首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex I (EC 1.6.99.3) of the bacterium Escherichia coli is considered to be the minimal form of the type I NADH dehydrogenase, the first enzyme complex in the respiratory chain. Because of its small size and relative simplicity, the E. coli enzyme has become a model used to identify and characterize the mechanism(s) by which cells regulate the synthesis and assembly of this large respiratory complex. To begin dissecting the processes by which E. coli cells regulate the expression of nuo and the assembly of complex I, we undertook a genetic analysis of the nuo locus, which encodes the 14 Nuo subunits comprising E. coli complex I. Here we present the results of studies, performed on an isogenic collection of nuo mutants, that focus on the physiological, biochemical, and molecular consequences caused by the lack of or defects in several Nuo subunits. In particular, we present evidence that NuoG, a peripheral subunit, is essential for complex I function and that it plays a role in the regulation of nuo expression and/or the assembly of complex I.

Complex I (NADH:ubiquinone oxidoreductase; EC 1.6.99.3), a type I NADH dehydrogenase that couples the oxidation of NADH to the generation of a proton motive force, is the first enzyme complex of the respiratory chain (2, 35, 47). The Escherichia coli enzyme, considered to be the minimal form of complex I, consists of 14 subunits instead of the 40 to 50 subunits associated with the homologous eukaryotic mitochondrial enzyme (17, 29, 30, 4850). E. coli also possesses a second NADH dehydrogenase, NDH-II, which does not generate a proton motive force (31). E. coli complex I resembles eukaryotic complex I in many ways (16, 17, 30, 49): it performs the same enzymatic reaction and is sensitive to a number of the same inhibitors, it consists of subunits homologous to those found in all proton-translocating NADH:ubiquinone oxidoreductases studied thus far, it is comprised of a large number of subunits relative to the number that comprise other respiratory enzymes, and it contains flavin mononucleotide and FeS center prosthetic groups. Additionally, it possesses an L-shaped topology (14, 22) like that of its Neurospora crassa homolog (27), and it consists of distinct fragments or subcomplexes. Whereas eukaryotic complex I can be dissected into a peripheral arm and a membrane arm, the E. coli enzyme consists of three subcomplexes referred to as the peripheral, connecting, and membrane fragments (29) (Fig. (Fig.1A).1A). The subunit composition of these three fragments correlates approximately with the organization of the 14 structural genes (nuoA to nuoN) (49) of the nuo (for NADH:ubiquinone oxidoreductase) locus (Fig. (Fig.1B),1B), an organization that is conserved in several other bacteria, including Salmonella typhimurium (3), Paracoccus denitrificans (53), Rhodobacter capsulatus (12), and Thermus thermophilus (54). The 5′ half of the locus contains a promoter (nuoP), previously identified and located upstream of nuoA (8, 49), and the majority of genes that encode subunits homologous to the nucleus-encoded subunits of eukaryotic complex I and to subunits of the Alcaligenes eutrophus NAD-reducing hydrogenase (17, 29, 30, 49). In contrast, the 3′ half contains the majority of the genes that encode subunits homologous to the mitochondrion-encoded subunits of eukaryotic complex I and to subunits of the E. coli formate-hydrogen lyase complex (17, 29, 30, 49). Whereas the nuclear homologs NuoE, NuoF, and NuoG constitute the peripheral fragment (also referred to as the NADH dehydrogenase fragment [NDF]), the nuclear homologs NuoB, NuoC, NuoD, and NuoI constitute the connecting fragment. The mitochondrial homologs NuoA, NuoH, NuoJ, NuoK, NuoL, NuoM, and NuoN constitute the membrane fragment (29). E. coli complex I likely evolved by fusion of preexisting protein assemblies constituting modules for electron transfer and proton translocation (1719, 30). Open in a separate windowFIG. 1Schematic of E. coli complex I and the nuo locus. Adapted with permission of the publisher (17, 29, 30, 49). (A) E. coli complex I is comprised of three distinct fragments: the peripheral (light gray), connecting (white), and membrane (dark gray) fragments (17, 29). The peripheral fragment (NDF) is comprised of the nuclear homologs NuoE, -F, and -G and exhibits NADH dehydrogenase activity that oxidizes NADH to NAD+; the connecting fragment is comprised of the nuclear homologs NuoB, -C, -D, and -I; and the membrane fragment is comprised of the mitochondrial homologs NuoA, -H, and -J to -N and catalyzes ubiquinone (Q) to its reduced form (QH2). FMN, flavin mononucleotide. (B) The E. coli nuo locus encodes the 14 Nuo subunits that constitute complex I. The 5′ half of the locus contains a previously identified promoter (nuoP) and the majority of genes that encode the peripheral and connecting subunits (light gray and white, respectively). The 3′ half of the locus contains the majority of the genes encoding the membrane subunits (dark gray). The 3′ end of nuoG encodes a C-Terminal region (CTR) of the NuoG subunit (hatched).Because of its smaller size and relative simplicity, researchers recently have begun to utilize complex I of E. coli, and that of its close relative S. typhimurium, to identify and characterize the mechanism(s) by which cells regulate the synthesis and assembly of this large respiratory complex (3, 8, 46) and to investigate the diverse physiological consequences caused by defects in this enzyme (4, 6, 10, 40, 59). Such defects affect the ability of cells to perform chemotaxis (40), to grow on certain carbon sources (4, 6, 10, 40, 57), to survive stationary phase (59), to perform energy-dependent proteolysis (4), to regulate the expression of at least one gene (32), and to maintain virulence (5).To begin dissecting the processes by which E. coli cells regulate the expression of nuo and the assembly of complex I, we undertook a genetic analysis of the nuo locus. Here, we present the results of studies, performed on an isogenic collection of nuo mutants, that focus on the physiological, biochemical, and molecular consequences caused by the lack of or defects in several Nuo subunits. In particular, we present evidence that NuoG, a peripheral subunit, is essential for complex I function and that it plays a role in the regulation of nuo expression and/or the assembly of complex I.  相似文献   

2.
Hyperhomocysteinemia has long been associated with atherosclerosis and thrombosis and is an independent risk factor for cardiovascular disease. Its causes include both genetic and environmental factors. Although homocysteine is produced in every cell as an intermediate of the methionine cycle, the liver contributes the major portion found in circulation, and fatty liver is a common finding in homocystinuric patients. To understand the spectrum of proteins and associated pathways affected by hyperhomocysteinemia, we analyzed the mouse liver proteome of gene-induced (cystathionine β-synthase (CBS)) and diet-induced (high methionine) hyperhomocysteinemic mice using two-dimensional difference gel electrophoresis and Ingenuity Pathway Analysis. Nine proteins were identified whose expression was significantly changed by 2-fold (p ≤ 0.05) as a result of genotype, 27 proteins were changed as a result of diet, and 14 proteins were changed in response to genotype and diet. Importantly, three enzymes of the methionine cycle were up-regulated. S-Adenosylhomocysteine hydrolase increased in response to genotype and/or diet, whereas glycine N-methyltransferase and betaine-homocysteine methyltransferase only increased in response to diet. The antioxidant proteins peroxiredoxins 1 and 2 increased in wild-type mice fed the high methionine diet but not in the CBS mutants, suggesting a dysregulation in the antioxidant capacity of those animals. Furthermore, thioredoxin 1 decreased in both wild-type and CBS mutants on the diet but not in the mutants fed a control diet. Several urea cycle proteins increased in both diet groups; however, arginase 1 decreased in the CBS+/− mice fed the control diet. Pathway analysis identified the retinoid X receptor signaling pathway as the top ranked network associated with the CBS+/− genotype, whereas xenobiotic metabolism and the NRF2-mediated oxidative stress response were associated with the high methionine diet. Our results show that hyperhomocysteinemia, whether caused by a genetic mutation or diet, alters the abundance of several liver proteins involved in homocysteine/methionine metabolism, the urea cycle, and antioxidant defense.Homocysteine (Hcy)1 is a thiol-containing amino acid that is produced in every cell of the body as an intermediate of the methionine cycle (Fig. 1, Reactions 1–5) (1). Once formed, the catabolism of homocysteine occurs via three enzymatic pathways. 1) Hcy is remethylated back to methionine using vitamin B12-dependent methionine synthase (Fig. 1, Reaction 4) and/or 2) betaine-homocysteine methyltransferase (BHMT) (Fig. 1, Reaction 5), and 3) Hcy is converted to cysteine via the transsulfuration pathway using CBS and γ-cystathionase (Fig. 1, Reactions 6 and 7). Under normal conditions ∼40–50% of the Hcy that is produced in the liver is remethylated, ∼40–50% is converted to cysteine, and a small amount is exported (13). However, when Hcy production is increased (i.e. increased dietary methionine/protein intake) or when Hcy catabolism is decreased (i.e. CBS deficiency or B vitamin deficiencies), excess Hcy is exported into the extracellular space, resulting in hyperhomocysteinemia (15).Open in a separate windowFig. 1.Homocysteine metabolism in liver and kidney. In classical homocystinuria, the initial enzyme of the transsulfuration pathway, CBS (Reaction 6), is deficient. MTHF, methylenetetrahydrofolate; THF, tetrahydrofolate; DHF, dihydrofolate; MeCbl, methylcobalamin; DMG, dimethylglycine; PLP, pyridoxal 5′-phosphate.Homocystinuria was first described in the 1960s by Carson et al. (6): they observed 10 pediatric patients with severely elevated levels of Hcy in the urine and hypermethioninemia. Normal concentrations of plasma total homocysteine (tHcy) range from 5 to 12 μm (7); however, in homocystinuria, tHcy levels can exceed 100 μm. Homocystinuric patients present with mental retardation, abnormal bone growth, fine hair, malar flush, and dislocation of the lens of the eye, and most die from premature cardiovascular disease (6, 8). Autopsy findings indicate widespread thromboembolism, arteriosclerosis, and fatty livers (6, 8). Mudd et al. (9, 10) identified the cause of homocystinuria as a defect in the enzyme cystathionine β-synthase. A recent study of newborn infants in Denmark estimated the birth prevalence for CBS heterozygosity to be about 1:20,000 (11).Plasma tHcy concentrations are also directly correlated with dietary methionine/protein intake (12, 13). Guttormsen et al. (13) demonstrated that a protein-rich meal affected tHcy for at least 8–24 h. When normal subjects were fed a low protein-containing breakfast (12–15 g), plasma methionine levels increased slightly after 2 h (22.5–27.5 μm), but tHcy levels did not change significantly. However, when these same subjects were fed a high protein meal (52 g), plasma methionine levels peaked after 4 h (38 μm), and tHcy rose steadily until a maximum level was reached 8 h postmeal (7.6 versus 8.5 μm) (13). Thus, the following questions can be raised. How does the hepatic proteome respond to a hyperhomocysteinemic diet, and are the changes that accompany such a diet the same as or different from those that may be observed in gene-induced hyperhomocysteinemia?Because hyperhomocysteinemia is a strong independent risk factor for cardiovascular, cerebrovascular, and peripheral vascular disease, most of the current research has focused on the mechanisms involved in Hcy-induced endothelial dysfunction (1424). The results of those studies have concluded that Hcy induces intracellular oxidative stress by generating ROS, which in turn lead to decreased bioavailable nitric oxide (NO), altered gene expression, increased endoplasmic reticulum stress, and activation of cholesterol biosynthesis. Also, several studies have examined the association between hyperhomocysteinemia and alcoholic liver disease, but few have looked at the effect of Hcy on the non-alcoholic liver even though fatty liver is a constant finding in homocystinuria (6, 8), and the liver is the major source of circulating Hcy (4, 5, 10). We hypothesize that 1) the liver proteome will respond to hyperhomocysteinemia by altering the expression of proteins involved in methionine/homocysteine metabolism and antioxidant defense and that 2) the set of proteins that are expressed when hyperhomocysteinemia is induced by CBS deficiency will differ from those expressed as a result of a high methionine diet. In the present study, we use a well established mouse model of CBS deficiency to study the early changes in the liver proteome that accompany hyperhomocysteinemia (25).  相似文献   

3.
In this study, we report that the purified wild-type FANCI (Fanconi anemia complementation group I) protein directly binds to a variety of DNA substrates. The DNA binding domain roughly encompasses residues 200–1000, as suggested by the truncation study. When co-expressed in insect cells, a small fraction of FANCI forms a stable complex with FANCD2 (Fanconi anemia complementation group D2). Intriguingly, the purified FANCI-FANCD2 complex preferentially binds to the branched DNA structures when compared with either FANCI or FANCD2 alone. Co-immunoprecipitation with purified proteins indicates that FANCI interacts with FANCD2 through its C-terminal amino acid 1001–1328 fragment. Although the C terminus of FANCI is dispensable for direct DNA binding, it seems to be involved in the regulation of DNA binding activity. This notion is further enhanced by two C-terminal point mutations, R1285Q and D1301A, which showed differentiated DNA binding activity. We also demonstrate that FANCI forms discrete nuclear foci in HeLa cells in the absence or presence of exogenous DNA damage. The FANCI foci are colocalized perfectly with FANCD2 and partially with proliferating cell nuclear antigen irrespective of mitomycin C treatment. An increased number of FANCI foci form and become resistant to Triton X extraction in response to mitomycin C treatment. Our data suggest that the FANCI-FANCD2 complex may participate in repair of damaged replication forks through its preferential recognition of branched structures.Fanconi anemia (FA)3 is a genetic disorder characterized by chromosome instability, predisposition to cancer, hypersensitivity to DNA cross-linking agents, developmental abnormalities, and bone marrow failure (19). There are at least 13 distinct FA complementation groups, each of which is associated with an identified gene (2, 9, 10). Eight of them are components of the FA core complex (FANC A, B, C, E, F, G, L, and M) that is epistatic to the monoubiquitination of both FANCI and FANCD2, a key event to initiate interstrand cross-link (ICL) repair (2, 9, 11). Downstream of or parallel to the FANCI and FANCD2 monoubiquitination are the proteins involved in double strand break repair and breast cancer susceptibility (i.e. FANCD1/BRCA2, FANCJ/BRIP1, and FANCN/PALB2) (2, 9).FANCI is the most recently identified FA gene (1113). FANCI protein is believed to form a FANCI-FANCD2 (ID) complex with FANCD2, because they co-immunoprecipitate with each other from cell lysates and their stabilities are interdependent of each other (9, 11, 13). FANCI and FANCD2 are paralogs to each other, since they share sequence homology and co-evolve in the same species (11). Both FANCI and FANCD2 can be phosphorylated by ATR/ATM (ataxia telangiectasia and Rad3-related/ataxia telangiectasia-mutated) kinases under genotoxic stress (11, 14, 15). The phosphorylation of FANCI seems to function as a molecular switch to turn on the FA repair pathway (16). The monoubiquitination of FANCD2 at lysine 561 plays a critical role in cellular resistance to DNA cross-linking agents and is required for FANCD2 to form damage-induced foci with BRCA1, BRCA2, RAD51, FANCJ, FANCN, and γ-H2AX on chromatin during S phase of the cell cycle (1725). In response to DNA damage or replication stress, FANCI is also monoubiquitinated at lysine 523 and recruited to the DNA repair nuclear foci (11, 13). The monoubiquitination of both FANCI and FANCD2 depends on the FA core complex (11, 13, 26), and the ubiquitination of FANCI relies on the FANCD2 monoubiquitination (2, 11). In an in vitro minimally reconstituted system, FANCI enhances FANCD2 monoubiquitination and increases its specificity toward the in vivo ubiquitination site (27).FANCI is a leucine-rich peptide (14.8% of leucine residues) with limited sequence information to indicate which processes it might be involved in. Besides the monoubiquitination site Lys523 and the putative nuclear localization signals (Fig. 1A), FANCI contains both ARM (armadillo) repeats and a conserved C-terminal EDGE motif as FANCD2 does (11, 28). The EDGE sequence in FANCD2 is not required for monoubiquitination but is required for mitomycin C (MMC) sensitivity (28). The ARM repeats form α-α superhelix folds and are involved in mediating protein-protein interactions (11, 29). In addition, FANCI, at its N terminus, contains a leucine zipper domain (aa 130–151) that could be involved in mediating protein-protein or protein-DNA interactions (Fig. 1A) (3033). FANCD2, the paralog of FANCI, was reported to bind to double strand DNA ends and Holliday junctions (34).Open in a separate windowFIGURE 1.Purified human FANCI binds to DNA promiscuously. A, schematic diagram of predicted FANCI motifs and mutagenesis strategy to define the DNA binding domain. The ranges of numbers indicate how FANCI was truncated (e.g. 801–1328 represents FANCI-(801–1328)). NLS, predicted nuclear localization signal (aa 779–795 and 1323–1328); K523, lysine 523, the monoubiquitination site. The leucine zipper (orange bars, aa 130–151), ARM repeats (green bars), and EDGE motif (blue bars) are indicated. Red bars with a slash indicate the point mutations shown on the left. B, SDS-PAGE of the purified proteins stained with Coomassie Brilliant Blue R-250. R1285Q and D1301A are two point mutants of FANCI. All FANCI variants are tagged by hexahistidine. FANCD2 is in its native form. Protein markers in kilodaltons are indicated. C, titration of WT-FANCI for the DNA binding activity. Diagrams of the DNA substrates are shown at the top of each set of reactions. *, 32P-labeled 5′-end. HJ, Holliday junction. Concentrations of FANCI were 0, 20, 40, 60, and 80 nm (ascending triangles). The substrate concentration was 1 nm. Protein-DNA complex is indicated by an arrow. D, supershift assay. 1 nm of ssDNA was incubated with PBS (lane 1), 80 nm FANCI alone (lane 2), and 80 nm FANCI preincubated with a specific FANCI antibody (lane 3) in the condition described under “Experimental Procedures.”In order to delineate the function of FANCI protein, we purified the recombinant FANCI from the baculovirus expression system. In this study, we report the DNA binding activity of FANCI. Unlike FANCD2, FANCI binds to different DNA structures, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), 5′-tailed, 3′-tailed, splayed arm, 5′-flap, 3′-flap, static fork, and Holliday junction with preference toward branched structures in the presence of FANCD2. Our data suggest that the dynamic DNA binding activity of FANCI and the preferential recognition of branched structures by the ID complex are likely to be the mechanisms to initiate downstream repair events.  相似文献   

4.
Four class IIa bacteriocins (pediocin PA-1, enterocin A, sakacin P, and curvacin A) were purified to homogeneity and tested for activity toward a variety of indicator strains. Pediocin PA-1 and enterocin A inhibited more strains and had generally lower MICs than sakacin P and curvacin A. The antagonistic activity of pediocin-PA1 and enterocin A was much more sensitive to reduction of disulfide bonds than the antagonistic activity of sakacin P and curvacin A, suggesting that an extra disulfide bond that is present in the former two may contribute to their high levels of activity. The food pathogen Listeria monocytogenes was among the most sensitive indicator strains for all four bacteriocins. Enterocin A was most effective in inhibiting Listeria, having MICs in the range of 0.1 to 1 ng/ml. Sakacin P had the interesting property of being very active toward Listeria but not having concomitant high levels of activity toward lactic acid bacteria. Strains producing class IIa bacteriocins displayed various degrees of resistance toward noncognate class IIa bacteriocins; for the sakacin P producer, it was shown that this resistance is correlated with the expression of immunity genes. It is hypothesized that variation in the presence and/or expression of such immunity genes accounts in part for the remarkably large variation in bacteriocin sensitivity displayed by lactic acid bacteria.Many lactic acid bacteria (LAB), including members of the genera Lactococcus, Lactobacillus, Carnobacterium, Enterococcus, and Pediococcus, are known to secrete small, ribosomally synthesized antimicrobial peptides called bacteriocins (26, 29, 34). Some of these peptides undergo posttranslational modifications (class I bacteriocins), whereas others are not modified (class II bacteriocins) (29, 34). Class II bacteriocins contain between 30 and 60 residues and are usually positively charged at a neutral pH. Studies of a large number of class II bacteriocins have led to subgrouping of these compounds (29, 34). One of the subgroups, class IIa, contains bacteriocins that are characterized by the presence of YGNG and CXXXXCXV sequence motifs in their N-terminal halves as well as by their strong inhibitory effect on Listeria (e.g., 3, 4, 22, 23, 27, 28, 31, 38, 45) (Fig. (Fig.1).1). Because of their effectiveness against the food pathogen Listeria, class IIa bacteriocins have potential as antimicrobial agents in food and feed. Open in a separate windowFIG. 1Sequence alignment of class IIa bacteriocins. Residue numbering is according to the sequence of pediocin PA-1. Cysteine residues are printed in boldface; the two known class IIa bacteriocins with four cysteine residues are in the upper group. No attempt was made to optimize the alignment in the C-terminal halves of the peptides. Piscicolin 126 is identical to piscicocin V1a (4). Carnobacteriocin BM1 most probably is identical to piscicocin V1b (4). Sakacin P most probably is identical to bavaricin A (30). Curvacin A is identical to sakacin A (2). The consensus sequence includes residues conserved in at least 8 of the 12 sequences shown; 100% conserved residues are underlined.Class IIa bacteriocins act by permeabilizing the membrane of their target cells (1, 5, 6, 9, 10, 26, 28). The most recent studies on the mode of action of these bacteriocins indicate that antimicrobial activity does not require a specific receptor and is enhanced by (but not fully dependent on) a membrane potential (9, 28). Little is known about bacteriocin structure, and unravelling the relationships between structure and function is one of the great challenges in current bacteriocin research. A logical starting point for structure-function studies is a thorough study of the differences in activity and target cell specificity between naturally occurring homologous bacteriocins. A few such studies have been described, but these suffer from either a very limited number of tested indicator strains or the use of culture supernatants instead of purified bacteriocins (3, 4, 17, 45). The use of purified bacteriocins for comparative analyses is absolutely essential, since it is becoming increasingly evident that bacteriocin producers produce more than one bacteriocin (4, 8, 38, 48; this study).In the present study, the activities of four pure class IIa bacteriocins (pediocin PA-1, enterocin A, curvacin A, and sakacin P) (Fig. (Fig.1)1) were tested against a large number of LAB as well as several strains of the food pathogen Listeria monocytogenes. The bacteriocins were purified from their respective producer strains by use of an optimized purification protocol yielding highly pure samples. The contribution of disulfide formation was assessed and found to be important for activity. The effects of the purified bacteriocins on (noncognate) class IIa bacteriocin-producing strains are described, and the implications of our findings for immunity and resistance are discussed.  相似文献   

5.
6.
The FAD-dependent choline oxidase has a flavin cofactor covalently attached to the protein via histidine 99 through an 8α-N(3)-histidyl linkage. The enzyme catalyzes the four-electron oxidation of choline to glycine betaine, forming betaine aldehyde as an enzyme-bound intermediate. The variant form of choline oxidase in which the histidine residue has been replaced with asparagine was used to investigate the contribution of the 8α-N(3)-histidyl linkage of FAD to the protein toward the reaction catalyzed by the enzyme. Decreases of 10-fold and 30-fold in the kcat/Km and kcat values were observed as compared with wild-type choline oxidase at pH 10 and 25 °C, with no significant effect on kcat/KO using choline as substrate. Both the kcat/Km and kcat values increased with increasing pH to limiting values at high pH consistent with the participation of an unprotonated group in the reductive half-reaction and the overall turnover of the enzyme. The pH independence of both D(kcat/Km) and Dkcat, with average values of 9.2 ± 3.3 and 7.4 ± 0.5, respectively, is consistent with absence of external forward and reverse commitments to catalysis, and the chemical step of CH bond cleavage being rate-limiting for both the reductive half-reaction and the overall enzyme turnover. The temperature dependence of the Dkred values suggests disruption of the preorganization in the asparagine variant enzyme. Altogether, the data presented in this study are consistent with the FAD-histidyl covalent linkage being important for the optimal positioning of the hydride ion donor and acceptor in the tunneling reaction catalyzed by choline oxidase.A number of enzymes, including dehydrogenases (13), monooxygenases (47), halogenases (811), and oxidases (7, 12, 13), employ flavin cofactors (FAD or FMN) for their catalytic processes. About a tenth of all flavoproteins have been shown to contain a covalently attached cofactor, which may be linked at the C8M position via histidyl, tyrosyl, or cysteinyl side chains or at the C6M position via a cysteinyl side chain (14). Glucooligosaccharide oxidase (15, 16), hexose oxidase (17), and berberine bridge enzyme (18, 19) are examples of flavoproteins (FAD as cofactor) with both linkages present in one flavin molecule. The covalent linkages in flavin-dependent enzymes have been shown to stabilize protein structure (2022), prevent loss of loosely bound flavin cofactors (23), modulate the redox potential of the flavin microenvironment (20, 2327), facilitate electron transfer reactions (28), and contribute to substrate binding as in the case of the cysteinyl linkage (20). However, no study has implicated a mechanistic role of the flavin covalent linkages in enzymatic reactions in which a hydride ion is transferred by quantum mechanical tunneling.The discovery of quantum mechanical tunneling in enzymatic reactions, in which hydrogen atoms, protons, and hydride ions are transferred, has attracted considerable interest in enzyme studies geared toward understanding the mechanisms underlying the several orders of magnitudes in the rate enhancements of protein-catalyzed reactions compared with non-enzymatic ones. Tunneling mechanisms have been shown in a wide array of cofactor-dependent enzymes, including flavoenzymes. Examples of flavoenzymes in which the tunneling mechanisms have been demonstrated include morphinone reductase (29, 30), pentaerythritol tetranitrate reductase (29), glucose oxidase (3133), and choline oxidase (34). Mechanistic data on Class 2 dihydroorotate dehydrogenases, also with a flavin cofactor (FMN) covalently linked to the protein moiety (35, 36), could only propose a mechanism that is either stepwise or concerted with significant quantum mechanical tunneling for the hydride transfer from C6 and the deprotonation at C5 in the oxidation of dihydroorotate to orotate (37). This leaves choline oxidase as the only characterized enzyme with a covalently attached flavin cofactor (12, 38), where the oxidation of its substrate occurs unequivocally by quantum mechanical tunneling.Choline oxidase from Arthrobacter globiformis catalyzes the two-step FAD-dependent oxidation of the primary alcohol substrate choline to glycine betaine with betaine aldehyde, which is predominantly bound to the enzyme and forms a gem-diol species, as intermediate (Scheme 1). Glycine betaine accumulates in the cytoplasm of plants and bacteria as a defensive mechanism against stress conditions, thus making genetic engineering of relevant plants of economic interest (3945), and the biosynthetic pathway for the osmolyte is a potential drug target in human microbial infections of clinical interest (4648). The first oxidation step catalyzed by choline oxidase involves the transfer of a hydride ion from a deprotonated choline to the protein-bound flavin followed by reaction of the anionic flavin hydroquinone with molecular oxygen to regenerate the oxidized FAD (for a recent review see Ref. 50). The gem-diol choline, i.e. hydrated betaine aldehyde, is the substrate for the second oxidation step (49), suggesting that the reaction may follow a similar mechanism. The isoalloxazine ring of the flavin cofactor, which is buried within the protein, is physically constrained through a covalent linkage via the C(8) methyl of the flavin and the N(3) atom of the histidine side chain at position 99 (Fig. 1) (12). Also contributing to the physical constrain are the proximity of Ile-103 to the pyrimidine ring and the interactions of the backbone atoms of residues His-99 through Ile-103 with the isoalloxazine ring. The rigid positioning of the isoalloxazine ring could only permit a solvent-excluded cavity of ∼125 Å3 adjacent to the re face of the FAD to accommodate a 93-Å3 choline molecule in the substrate binding domain (12). Mechanistic data thus far obtained on choline oxidase, coupled with the crystal structure of the wild-type enzyme resolved to 1.86 Å, are consistent with a quantum tunneling mechanism for the hydride ion transfer occurring within a highly preorganized enzyme-substrate complex (Scheme 2) (12, 34, 50). Exploitation of the tunneling mechanism requires minimal independent movement of the hydride ion donor and acceptor, with the only dynamic motions permitted being the ones that promote the hydride transfer reaction.Open in a separate windowSCHEME 1.Two-step, four-electron oxidation of choline catalyzed by choline oxidase.Open in a separate windowFIGURE 1.x-ray crystal structure of the active site of wild-type choline oxidase resolved to 1.86 Å (PDB 2jbv). Note the significant distortion of the flavin ring at the C(4a) atom, which is due to the presence of a C(4a) adduct (69).Open in a separate windowSCHEME 2.The hydride ion transfer reaction from the α-carbon of the activated choline alkoxide species to the N(5) atom of the isoalloxazine ring of the enzyme-bound flavin in choline oxidase.In the present study, the contribution of the physically constrained flavin isoalloxazine ring to the reaction catalyzed by choline oxidase has been investigated in a variant enzyme in which the histidine residue at position 99 was replaced with an asparagine. The results suggest that, although not being required per se, the covalent linkage in choline oxidase contributes to the hydride tunneling reaction by either preventing independent movement or contributing to the optimal positioning of the flavin acting as hydride ion acceptor with respect to the alkoxide species acting as a donor. However, the covalent linkage is not required for the reaction.  相似文献   

7.
8.
The mechanisms by which mutant variants of Cu/Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis are not clearly understood. Evidence to date suggests that altered conformations of amyotrophic lateral sclerosis mutant SOD1s trigger perturbations of cellular homeostasis that ultimately cause motor neuron degeneration. In this study we correlated the metal contents and disulfide bond status of purified wild-type (WT) and mutant SOD1 proteins to changes in electrophoretic mobility and surface hydrophobicity as detected by 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence. As-isolated WT and mutant SOD1s were copper-deficient and exhibited mobilities that correlated with their expected negative charge. However, upon disulfide reduction and demetallation at physiological pH, both WT and mutant SOD1s underwent a conformational change that produced a slower mobility indicative of partial unfolding. Furthermore, although ANS did not bind appreciably to the WT holoenzyme, incubation of metal-deficient WT or mutant SOD1s with ANS increased the ANS fluorescence and shifted its peak toward shorter wavelengths. This increased interaction with ANS was greater for the mutant SOD1s and could be reversed by the addition of metal ions, especially Cu2+, even for SOD1 variants incapable of forming the disulfide bond. Overall, our findings support the notion that misfolding associated with metal deficiency may facilitate aberrant interactions of SOD1 with itself or with other cellular constituents and may thereby contribute to neuronal toxicity.The sequence of events by which more than 100 mutations in the gene encoding Cu/Zn-superoxide dismutase (SOD1)3 cause familial forms of amyotrophic lateral sclerosis (ALS) is unknown. Studies of purified SOD1 proteins and cellular or rodent models of SOD1-linked ALS suggest that impaired metal ion binding or misfolding of mutant SOD1 proteins in the cellular environment may be related to their toxicity (110). Available evidence suggests that partially unfolded mutant SOD1 species could contribute to motor neuron death by promoting abnormal interactions that produce cellular dysfunction (1116).In previous studies we characterized physicochemical properties of 14 different biologically metallated ALS SOD1 mutants (17) and demonstrated altered thermal stabilities of these mutants compared with wild-type (WT) SOD1 (18). These “as-isolated” SOD1 proteins, which contain variable amounts of copper and zinc, were broadly grouped into two classes based on their ability to incorporate and retain metal ions with high affinity. WT-like SOD1 mutants retain the ability to bind copper and zinc ions and exhibit dismutase activity similar to the normal enzyme, whereas metal binding region (MBR) mutants are significantly deficient in copper and/or zinc (17, 19). We also observed that ALS-associated SOD1 mutants were more susceptible than the WT enzyme to reduction of the intrasubunit disulfide bond between Cys-57 and Cys-146 (20). The significance of these results is that even WT-like mutants, which exhibit a nearly normal backbone structure (2123), may be vulnerable to destabilizing influences in vivo. Our group and others subsequently showed that the mutant SOD1 proteins share a susceptibility to increased hydrophobicity under conditions that reduce disulfide bonds and/or chelate metal ions (5) and that similar hydrophobic species exist in tissue lysates from mutant SOD1 transgenic mice (46). One consequence of such hydrophobic exposure could be the facilitation of abnormal interactions between the mutant enzymes and other cellular constituents (e.g. chaperones, mitochondrial components, or other targets), which might influence pathways leading to motor neuron death (15, 16, 2427).Accumulating evidence suggests that metal deficiency of SOD1 is an important factor that can influence SOD1 aggregation or neurotoxicity (4, 2833), but the metal-deficient states of SOD1 that are most relevant to ALS remain unclear. Zinc-deficient, copper-replete SOD1 species, which can be produced in vitro by adding copper to SOD1 that has been stripped of its metal ions at acidic pH, were shown to be toxic to motor neurons in culture (28). However, it has not been shown that zinc-deficient, copper-replete SOD1 is produced in vivo as a consequence of ALS mutations, and loading of copper into SOD1 by the copper chaperone for SOD1 (CCS) is not required for toxicity (34, 35). Furthermore, the MBR mutants have a disrupted copper site and have been found to be severely deficient in both zinc and copper (17, 30), yet expression of these SOD1s still produces motor neuron disease (1, 2, 30, 34, 36, 37).When recombinant human SOD1 was overexpressed in insect cells, we instead observed zinc-replete but copper-deficient species for most WT-like mutants, probably because the capacity of the copper-loading mechanism was exceeded (17). These preparations indicate that zinc can be efficiently incorporated into many WT-like mutants in vivo, and much of it is retained after purification. Furthermore, these copper-deficient biologically metallated proteins may be useful reagents to assess the influence of copper binding upon other properties of SOD1 mutants that may be relevant to their neurotoxicity.We previously observed that reduction of the Cys-57—Cys-146 disulfide bond facilitates the ability of metal chelators to alter the electrophoretic mobility and to increase the hydrophobicity of SOD1 mutants (5). This is consistent with the known properties of this linkage to stabilize the dimeric interface, to orient Arg-143 via a hydrogen bond from the carbonyl oxygen of Cys-57 to Arg-143-NH2, and to prevent metal ion loss (3840). However, it remains unclear whether the Cys-57—Cys-146 bond is required to prevent abnormal SOD1 hydrophobic exposure or whether the aberrant conformational change primarily results from metal ion loss. Ablation of the disulfide bond by the experimental (non-ALS) mutants C57S and C146S provides useful reagents to test the relative influence of the disulfide bond and copper binding upon SOD1 properties.In this study we sought to correlate the consequences of copper deficiency, copper and zinc deficiency, and disulfide reduction upon the hydrodynamic behavior and surface hydrophobicity of WT and representative mutant SOD1 enzymes (Fig. 1A). We quantitated the metal contents of as-isolated SOD1 proteins, detected changes in conformation or metal occupancy using native PAGE to assess their electrophoretic mobility, a measure of global conformational change, and correlated these changes to hydrophobic exposure using 1-anilinonaphthalene-8-sulfonic acid (ANS), which is very sensitive to local conformational changes. ANS is a small amphipathic dye (Fig. 1B) that has been used as a sensitive probe to detect hydrophobic pockets on protein surfaces (4144). Free ANS exhibits only weak fluorescence that is maximal near 520 nm, but when ANS binds to a hydrophobic site in a partially or fully folded protein, the fluorescence peak increases in amplitude and shifts to a shorter wavelength (42). ANS also has an anionic sulfonate group that can interact with cationic groups (e.g. Arg or Lys residues) through ion-pair formation which may be further strengthened by hydrophobic interactions (4346).Open in a separate windowFIGURE 1.A, WT SOD1 structure showing the position of the C57-C146 intrasubunit disulfide bond (S–S, yellow), bound copper and zinc ions, and ALS mutant residues. The residues altered in A4V, G85R, G93A, D124V, and S134N SOD1s are indicated as green spheres. The backbone of the β-barrel core and the loops is shown in a rainbow color, from blue at the amino terminus to red at the carboxyl terminus. The figure was generated using PyMOL (84) and PDB entry 1HL5 (22). B, chemical structure of ANS fluorophore.To evaluate further the importance of metal ion binding, we measured spectral changes related to the binding of cobalt and copper to the same SOD1 proteins. We observed that as-isolated WT-like mutants containing zinc could interact with copper ions to produce an electrophoretic mobility and decreased hydrophobicity resembling that of the fully metalated holo-WT SOD1. In contrast, we saw no evidence for copper binding to MBR mutants in a manner that alters their hydrodynamic properties or their hydrophobicity. Our data suggest that binding of both copper and zinc are important determinants of SOD1 conformation and that perturbation of such binding may be relevant to the ALS disease process.  相似文献   

9.
Fe2+ is now shown to weaken binding between ferritin and mitochondrial aconitase messenger RNA noncoding regulatory structures ((iron-responsive element) (IRE)-RNAs) and the regulatory proteins (IRPs), which adds a direct role of iron to regulation that can complement the well known regulatory protein modification and degradative pathways related to iron-induced mRNA translation. We observe that the Kd value increases 17-fold in 5′-untranslated region IRE-RNA·repressor complexes; Fe2+, is studied in the absence of O2. Other metal ions, Mn2+ and Mg2+ have similar effects to Fe2+ but the required Mg2+ concentration is 100 times greater than for Fe2+ or Mn2+. Metal ions also weaken ethidium bromide binding to IRE-RNA with no effect on IRP fluorescence, using Mn2+ as an O2-resistant surrogate for Fe2+, indicating that metal ions bound IRE-RNA but not IRP. Fe2+ decreases IRP repressor complex stability of ferritin IRE-RNA 5–10 times compared with 2–5 times for mitochondrial aconitase IRE-RNA, over the same concentration range, suggesting that differences among IRE-RNA structures contribute to the differences in the iron responses observed in vivo. The results show the IRE-RNA·repressor complex literally responds to Fe2+, selectively for each IRE-mRNA.Iron (e.g. ferrous sulfate, ferric citrate, and hemin) added to animal cells changes translation rates of messenger RNAs encoding proteins of iron traffic and oxidative metabolism (14). To cross cell membranes, iron ions are transported by membrane proteins such as DMT1 or carried on proteins such as transferrin. Inside the cells, iron is mainly in heme, FeS clusters, non-heme iron cofactors of proteins, and iron oxide minerals coated by protein nanocages (ferritins). Iron in transit is thought to be Fe2+ in labile “pools” accessible to small molecular weight chelators, and/or bound loosely by chaperones.When iron concentrations in the cells increase, a group of mRNAs with three-dimensional, noncoding structures in the 5′-untranslated region (UTR)3 are derepressed (Fig. 1A), i.e. the fraction of the mRNAs in mRNA·repressor protein complexes, which inhibit ribosome binding, decreases and the fraction of the mRNAs in polyribosomes increases (57). The three-dimensional, noncoding mRNA structure, representing a family of related structures, is called the iron-responsive element, or IRE, and the repressors are called iron regulatory proteins (IRPs). Together they are one of the most extensively studied eukaryotic messenger RNA regulatory systems (14). In addition to large numbers of cell studies, structures of IRE-RNAs are known from solution NMR (812), and the RNA·protein complex from x-ray crystallography (13). Recent data indicate that demetallation of IRP1 and disruption of the [4Fe-4S] cluster that inhibits IRP1 binding to RNA will be enhanced by phosphorylation and low iron concentrations (1, 2, 1416). Such results can explain the increased IRP1 binding to IRE-mRNAs and increased translational repression when iron concentrations are abnormally low. However, the mechanism to explain dissociation of IRE-RNA·IRP complexes, thereby allowing ribosome assembly and increased proteosomal degradation of IRPs (1, 2, 14, 15) (Fig. 1A), when high iron concentrations are abnormally high, is currently unknown.Open in a separate windowFIGURE 1.IRE-RNA·IRP complexes and a model for depression by excess iron. A, a representative model of iron-induced translation of 5′-UTR IRE-RNAs. This figure is modified from Ref. 7. B, IRE-RNA sites influenced by metal binding related to the crystal structure of the ferritin-IRE-RNA·IRP complex from Ref. 13. The figure was created by T. Tosha using Discovery Studio 1.6 and Protein Data Bank file 2IPY. ■, hydrated Mg2+, determined by solution NMR; ▴, Cu1+-1.10-phenanthroline, determined by RNA cleavage in O2.Metal ion binding changes conformation and function of most RNA classes, e.g. rRNA (17), tRNA (18, 19), ribozymes (2023), riboswitches (24, 25), possibly hammerhead mRNAs in mammals (26), and proteins. Although the effects of metal ion binding on eukaryotic mRNAs have not been extensively studied, Mg2+ is known to cause changes in conformation, shown by changes in radical cleavage sites of IRE-RNA with 1,10-phenanthrolene-iron and proton shifts in the one-dimensional NMR spectrum (12, 27). The Mg2+ effects are observed at low magnesium concentrations (0.1–0.5 mm) and low molar stoichiometries (1:1 and 2:1 = Mg:RNA).We hypothesized that Fe2+ could directly change the binding of the IRE-mRNA to the iron regulatory protein for several reasons. First, other metal ions influence the IRE-RNA structure (12, 27). Second, in IRE-RNA/IRP cocrystals there are exposed RNA sites in the IRE-RNA/IRP complex that are accessible for interactions (13) (Fig. 1B). Third, regions in the IRE-RNA are hypersensitive to Fe2+-EDTA/ascorbate/H2O2, suggesting selective interactions with metals and/or solvent (28). We now report that Fe2+ weakens IRE-RNA/IRP binding, whereas Mg2+ requires 100 times the concentration and Mn2+ is comparable with Fe2+; the Fe2+ effect was diminished in mutant IRE-RNA and IRE-RNA selective in wild type sequences: ferritin IRE-RNA > mt-aconitase IRE-RNA.  相似文献   

10.
11.
Mithramycin is an antitumor polyketide drug produced by Streptomyces argillaceus that contains two deoxysugar chains, a disaccharide consisting of two d-olivoses and a trisaccharide consisting of a d-olivose, a d-oliose, and a d-mycarose. From a cosmid clone (cosAR3) which confers resistance to mithramycin in streptomycetes, a 3-kb PstI-XhoI fragment was sequenced, and two divergent genes (mtmGI and mtmGII) were identified. Comparison of the deduced products of both genes with proteins in databases showed similarities with glycosyltransferases and glucuronosyltransferases from different sources, including several glycosyltransferases involved in sugar transfer during antibiotic biosynthesis. Both genes were independently inactivated by gene replacement, and the mutants generated (M3G1 and M3G2) did not produce mithramycin. High-performance liquid chromatography analysis of ethyl acetate extracts of culture supernatants of both mutants showed the presence of several peaks with the characteristic spectra of mithramycin biosynthetic intermediates. Four compounds were isolated from both mutants by preparative high-performance liquid chromatography, and their structures were elucidated by physicochemical methods. The structures of these compounds were identical in both mutants, and the compounds are suggested to be glycosylated intermediates of mithramycin biosynthesis with different numbers of sugar moieties attached to C-12a-O of a tetracyclic mithramycin precursor and to C-2-O of mithramycinone: three tetracyclic intermediates containing one sugar (premithramycin A1), two sugars (premithramycin A2), or three sugars (premithramycin A3) and one tricyclic intermediate containing a trisaccharide chain (premithramycin A4). It is proposed that the glycosyltransferases encoded by mtmGI and mtmGII are responsible for forming and transferring the disaccharide during mithramycin biosynthesis. From the structures of the new metabolites, a new biosynthetic sequence regarding late steps of mithramycin biosynthesis can be suggested, a sequence which includes glycosyl transfer steps prior to the final shaping of the aglycone moiety of mithramycin.

Many bioactive drugs contain sugars attached to their aglycones which are usually important or, in some cases, essential for bioactivity. Most of these sugars belong to the family of the 6-deoxyhexoses (6-DOH) (18, 20, 27) and are transferred to the different aglycones as late steps in biosynthesis. Genes involved in the biosynthesis of different 6-DOH have been reported elsewhere and participate in the biosynthesis of erythromycin (9, 12, 31, 38, 39), daunorubicin (13, 26, 36), mithramycin (22), granaticin (2), streptomycin (10, 28), and tylosin (14, 23). However, information about the glycosyltransferases (GTFs) responsible for the transfer of the sugars to the respective aglycones is quite scarce. So far, only two GTFs from antibiotic producers have been biochemically characterized in detail, and they are involved in macrolide inactivation: Mgt, from Streptomyces lividans, a nonmacrolide producer (7, 17); and OleD, from the oleandomycin producer Streptomyces antibioticus (15, 29), which inactivates oleandomycin by addition of glucose to the 2′-OH group of the desosamine attached to the macrolactone ring (40). In the last several years, a few genes have been proposed to encode GTFs involved in the transfer of sugars to various aglycones during biosynthesis: dnrS and dnrH, from Streptomyces peucetius, involved in daunorubicin (26) and baumycin (36) biosynthesis, respectively; gra-orf5, involved in granaticin biosynthesis (2); eryCIII and eryBV, involved in the transfer of desosamine and mycarose, respectively, in erythromycin biosynthesis (12, 32, 38); and tylM2, from Streptomyces fradiae, involved in sugar transfer during tylosin biosynthesis (14).Mithramycin (Fig. (Fig.1)1) is an aromatic polyketide which shows antibacterial activity against gram-positive bacteria and also antitumor activity (30, 37). Together with the chromomycins and the olivomycins, mithramycin constitutes the so-called aureolic acid group of antitumor drugs. The polyketide moiety of mithramycin is derived from the condensation of 10 acetate building blocks in a series of reactions catalyzed by a type II polyketide synthase (5, 21). The mithramycin aglycone is glycosylated at positions 6 and 2 with disaccharide (d-olivose- d-olivose) and trisaccharide (d-olivose-d-oliose-d-mycarose) moieties, respectively. All of these sugars belong to the 6-DOH family. In the mithramycin pathway, two genes (mtmD and mtmE) encoding two enzymes (glucose-1-phosphate:TTP thymidylyl transferase and dTDP-4,6-dehydratase, respectively) involved in the biosynthesis of the mithramycin 6-DOH have been cloned, and their participation in mithramycin biosynthesis has been demonstrated by insertional inactivation (22). Here we report the characterization of two Streptomyces argillaceus genes (mtmGI and mtmGII) that encode two putative GTFs responsible for the formation and transfer of the disaccharide chain. Inactivation of these genes by gene replacement showed identical accumulated compounds and allowed the isolation of four glycosylated compounds which are likely to be intermediates in mithramycin biosynthesis. Open in a separate windowFIG. 1Structures of mithramycin, premithramycinone, and the new premithramycins.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号