusion. For this reason, HTLV-1 syncytium assays have been used to screen for cell surface molecules that may serve as virus receptors (13, 14, 25, 29). Monoclonal antibodies (MAbs) against a number of membrane proteins including members of the tetraspanner family (30, 31) have been found to block syncytium formation. My colleagues and I recently reported that expression of the cell adhesion molecule vascular cell adhesion molecule 1 (VCAM-1) on uninfected cells can confer sensitivity to HTLV-1-mediated syncytium formation (25). In this previous study, we were not able to block HTLV-1 cell fusion with MAbs against the major VCAM-1 counterreceptor VLA-4 (25). Others have reported that MAbs to other adhesion molecules including intercellular adhesion molecule 3 (ICAM-3) also block HTLV-1 syncytium formation (29). We have demonstrated that adhesion molecules also facilitate HIV type 1 (HIV-1) infection and syncytium formation (16, 24). Thus, adhesion molecules may be important accessory molecules for retroviruses generally.Earlier studies on accessory molecules involved in HTLV-1 biology have been extended by immunizing mice with HTLV-1-infected cells and screening for MAbs that block VCAM-1-supported HTLV-1 syncytium formation. Four new MAbs that completely block HTLV-1-mediated cell fusion have been generated. The MAbs were all determined to be specific for class II major histocompatibility complex (MHC) molecules. These MAbs had no effect on syncytium formation induced by HIV-1. Studies on the mechanism by which the MAbs mediate this effect have revealed a novel mode of antibody blockade of virus-induced cell fusion: protein crowding at the infected cell surface resulting in steric blockade of critical receptor-ligand interactions.  相似文献   

6.
Herpes simplex virus (HSV) inhibits major histocompatibility complex (MHC) class I expression in infected cells and does so much more efficiently in human cells than in murine cells. Given this difference, if MHC class I-restricted T cells do not play an important role in protection of mice from HSV, an important role for these cells in humans would be unlikely. However, the contribution of MHC class I-restricted T cells to the control of HSV infection in mice remains unclear. Further, the mechanisms by which these cells may act to control infection, particularly in the nervous system, are not well understood, though a role for gamma interferon (IFN-γ) has been proposed. To address the roles of MHC class I and of IFN-γ, C57BL/6 mice deficient in MHC class I expression (β2 microglobulin knockout [β2KO] mice), in IFN-γ expression (IFN-γKO mice), or in both (IFN-γKO/β2KO mice) were infected with HSV by footpad inoculation. β2KO mice were markedly compromised in their ability to control infection, as indicated by increased lethality and higher concentrations of virus in the feet and spinal ganglia. In contrast, IFN-γ appeared to play at most a limited role in viral clearance. The results suggest that MHC class I-restricted T cells play an important role in protection of mice against neuroinvasive HSV infection and do so largely by mechanisms other than the production of IFN-γ.

Two gene products of herpes simplex virus (HSV) block presentation of viral proteins by class I major histocompatibility complex (MHC) molecules: the viral host shutoff protein (vhs), which is present in the viral particle, and the immediate-early protein ICP47 (1, 14, 41, 42). Through the sequential action of these proteins, antigen presentation by MHC class I is inhibited early in the viral replication cycle. ICP47 binds to human transporter associated with antigen-processing proteins (TAP), thereby inhibiting peptide loading on MHC class I and recognition by HSV-specific, MHC class I-restricted, CD8+ T cells (1, 14, 42, 43). This effect is greatest in nonhematopoietic cells in which the abundance of MHC class I and TAP are lower than in antigen-presenting cells (41). As a consequence, HSV is more likely to impair recognition of infected target cells in the tissues than to block the generation of antigen-specific CD8+ T cells. Consistent with this, recent studies indicate that HSV antigen-specific CD8+ cytotoxic-T-lymphocyte (CTL) precursors can be readily detected in the blood and cutaneous lesions of HSV-infected individuals (16, 31, 32). However, NK cells and HSV antigen-specific CD4+ T cells are detected earlier than antigen-specific CD8+ T cells in lesions of humans with recurrent HSV-2 disease (16). This finding has led to the proposal that gamma interferon (IFN-γ) produced by infiltrating NK and CD4+ T cells overrides the inhibitory effects of HSV on TAP function and MHC class I expression (22, 41), thereby allowing the eradication of virus by CD8+ T cells, whose numbers increase in lesions around the time of viral clearance (16, 31). In patients with AIDS, a lower frequency in the blood of HSV antigen-specific CD8+ CTL precursors is associated with more frequent and severe recurrences of genital disease (32). These correlative data suggest that CD8+ T cells may play an important role in the clearance of HSV in humans, at least from mucocutaneous lesions.ICP47 inhibits murine TAP poorly (1, 42), which may explain the greater ease with which anti-HSV CD8+ CTLs have been detected in mice than in humans (3, 8, 28, 34, 35). Despite the weak interaction of ICP47 with murine TAP, results of a recent study (12) suggested that ICP47 impairs CD8+ T-cell-dependent viral clearance from the nervous system: CD8+ T cells protected susceptible BALB/c or A/J mice from lethal, nervous system infection with an HSV mutant lacking ICP47 but did not appear to protect against infection with wild-type HSV or to contribute to clearance of either virus from the eye. These findings are consistent with data suggesting that CD8+ T cells limit persistence of HSV in the spinal ganglia and decrease spread to the central nervous system (35, 36). However, other studies have concluded that CD4+ T cells but not CD8+ T cells play the critical role in viral clearance and protection from lethal primary infection with wild-type HSV (20, 23, 24) or that either CD4+ or CD8+ T cells are sufficient for protection (26, 37). Since the effects of ICP47 are likely to be greater in humans than in mice, if MHC class I-restricted CD8+ T cells do not play an important role in protection of mice from lethal, neuroinvasive infection due to wild-type HSV, an important role in humans would be unlikely.The mechanisms by which T cells may limit the spread of infection in the nervous system are not clearly understood. Studies by Simmons and colleagues suggested that CD8+ T cells may lyse infected Schwann cells or satellite cells but that they probably do not lyse infected neurons (31, 32). They and others have proposed that CD8+ T cells protect neurons through the production of cytokines, in particular IFN-γ (35, 36). IFN-γ contributes to the clearance of HSV from mucocutaneous sites (4, 24, 25, 37, 44). However, the role of IFN-γ in protection from lethal, neuroinvasive infection is uncertain and may vary with the strain of mice, method used to inhibit IFN-γ function, and route of inoculation (4, 5, 24, 37, 44). IFN-γ is produced in the ganglia of mice with acute or latent HSV infection (5, 13, 19). Both CD4+ and CD8+ T cells (and NK cells) produce IFN-γ, but CD4+ T cells appear to be the predominant source of IFN-γ following intravaginal infection with HSV (24, 25). Thus, it is possible that the disparity in results regarding the relative importance of CD4+ and CD8+ T cells in protection from lethal, neuroinvasive HSV infection reflects their redundant roles in production of this cytokine or that IFN-γ and CD8+ T cells contribute independently to control of infection in the nervous system.To address in parallel the contributions of MHC class I-restricted T cells and of IFN-γ to protection of mice from HSV, MHC class I and CD8+ T-cell-deficient β2 microglobulin knockout (β2KO) mice, IFN-γ knockout (IFN-γKO) mice, and mice deficient in both MHC class I and IFN-γ expression (IFN-γKO/β2KO) were studied. The results indicated that loss of MHC class I expression in β2KO mice substantially increased their susceptibility to HSV, whereas the loss of IFN-γ expression had a much more limited effect. These findings indicate that MHC class I-restricted T cells play an important role in protection against neuroinvasive HSV infection in mice and that they do so largely by mechanisms other than the production of IFN-γ. Though MHC class I expression is more severely impaired in β2KO mice than in human cells infected with wild-type HSV, these findings support the notion that inhibition of MHC class I expression is an important factor in the virulence of this virus.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a type I anchored integral membrane phosphoprotein with two independent functions. First, it regulates virus release from a post-endoplasmic reticulum (ER) compartment by an ion channel activity mediated by its transmembrane anchor. Second, it induces the selective down regulation of host cell receptor proteins (CD4 and major histocompatibility complex class I molecules) in a process involving its phosphorylated cytoplasmic tail. In the present work, we show that the Vpu-induced proteolysis of nascent CD4 can be completely blocked by peptide aldehydes that act as competitive inhibitors of proteasome function and also by lactacystin, which blocks proteasome activity by covalently binding to the catalytic β subunits of proteasomes. The sensitivity of Vpu-induced CD4 degradation to proteasome inhibitors paralleled the inhibition of proteasome degradation of a model ubiquitinated substrate. Characterization of CD4-associated oligosaccharides indicated that CD4 rescued from Vpu-induced degradation by proteasome inhibitors is exported from the ER to the Golgi complex. This finding suggests that retranslocation of CD4 from the ER to the cytosol may be coupled to its proteasomal degradation. CD4 degradation mediated by Vpu does not require the ER chaperone calnexin and is dependent on an intact ubiquitin-conjugating system. This was demonstrated by inhibition of CD4 degradation (i) in cells expressing a thermally inactivated form of the ubiquitin-activating enzyme E1 or (ii) following expression of a mutant form of ubiquitin (Lys48 mutated to Arg48) known to compromise ubiquitin targeting by interfering with the formation of polyubiquitin complexes. CD4 degradation was also prevented by altering the four Lys residues in its cytosolic domain to Arg, suggesting a role for ubiquitination of one or more of these residues in the process of degradation. The results clearly demonstrate a role for the cytosolic ubiquitin-proteasome pathway in the process of Vpu-induced CD4 degradation. In contrast to other viral proteins (human cytomegalovirus US2 and US11), however, whose translocation of host ER molecules into the cytosol occurs in the presence of proteasome inhibitors, Vpu-targeted CD4 remains in the ER in a transport-competent form when proteasome activity is blocked.

The human immunodeficiency virus type 1 (HIV-1)-specific accessory protein Vpu performs two distinct functions in the viral life cycle (11, 12, 29, 34, 46, 47, 5052; reviewed in references 31 and 55): enhancement of virus particle release from the cell surface, and the selective induction of proteolysis of newly synthesized membrane proteins. Known targets for Vpu include the primary virus receptor CD4 (63, 64) and major histocompatibility complex (MHC) class I molecules (28). Vpu is an oligomeric class I integral membrane phosphoprotein (35, 48, 49) with a structurally and functionally defined domain architecture: an N-terminal transmembrane anchor and C-terminal cytoplasmic tail (20, 34, 45, 47, 50, 65). Vpu-induced degradation of endoplasmic reticulum (ER) membrane proteins involves the phosphorylated cytoplasmic tail of the protein (50), whereas the virion release function is mediated by a cation-selective ion channel activity associated with the membrane anchor (19, 31, 45, 47).CD4 is a 55-kDa class I integral membrane glycoprotein that serves as the primary coreceptor for HIV entry into cells. CD4 consists of a large lumenal domain, a transmembrane peptide, and a 38-residue cytoplasmic tail. It is expressed on the surface of a subset of T lymphocytes that recognize MHC class II-associated peptides, and it plays a pivotal role in the development and maintenance of the immune system (reviewed in reference 30). Down regulation of CD4 in HIV-1-infected cells is mediated through several independent mechanisms (reviewed in references 5 and 55): intracellular complex formation of CD4 with the HIV envelope protein gp160 (8, 14), endocytosis of cell surface CD4 induced by the HIV-1 nef gene product (1, 2), and ER degradation induced by the HIV-1 vpu gene product (63, 64).Vpu-induced degradation of CD4 is an example of ER-associated protein degradation (ERAD). ERAD is a common outcome when proteins in the secretory pathway are unable to acquire their native structure (4). Although it was thought that ERAD occurs exclusively inside membrane vesicles of the ER or other related secretory compartments, this has gained little direct experimental support. Indeed, there are several recent reports that ERAD may actually represent export of the target protein to the cytosol, where it is degraded by cytosolic proteases. It was found that in yeast, a secreted protein, prepro-α-factor (pαF), is exported from microsomes and degraded in the cytosol in a proteasome-dependent manner (36). This process was dependent on the presence of calnexin, an ER-resident molecular chaperone that interacts with N-linked oligosaccharides containing terminal glucose residues (3). In mammalian cells, two human cytomegalovirus (HCMV) proteins, US2 and US11, were found to cause the retranslocation of MHC class I molecules from the ER to the cytosol, where they are destroyed by proteasomes (61, 62). In the case of US2, class I molecules were found to associate with a protein (Sec61) present in the channel normally used to translocate newly synthesized proteins into the ER (termed the translocon), leading to the suggestion that the ERAD substrates are delivered to the cytosol by retrograde transport through the Sec61-containing pore (61). Fujita et al. (24) reported that, similar to these findings, the proteasome-specific inhibitor lactacystin (LC) partially blocked CD4 degradation in transfected HeLa cells coexpressing CD4, Vpu, and HIV-1 Env glycoproteins. In the present study, we show that Vpu-induced CD4 degradation can be completely blocked by proteasome inhibitors, does not require the ER chaperone calnexin, but requires the function of the cytosolic polyubiquitination machinery which apparently targets potential ubiquitination sites within the CD4 cytoplasmic tail. Our findings point to differences between the mechanism of Vpu-mediated CD4 degradation and ERAD processes induced by the HCMV proteins US2 and US11 (61, 62).  相似文献   

8.
MHC class I proteins assemble with peptides in the ER. The peptides are predominantly generated from cytoplasmic proteins, probably by the action of the proteasome, a multicatalytic proteinase complex. Peptides are translocated into the ER by the transporters associated with antigen processing (TAP), and bind to the MHC class I molecules before transport to the cell surface. Here, we use a new functional assay to demonstrate that peptides derived from vesicular stomatitis virus nucleoprotein (VSV-N) antigen are actively secreted from cells. This secretion pathway is dependent on the expression of TAP transporters, but is independent of the MHC genotype of the donor cells. Furthermore, the expression and transport of MHC class I molecules is not required. This novel pathway is sensitive to the protein secretion inhibitors brefeldin A (BFA) and a temperature block at 21°C, and is also inhibited by the metabolic poison, azide, and the protein synthesis inhibitor, emetine. These data support the existence of a novel form of peptide secretion that uses the TAP transporters, as opposed to the ER translocon, to gain access to the secretion pathway. Finally, we suggest that this release of peptides in the vicinity of uninfected cells, which we term surrogate antigen processing, could contribute to various immune and secretory phenomena.Protein secretion has traditionally been thought to involve the action of the translocon located in the membrane of the ER of eukaryotic cells. Proteins are recognized cotranslationally when a signal sequence or a signal–anchor sequence emerges from the ribosome (Walter and Johnson, 1994). These sequences are recognized and bound by the signal recognition particle, and the resulting ribosomal complex then interacts with the signal recognition particle receptor on the ER membrane at the translocon (Andrews and Johnson, 1996). This results in the inclusion of proteins within the secretory pathway. This pathway is by far the best described route of protein secretion in eukaryotic cells. Recently, it has been proposed that some proteins are recognized by a component of the translocon, sec 61, exit the ER, and are transported into the cytoplasm where they are degraded (Wiertz et al., 1996).The translocation into the ER of antigenic peptides for presentation by major histocompatibility complex (MHC)1 class I molecules is largely independent of the translocon. This form of translocation involves the action of two gene products that are members of the ATP binding cassette family. These genes encode transporters associated with antigen processing 1 and 2 (TAP-1 and -2), and have been implicated in the translocation of peptides from the cytoplasm to the lumen of the ER (Deverson et al., 1990; Bahram et al., 1991; Spies and DeMars, 1991; Spies et al., 1992; Gabathuler et al., 1994). After translocation into the ER, antigenic peptides bind to MHC class I molecules composed of a heavy chain (46-kD) and a light chain (12-kD) called β2m (Nuchtern et al., 1989; Yewdell and Bennink, 1989; van Bleek and Nathenson, 1990; Matsumura et al., 1992), before transport to the cell surface. The assembly and transport of MHC class I molecules appears to be regulated by a series of chaperones that includes calnexin (Degen and Williams, 1991), calreticulin, and tapasin (Sadasivan et al., 1996).High performance liquid chromatography analysis of peptides eluted from acid-treated whole cells or MHC class I molecules has allowed the identification and characterization of the peptides associated with MHC class I molecules (Falk et al., 1990; Rötzschke et al., 1990; van Bleek and Nathenson, 1990). It is proposed that MHC class I molecules determine the final identity of MHC- restricted peptides and have an instructive role, in addition to a selective role, in peptide selection (Wallny et al., 1992). MHC binding to larger peptides followed by protected proteolytic trimming is a possible mechanism that could account for the observed MHC dependency of cellular peptides (Falk et al., 1990). Peptides unable to bind MHC class I because they are in excess or lack the correct MHC binding motif for the MHC haplotype are thus far undetectable by the techniques commonly used in the field, and are presumed to be short lived and degraded (Falk et al., 1990; Rötzschke et al., 1990). Recent results, however, suggest that peptides not able to bind to a MHC class I molecule intracellularly may be found bound to heat shock proteins (HSPs) such as gp96 (grp94; Arnold et al., 1995). These authors show that cellular antigens are represented by peptides associated with gp96 molecules independently of the MHC class I expressed, confirming earlier results (Udono and Srivastava, 1993, 1994). Gp96 extracted from a specific cell is able to induce cross-priming (Udono and Srivastava, 1993, 1994). Finally, two studies have demonstrated that peptides transported into the lumen of the ER, and do not bind to MHC class I molecules, can be transported out of the ER into the cytoplasm again by a process called “efflux” (Momburg et al., 1994; Schumacher et al., 1994), which may involve the action of the TAP molecules or the sec 61 protein associated with the translocon (Wiertz et al., 1996).We have developed a new bioassay to test the hypothesis that peptides translocated into the ER by the action of the TAP molecules become secreted. Using this assay, we present evidence of an alternative secretion pathway that exists in various mammalian cell types. These observations revise the model of peptide catabolism, and may provide an explanation for various immune and secretion phenomena.  相似文献   

9.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

10.
11.
We examined the phenotype and function of cells infiltrating the central nervous system (CNS) of mice persistently infected with Theiler’s murine encephalomyelitis virus (TMEV) for evidence that viral antigens are presented to T cells within the CNS. Expression of major histocompatibility complex (MHC) class II in the spinal cords of mice infected with TMEV was found predominantly on macrophages in demyelinating lesions. The distribution of I-As staining overlapped that of the macrophage marker sialoadhesin in frozen sections and coincided with that of another macrophage/microglial cell marker, F4/80, by flow cytometry. In contrast, astrocytes, identified by staining with glial fibrillary acidic protein, rarely expressed detectable MHC class II, although fibrillary gliosis associated with the CNS damage was clearly seen. The costimulatory molecules B7-1 and B7-2 were expressed on the surface of most MHC class II-positive cells in the CNS, at levels exceeding those found in the spleens of the infected mice. Immunohistochemistry revealed that B7-1 and B7-2 colocalized on large F4/80+ macrophages/microglia in the spinal cord lesions. In contrast, CD4+ T cells in the lesions expressed mainly B7-2, which was found primarily on blastoid CD4+ T cells located toward the periphery of the lesions. Most interestingly, plastic-adherent cells freshly isolated from the spinal cords of TMEV-infected mice were able to process and present TMEV and horse myoglobin to antigen-specific T-cell lines. Furthermore, these cells were able to activate a TMEV epitope-specific T-cell line in the absence of added antigen, providing conclusive evidence for the endogenous processing and presentation of virus epitopes within the CNS of persistently infected SJL/J mice.Theiler’s murine encephalomyelitis virus (TMEV) is a picornavirus that induces a lifelong persistent central nervous system (CNS) infection leading to a chronic CNS demyelinating disease when inoculated intracerebrally into susceptible strains of mice. Infected mice develop progressive symptoms of gait disturbance, spastic hind limb paralysis, and urinary incontinence (39), histologically related to perivascular and parenchymal mononuclear cell infiltration and demyelination of white matter tracts within the spinal cord (8, 9, 38). Several lines of evidence have demonstrated that demyelination is immunologically mediated. These include the ability of nonspecific immunosuppression with cyclophosphamide (37), antithymocyte serum (36), and anti-CD4 or anti-major histocompatibility complex (MHC) class II monoclonal antibodies (MAbs) (14, 16, 63) to inhibit or prevent disease and the ability of TMEV-specific tolerance to prevent induction of disease (28). In the highly susceptible SJL/J mouse strain, current evidence indicates that the myelin damage is initiated by TMEV-specific CD4+ T cells targeting virus antigen (16, 28, 45, 46, 54), while the chronic stage of the disease also involves CD4+ myelin epitope-specific T cells primed via epitope spreading (48). Thus, the immune response itself may be deleterious to CNS function, as exemplified in humans by multiple sclerosis (MS), for which TMEV infection serves as a model.The identity of the cells responsible for initiating and sustaining immune responses in the CNS remains controversial. The CNS lacks normal lymphatic circulation and tissue and is shielded from the systemic circulation by a specialized continuous vascular endothelium (6). There are specialized cells within the CNS with the potential to present antigens to T cells. In vitro, astrocytes (11, 59) and microglia (3, 13), particularly when treated with gamma interferon (IFN-γ), are capable of expressing MHC class II and presenting antigens to T cells. However, studies such as these have relied on the ability to isolate and continuously culture cells from neonatal or embryonic brain and have assumed that such cells are representative of the adult populations in vivo. Antigen presentation by neonatal cells in long-term culture may not faithfully reproduce the in vivo state in adult animals, as the ability of microglia directly isolated from adult rats to present myelin basic protein (MBP) to T-cell lines in vitro was found to differ from that of neonatally derived microglia (12). In addition, studies using allogeneic bone marrow chimeras between strains of mice or rats have generally supported the idea that cells of hematopoietic origin, i.e., microglia and macrophages, are the principal antigen-presenting cells (APCs) in the CNS active during the initiation of experimental autoimmune encephalomyelitis (EAE) (20, 22, 50). Although they are much more abundant than microglia, astrocytes are less potent when inducing EAE in chimeras (50).The role of antigen presentation in the CNS during TMEV-induced demyelination has not been addressed directly. We previously showed that a relatively large fraction of the CD4+, but not CD8+, T cells isolated from the spinal cords of TMEV-infected mice expressed high-affinity interleukin-2 (IL-2) receptor (IL-2R), a marker of recent T-cell activation. In addition, TMEV-specific CD4+ T cells could be demonstrated in the spinal cord infiltrates of TMEV-infected mice (54). This finding raises the possibility that T cells are locally activated within the target tissue and participate directly in the pathogenesis of disease. Macrophages (5, 41, 56), astrocytes (7, 56), and oligodendroglia (55, 56) in TMEV-infected mice contain virus and conceivably could present viral antigens to pathogenic CD4+ T cells within the CNS. Isolated microglia (34) and astrocytes (17) have been shown to support persistent viral infection in vitro, and astrocytes derived from neonatal mice have been shown to present TMEV to T cells in vitro (2). To examine whether CNS cells present viral antigens and participate in the pathogenesis of TMEV-induced demyelination, the expression of MHC class II and B7 costimulatory molecules was examined in detail. Based on our previous results showing that a large proportion of CD4+ T cells isolated from the CNS of TMEV-infected mice bear markers of recent activation, we also asked if mononuclear cells isolated from the CNS of TMEV-infected mice were capable of presenting viral antigens leading to the functional activation of Th1 lines in vitro.  相似文献   

12.
The Chediak-Higashi syndrome (CHS) is a human recessive autosomal disease caused by mutations in a single gene encoding a protein of unknown function, called lysosomal-trafficking regulator. All cells in CHS patients bear enlarged lysosomes. In addition, T- and natural killer cell cytotoxicity is defective in these patients, causing severe immunodeficiencies. We have analyzed major histocompatibility complex class II functions and intracellular transport in Epstein Barr Virus–transformed B cells from CHS patients. Peptide loading onto major histocompatibility complex class II molecules and antigen presentation are strongly delayed these cells. A detailed electron microscopy analysis of endocytic compartments revealed that only lysosomal multilaminar compartments are enlarged (reaching 1–2 μm), whereas late multivesicular endosomes have normal size and morphology. In contrast to giant multilaminar compartments that bear most of the usual lysosomal markers in these cells (HLA-DR, HLA-DM, Lamp-1, CD63, etc.), multivesicular late endosomes displayed reduced levels of all these molecules, suggesting a defect in transport from the trans-Golgi network and/or early endosomes into late multivesicular endosomes. Further insight into a possible mechanism of this transport defect came from immunolocalizing the lysosomal trafficking regulator protein, as antibodies directed to a peptide from its COOH terminal domain decorated punctated structures partially aligned along microtubules. These results suggest that the product of the Lyst gene is required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules.Major histocompatibility complex (MHC)1 class II molecules are composed of an αβ dimer that associates in the ER with a third membrane molecule, the invariant chain (Ii; 33, 24). The αβ−Ii chain complexes are transported via the Golgi apparatus to the endocytic pathway, directed by a signal localized in the cytoplasmic tail of Ii chain (7, 41). Ii chain is then degraded (12), and upon complete removal of the remaining Ii fragments (60), antigenic peptides are loaded onto class II molecules under the control of HLA-DM (65, 22).Ii chain cleavage and antigen processing to fitting peptides occurs in endosomal and/or lysosomal compartments (24). Depending on the species origin of the cell, cell types, or even on the maturation status in the case of dendritic cells, accumulation of MHC class II molecules may occur in different endocytic compartments (43, 51). In human Epstein Barr virus–transformed B (EBV-B) cells, HLA-DR molecules accumulate in lysosomal compartments named MHC class II compartments (MIICs; 49). In murine splenic lipopolysaccharide-activated B cells (18) as well as in macrophages and human melanoma cells (30, 52), MHC class II is found all along the endocytic pathway, from early endosomes to lysosomes. In contrast, A20 murine B lymphoma cells accumulate MHC class II molecules in endosomal compartments, the class II vesicles (2, 4), whereas few class II molecules are found in conventional endosomes and lysosomes. However, upon inhibition of Ii chain degradation, class II molecules redistribute into lysosomal compartments (14).Recent results from the laboratory of H. Geuze (50, 35) showed that the distribution of MHC class II molecules in EBV-B cells is not as restricted as initially envisioned. Indeed, HLA-DR accumulates in two types of compartments: (a) in endosomes containing multiple internal vesicles that are reached by fluid phase markers after 20–30 min of internalization and contain some Ii chain (multivesicular late endosomes); and (b) in vesicles containing internal membranes organized in onion-like structures that accumulate fluid phase markers only after 60 min and contain no Ii chain (multilaminar lysosomal compartments). Both types of compartments also contain Lamp1/2, CD63, and HLA-DM.The functional relevance of this heterogeneity of endocytic MHC class II–containing compartments is still unclear, and the precise role of multivesicular and multilaminar endosomes in MHC class II transport and Ii chain degradation is not known. Moreover, it has recently been shown that the antigenic peptides generated in endosomal and lysosomal compartments might not be the same (30). In addition, we have recently shown that antigen internalization through different membrane receptors that may deliver antigens to particular endocytic compartments results in presentation of different antigenic peptides (3).To evaluate the role of this heterogeneity of endocytic compartments in MHC class II transport and function, we examined EBV-B cells of patients suffering from a rare genetic immunodeficiency disease, the Chediak-Higashi Syndrome (CHS), which affects the morphology and function of endocytic compartments. CHS results from mutations in a gene encoding a large cytosolic protein called lysosomal trafficking regulator (LYST), which displays limited sequence homology to a regulatory subunit of the yeast phosphatidyl-inositol-3 kinase (PI3K), VPS15 (9, 45). LYST also includes several WD40 and HEAT/ARM domains, a domain of limited homology to stathmin, as well as a unique domain that has been called BEACH (9, 8, 10, 45).Despite having identified several subdomains in the CHS protein, the precise function of the protein is not known. We do know, however, that mutations in this gene result in immunological disorders and susceptibility to multiple childhood infections. The lysosomal compartments in all cell types of CHS patients are enlarged, reaching over 1 μm/vesicle (70). In hematopoietic cells, including T lymphocytes, NK cells, and granulocytes, cytotoxicity is defective, most likely because of a defect in regulated secretion (61, 29, 6). In nonhematopoietic cells such as melanocytes and kidney cells, enlarged lysosomal morphology and defects in lysosomal enzyme secretion have been reported (15). It is yet unclear whether the defect in the secretory function of lysosomes in hematopoietic cells is a consequence or a cause of the abnormal lysosomal morphology. It is also possible that both phenotypes arise from a unique upstream defect in the endocytic pathway.Here we show that antigen presentation and MHC class II intracellular transport are affected in EBV-B cells from CHS patients. Surprisingly, only lysosomal multilaminar MHC class II–containing compartments are enlarged, while multivesicular late endosomes displayed normal size and morphology. However, a severe reduction in the staining of multivesicular endosomes for MHC class II, Lamp 1/2, CD63, CD82, and β-hexosaminidase was observed, suggesting that transport of these markers from the TGN and/or early endosomes into late endosomes is affected. Missorting of resident lysosomal proteins to the plasma membrane and early endosomes was also observed, as well as a striking redistribution of the cation-dependent mannose-6-phosphate receptor (CD-MPR) into giant multilaminar lysosomes. In addition, we showed that LYST partially colocalizes with microtubules, which have previously been shown to play a critical role in transport from early to late endosomes (19). Together, these results show severe missorting of membrane proteins along the endocytic pathway of CHS cells, and suggest that LYST may be directly involved in microtubule-dependent transport into late endocytic compartments.  相似文献   

13.
14.
15.
Comprehensive analysis of the complex nature of the Human Leukocyte Antigen (HLA) class II ligandome is of utmost importance to understand the basis for CD4+ T cell mediated immunity and tolerance. Here, we implemented important improvements in the analysis of the repertoire of HLA-DR-presented peptides, using hybrid mass spectrometry-based peptide fragmentation techniques on a ligandome sample isolated from matured human monocyte-derived dendritic cells (DC). The reported data set constitutes nearly 14 thousand unique high-confident peptides, i.e. the largest single inventory of human DC derived HLA-DR ligands to date. From a technical viewpoint the most prominent finding is that no single peptide fragmentation technique could elucidate the majority of HLA-DR ligands, because of the wide range of physical chemical properties displayed by the HLA-DR ligandome. Our in-depth profiling allowed us to reveal a strikingly poor correlation between the source proteins identified in the HLA class II ligandome and the DC cellular proteome. Important selective sieving from the sampled proteome to the ligandome was evidenced by specificity in the sequences of the core regions both at their N- and C- termini, hence not only reflecting binding motifs but also dominant protease activity associated to the endolysosomal compartments. Moreover, we demonstrate that the HLA-DR ligandome reflects a surface representation of cell-compartments specific for biological events linked to the maturation of monocytes into antigen presenting cells. Our results present new perspectives into the complex nature of the HLA class II system and will aid future immunological studies in characterizing the full breadth of potential CD4+ T cell epitopes relevant in health and disease.Human Leukocyte Antigen (HLA)1 class II molecules on professional antigen presenting cells such as dendritic cells (DC) expose peptide fragments derived from exogenous and endogenous proteins to be screened by CD4+ T cells (1, 2). The activation and recruitment of CD4+ T cells recognizing disease-related peptide antigens is critical for the development of efficient antipathogen or antitumor immunity. Furthermore, the presentation of self-peptides and their interaction with CD4+ T cells is essential to maintain immunological tolerance and homeostasis (3). Knowledge of the nature of HLA class II-presented peptides on DC is of great importance to understand the rules of antigen processing and peptide binding motifs (4), whereas the identity of disease-related antigens may provide new knowledge on immunogenicity and leads for the development of vaccines and immunotherapy (5, 6).Mass spectrometry (MS) has proven effective for the analysis HLA class II-presented peptides (4, 7, 8). MS-based ligandome studies have demonstrated that HLA class II molecules predominantly present peptides derived from exogenous proteins that entered the cells by endocytosis and endogenous proteins that are associated with the endo-lysosomal compartments (4). Yet proteins residing in the cytosol, nucleus or mitochondria can also be presented by HLA class II molecules, primarily through autophagy (911). Multiple studies have mapped the HLA class II ligandome of antigen presenting cells in the context of infectious pathogens (12), autoimmune diseases (1317) or cancer (14, 18, 19), or those that are essential for self-tolerance in the human thymus (3, 20). Notwithstanding these efforts, and certainly not in line with the extensive knowledge on the HLA class I ligandome (21), the nature of the HLA class II-presented peptide repertoire and particular its relationship to the cellular source proteome remains poorly understood.To advance our knowledge on the HLA-DR ligandome on activated DC without having to deal with limitations in cell yield from peripheral human blood (12, 21, 22) or tissue isolates (3), we explored the use of MUTZ-3 cells. This cell line has been used as a model of human monocyte-derived DCs. MUTZ-3 cells can be matured to act as antigen presenting cells and express then high levels of HLA class II molecules, and can be propagated in vitro to large cell densities (2325). We also evaluated the performance of complementary and hybrid MS fragmentation techniques electron-transfer dissociation (ETD), electron-transfer/higher-energy collision dissociation (EThcD) (26), and higher-energy collision dissociation (HCD) to sequence and identify the HLA class II ligandome. Together this workflow allowed for the identification of an unprecedented large set of about 14 thousand unique peptide sequences presented by DC derived HLA-DR molecules, providing an in-depth view of the complexity of the HLA class II ligandome, revealing underlying features of antigen processing and surface-presentation to CD4+ T cells.  相似文献   

16.
17.
18.
The human JC polyomavirus (JCV) is the etiologic agent of the fatal central nervous system (CNS) demyelinating disease progressive multifocal leukoencephalopathy (PML). PML typically occurs in immunosuppressed patients and is the direct result of JCV infection of oligodendrocytes. The initial event in infection of cells by JCV is attachment of the virus to receptors present on the surface of a susceptible cell. Our laboratory has been studying this critical event in the life cycle of JCV, and we have found that JCV binds to a limited number of cell surface receptors on human glial cells that are not shared by the related polyomavirus simian virus 40 (C. K. Liu, A. P. Hope, and W. J. Atwood, J. Neurovirol. 4:49–58, 1998). To further characterize specific JCV receptors on human glial cells, we tested specific neuraminidases, proteases, and phospholipases for the ability to inhibit JCV binding to and infection of glial cells. Several of the enzymes tested were capable of inhibiting virus binding to cells, but only neuraminidase was capable of inhibiting infection. The ability of neuraminidase to inhibit infection correlated with its ability to remove both α(2-3)- and α(2-6)-linked sialic acids from glial cells. A recombinant neuraminidase that specifically removes the α(2-3) linkage of sialic acid had no effect on virus binding or infection. A competition assay between virus and sialic acid-specific lectins that recognize either the α(2-3) or the α(2-6) linkage revealed that JCV preferentially interacts with α(2-6)-linked sialic acids on glial cells. Treatment of glial cells with tunicamycin, but not with benzyl N-acetyl-α-d-galactosaminide, inhibited infection by JCV, indicating that the sialylated JCV receptor is an N-linked glycoprotein. As sialic acid containing glycoproteins play a fundamental role in mediating many virus-cell and cell-cell recognition processes, it will be of interest to determine what role these receptors play in the pathogenesis of PML.Approximately 70% of the human population worldwide is seropositive for JC virus (JCV). Like other polyomaviruses, JCV establishes a lifelong latent or persistent infection in its natural host (40, 49, 50, 68, 72). Reactivation of JCV in the setting of an underlying immunosuppressive illness, such as AIDS, is thought to lead to virus dissemination to the central nervous system (CNS) and subsequent infection of oligodendrocytes (37, 40, 66, 68). Reactivation of latent JCV genomes already present in the CNS has also been postulated to contribute to the development of progressive multifocal leukoencephalopathy (PML) following immunosuppression (19, 48, 55, 70, 75). Approximately 4 to 6% of AIDS patients will develop PML during the course of their illness (10). In the CNS, JCV specifically infects oligodendrocytes and astrocytes. Outside the CNS, JCV genomes have been identified in the urogenital system, in the lymphoid system, and in B lymphocytes (2, 17, 18, 30, 47, 59). In vitro, JCV infects human glial cells and, to a limited extent, human B lymphocytes (3, 4, 39, 41, 42). Recently, JCV infection of tonsillar stromal cells and CD34+ B-cell precursors has been described (47). These observations have led to the suggestion that JCV may persist in a lymphoid compartment and that B cells may play a role in trafficking of JCV to the CNS (4, 30, 47).Virus-receptor interactions play a major role in determining virus tropism and tissue-specific pathology associated with virus infection. Viruses that have a very narrow host range and tissue tropism, such as JCV, are often shown to interact with high affinity to a limited number of specific receptors present on susceptible cells (26, 44). In some instances, virus tropism is strictly determined by the presence of specific receptors that mediate binding and entry (7, 16, 27, 35, 46, 53, 56, 67, 73, 74, 76). In other instances, however, successful entry into a cell is necessary but not sufficient for virus growth (5, 8, 45, 57). In these cases, additional permissive factors that interact with viral regulatory elements are required.The receptor binding characteristics of several polyomaviruses have been described. The mouse polyomavirus (PyV) receptor is an N-linked glycoprotein containing terminal α(2-3)-linked sialic acid (1214, 22, 28). Both the large and small plaque strains of PyV recognize α(2-3)-linked sialic acid. The small-plaque strain also recognizes a branched disialyl structure containing α(2-3)- and α(2-6)-linked sialic acids. Neither strain recognizes straight-chain α(2-6)-linked sialic acid. The ability of the large- and small-plaque strains of PyV to differentially recognize these sialic acid structures has been precisely mapped to a single amino acid in the major virus capsid protein VP1 (21). The large-plaque strains all contain a glycine at amino acid position 92 in VP1, and the small-plaque strains all contain a negatively charged glutamic acid at this position (21). In addition to forming small or large plaques, these strains also differ in the ability to induce tumors in mice (20). This finding suggests that receptor recognition plays an important role in the pathogenesis of PyV.The cell surface receptor for lymphotropic papovavirus (LPV) is an O-linked glycoprotein containing terminal α(2-6)-linked sialic acid (26, 33, 34). Infection with LPV is restricted to a subset of human B-cell lines, and recognition of specific receptors is a major determinant of the tropism of LPV for these cells (26).Unlike the other members of the polyomavirus family, infection of cells by simian virus 40 (SV40) is independent of cell surface sialic acids. Instead, SV40 infection is mediated by major histocompatibility complex (MHC)-encoded class I proteins (5, 11). MHC class I proteins also play a role in mediating the association of SV40 with caveolae, a prerequisite for successful targeting of the SV40 genome to the nucleus of a cell (1, 63). Not surprisingly, SV40 has been shown not to compete with the sialic acid-dependent polyomaviruses for binding to host cells (15, 26, 38, 58).Very little is known about the early steps of JCV binding to and infection of glial cells. Like other members of the polyomavirus family, JCV is known to interact with cell surface sialic acids (51, 52). A role for sialic acids in mediating infection of glial cells has not been described. It is also not known whether the sialic acid is linked to a glycoprotein or a glycolipid. In a previous report, we demonstrated that JCV bound to a limited number of cell surface receptors on SVG cells that were not shared by the related polyomavirus SV40 (38). In this report, we demonstrate that virus binding to and infection of SVG cells is dependent on an N-linked glycoprotein containing terminal α(2-3)- and α(2-6)-linked sialic acids. Competitive binding assays with sialic acid-specific lectins suggest that the virus preferentially interacts with α(2-6)-linked sialic acids. We are currently evaluating the role of this receptor in determining the tropism of JCV for glial cells and B cells.  相似文献   

19.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

20.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号