首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Although propagation of Saccharomyces cerevisiae prions requires Hsp104 protein disaggregating activity, overproducing Hsp104 “cures” cells of [PSI+] prions. Earlier evidence suggests that the Hsp70 mutant Ssa1-21 impairs [PSI+] by a related mechanism. Here, we confirm this link by finding that deletion of STI1 both suppresses Ssa1-21 impairment of [PSI+] and blocks Hsp104 curing of [PSI+]. Hsp104''s tetratricopeptide repeat (TPR) interaction motif was dispensable for curing; however, cells expressing Sti1 defective in Hsp70 or Hsp90 interaction cured less efficiently, and the Hsp90 inhibitor radicicol abolished curing, implying that Sti1 acts in curing through Hsp70 and Hsp90 interactions. Accordingly, strains lacking constitutive or inducible Hsp90 isoforms cured at reduced rates. We confirm an earlier finding that elevating free ubiquitin levels enhances curing, but it did not overcome inhibition of curing caused by Hsp90 defects, suggesting that Hsp90 machinery is important for the contribution of ubiquitin to curing. We also find curing associated with cell division. Our findings point to crucial roles of Hsp70, Sti1, and Hsp90 for efficient curing by overexpressed Hsp104 and provide evidence supporting the earlier suggestion that destruction of prions by protein disaggregation does not adequately explain the curing.Saccharomyces cerevisiae prions are self-replicating misfolded forms of normal cellular proteins. They are believed to propagate as amyloid, which is a highly ordered fibrous aggregate. What triggers prion formation is uncertain, but in order to be maintained in an expanding yeast population, prions must grow, replicate, and be transmitted to daughter cells during cell division. Growth occurs when soluble protein joins the fiber ends and is converted into the prion form (30, 52, 58). Replication is associated with fragmentation of prion polymers, which generates new prions from preexisting material (37, 50). Transmission is believed to occur by passive diffusion of prions with cytoplasm (57).Although it is uncertain to what extent cellular factors influence growth or transmission of prions, it is clear that the Hsp104 disaggregation machinery is necessary for prion replication (10, 17, 55, 70). Hsp104 is a hexameric AAA+ chaperone that protects cells from a variety of stresses by resolubilizing proteins from aggregates (24, 25, 53). With help from Hsp70 and Hsp40, it extracts monomers from aggregates and extrudes them through its central pore (24, 41, 68). This machinery could act in prion replication by extracting monomers from amyloid fibers (29, 68), which would destabilize the fibers, causing them to break into more numerous pieces that each can continue to propagate the prion.Paradoxically, overexpressing Hsp104 very efficiently “cures” cells of the [PSI+] prion, which is composed of the translation termination factor Sup35 (10). A widely held view of this curing is that elevating the cellular protein disaggregation activity causes complete destruction of prions. However, elevating Hsp104 has little or no effect on most other amyloidogenic prions (15, 16, 38, 47, 54, 66), although it can be inferred to cure [MCA] prions in cells also propagating a prion of an Mca1-Sup35 fusion (49). Together, these results suggest that prions of Sup35, and perhaps those of Mca1, are particularly sensitive to Hsp104 disaggregation activity. Alternatively, something in addition to or other than a simple increase in protein disaggregation is involved in the curing.Although protein disaggregation activity of Hsp104 is required for both thermotolerance and prion propagation, we and others have identified mutations in Hsp104 that affect these processes separately (27, 32, 39, 60). The ability of Hsp104 to thread proteins through its central pore, however, is required for both processes (29, 41, 68), so this distinction in Hsp104 function could be due to differences in how Hsp104 interacts with amorphous aggregates of thermally denatured proteins and highly ordered prion aggregates or with cofactors that interact with the different prions as substrates. In any scenario, efficiency and specificity of Hsp104 function are affected by interactions with other components of the disaggregation machinery, in particular the Hsp70s and Hsp40s, which are believed to interact first with substrates to facilitate action of Hsp100 family disaggregases (2, 71, 72).Increasing expression of either ubiquitin (Ub) or Ssb, an Hsp70 that has roles in protein translation and proteasome degradation, enhances Hsp104 curing of [PSI+] (3, 11, 12). Predictably, reducing expression of either of them reduces curing efficiency. The mechanisms underlying these effects are unknown, but the combined effects of Ssb and Ub are additive, suggesting that they act in different pathways. The role of Ub is indirect, as Sup35 is neither ubiquitylated nor degraded during curing. Whether other chaperones are involved in the effects of Ub on curing has not been investigated.Earlier we isolated a mutant of the Hsp70 Ssa1, designated Ssa1-21, that weakens and destabilizes [PSI+] propagation (33). We later isolated several Hsp104 mutants that suppress this antiprion effect (29). The Hsp104 mutants retain normal functions in thermotolerance, protein disaggregation, and prion propagation, but when overexpressed, they are unable to cure [PSI+], even in wild-type cells. These findings argue against a specific hypersensitivity of [PSI+] to disaggregation and support the notion that something distinct from or in addition to complete destruction of prions is involved in the curing. They also imply that Ssa1-21 and elevated Hsp104 inhibit [PSI+] prions by similar mechanisms. A prediction from this conclusion is that other suppressors of Ssa1-21 will also inhibit curing of [PSI+] by overexpressed Hsp104. Indeed, we find here that alterations that suppress Ssa1-21 inhibition of [PSI+] do interfere with curing of [PSI+] by overexpressed Hsp104. We also provide evidence that Hsp90 has a critical role in this curing and that the ability of Ub to enhance curing depends on proper function of Hsp90 machinery.  相似文献   

5.
Michimoto T  Aoki T  Toh-e A  Kikuchi Y 《Gene》2000,257(1):131-137
The deletion of the TOM1 gene encoding a putative ubiquitin ligase causes a temperature sensitive cellular growth in Saccharomyces cerevisiae. The arrested cells exhibit pleiotropic defects in nuclear division, maintenance of nuclear structure and heat stress responses. We previously identified a zuo1 mutation as an extragenic suppressor of the tom1 mutant. ZUO1 encodes a DnaJ-related Hsp40. Here we show that a recessive cold sensitive mutation in PDR13 coding for an Hsp70 suppressed the tom1 mutation. The pdr13 deletion mutant was sensitive to high osmolarity, just like the zuo1 deletion mutant. A zuo1 pdr13 double deletion mutant did not show additive phenotypes. Furthermore, a tagged-Zuo1p was co-immunoprecipitated with a tagged-Pdr13p. Taken together, we propose that Pdr13p and Zuo1p are a new pair of Hsp70:Hsp40 molecular chaperones. In addition, Pdr13p co-sedimented with translating ribosomes and this association was independent of the presence of Zuo1p.  相似文献   

6.
7.
Aron R  Lopez N  Walter W  Craig EA  Johnson J 《Genetics》2005,169(4):1873-1882
The essential Hsp40, Sis1, is a J-protein cochaperone for the Ssa class of Hsp70's of Saccharomyces cerevisiae. Sis1 is required for the maintenance of the prion [RNQ(+)], as Sis1 lacking its 55-amino-acid glycine-rich region (G/F) does not maintain [RNQ(+)]. We report that overexpression of Sis1DeltaG/F in an otherwise wild-type strain had a negative effect on both cell growth and [RNQ(+)] maintenance, while overexpression of wild-type Sis1 did not. Overexpression of the related Hsp40 Ydj1 lacking its G/F region did not cause inhibition of growth, indicating that this dominant effect of Sis1DeltaG/F is not a characteristic shared by all Hsp40's. Analysis of small deletions within the SIS1 G/F region indicated that the observed dominant effects were caused by the absence of sequences known to be important for Sis1's unique cellular functions. These inhibitory effects of Sis1DeltaG/F were obviated by alterations in the N-terminal J-domain of Sis1 that affect interaction with Ssa's ATPase domain. In addition, a genetic screen designed to isolate additional mutations that relieved these inhibitory effects identified two residues in Sis1's carboxy-terminal domain. These alterations disrupted the interaction of Sis1 with the 10-kD carboxy-terminal regulatory domain of Ssa1, indicating that Sis1 has a bipartite interaction with Ssa in vivo.  相似文献   

8.
Deletion of PDR5 gene (Deltapdr5) in Saccharomyces cerevisiae led to increased resistance to calcium. The cellular Ca2+ level in the presence of high calcium as estimated by reporter assay in Deltapdr5 cells was significantly lower than that in wild-type cells. Membrane Pdr5p levels diminished rapidly during incubation with high calcium in a manner dependent on calcineurin and Pep4p, suggesting a feedback regulatory mechanism for Pdr5p abundance.  相似文献   

9.
10.
Polypeptide binding by the chaperone Hsp70 is regulated by its ATPase activity, which is itself regulated by co-chaperones including the Bag domain nucleotide exchange factors. Here, we tested the functional contribution of residues in the Bag domain of Bag-1M that contact Hsp70. Two point mutations, E212A and E219A, partially reduced co-chaperone activity, whereas the point mutation R237A completely abolished activity in vitro. Based on the strict positional conservation of the Arg-237 residue, several Bag domain proteins were predicted from various eukaryotic genomes. One candidate, Snl1p from Saccharomyces cerevisiae, was confirmed as a Bag domain co-chaperone. Snl1p bound specifically to the Ssa and Ssb forms of yeast cytosolic Hsp70, as revealed by two-hybrid screening and co-precipitations from yeast lysate. In vitro, Snl1p also recognized mammalian Hsp70 and regulated the Hsp70 ATPase activity identically to Bag-1M. Point mutations in Snl1p that disrupted the conserved residues Glu-112 and Arg-141, equivalent to Glu-212 and Arg-237 in Bag-1M, abolished the interaction with Hsp70 proteins. In live yeast, mutated Snl1p could not substitute for wild-type Snl1p in suppressing the lethal defect caused by truncation of the Nup116p nuclear pore component. Thus, Snl1p is the first Bag domain protein identified in S. cerevisiae, and its interaction with Hsp70 is essential for biological activity.  相似文献   

11.
12.
肿瘤抑制因子p53被称为"分子警察",它在维持细胞正常生长及抑制恶性增殖过程中起重要作用。p53的表达水平受多种因素影响,其中转录水平的调控是基因发挥功能的一个重要步骤。因此,针对调控p53蛋白的转录因子这一环节阐明p53发挥功能的分子机理,有望为肿瘤治疗、预防和新药研发提供新的靶标。本文着重对调控p53蛋白的转录因子进行综述。  相似文献   

13.
Heat shock proteins with a molecular mass of 70000 (Hsp70s) are a ubiquitous class of ATP-dependent molecular chaperones involved in the folding of cellular proteins. Sequencing the entire genome of Saccharomyces cerevisiae revealed 14 different genes for Hsp70 proteins in different cellular compartments. Among these 14 Hsp70s, the subclass of Ssa (Ssa1p-Ssa4p) is abundant and essential in the cytosol. Since high yield expression of cytoplasmic Ssa1p is inefficient in Saccharomyces cerevisiae and recombinant expression in E. coli yields low protein levels, we chose Pichia pastoris as the recombinant expression system. In Pichia pastoris, expression levels of Ssa1p are high and Ssa1p is soluble and correctly folded. Also, we present a new protocol for purification of Ssa1p. Previously described purifications include ATP-agarose chromatography leading to Ssa1p partially complexed with ATP. Our optimized purification protocol follows the CiPP strategy (capture, intermediate purification, polishing) avoiding ATP-agarose chromatography, which allows detailed studies on the ATP-dependent Hsp70 functions. We obtained Ssa1p in high purity and 400 times higher quantity compared to previous studies.  相似文献   

14.
Pdr5p, the major multidrug exporter in Saccharomyces cerevisiae, is a member of the ATP-binding cassette (ABC) superfamily. Pdr5p shares similar mechanisms of substrate recognition and transport with the human MDR1-Pgp, despite an inverted topology of transmembrane and ATP-binding domains. The hexahistidine-tagged Pdr5p multidrug transporter was highly overexpressed in yeast strains where other ABC genes have been deleted. After solubilization and purification, the 160-kDa recombinant Pdr5p has been reconstituted into a lipid bilayer. Controlled detergent removal from Pdr5p-lipid-detergent micelles allowed the production of peculiar square-shaped particles coexisting with liposomes and proteoliposomes. These particles having 11 nm in side were well suited for single particle analysis by electron microscopy. From such analysis, a computed volume has been determined at 25-A resolution, giving insight into the structural organization of Pdr5p. Comparison with the reported structures of different bacterial ABC transporters was consistent with a dimeric organization of Pdr5p in the square particles. Each monomer was composed of three subregions corresponding to a membrane region of about 50 A in height that joins two well separated protruding stalks of about 40 A in height, ending each one with a cytoplasmic nucleotide-binding domain (NBD) lobe of about 50-60 A in diameter. The three-dimensional reconstruction of Pdr5p revealed a close arrangement and a structural asymmetric organization of the two NBDs that appeared oriented perpendicularly within a monomer. The existence of different angular positions of the NBDs, with respect to the stalks, suggest rotational movements during the catalytic cycle.  相似文献   

15.
The Saccharomyces cerevisiae [PSI+] prion is a misfolded form of Sup35p that propagates as self-replicating cytoplasmic aggregates. Replication is believed to occur through breakage of transmissible [PSI+] prion particles, or seeds, into more numerous pieces. In [PSI+] cells, large Sup35p aggregates are formed by coalescence of smaller sodium dodecyl sulfate-insoluble polymers. It is uncertain if polymers or higher-order aggregates or both act as prion seeds. A mutant Hsp70 chaperone, Ssa1-21p, reduces the number of transmissible [PSI+] seeds per cell by 10-fold but the overall amount of aggregated Sup35p by only two- to threefold. This discrepancy could be explained if, in SSA1-21 cells, [PSI+] seeds are larger or more of the aggregated Sup35p does not function as a seed. To visualize differences in aggregate size, we constructed a Sup35-green fluorescent protein (GFP) fusion (NGMC) that has normal Sup35p function and can propagate like [PSI+]. Unlike GFP fusions lacking Sup35p's essential C-terminal domain, NGMC did not form fluorescent foci in log-phase [PSI+] cells. However, using fluorescence recovery after photobleaching and size fractionation techniques, we find evidence that NGMC is aggregated in these cells. Furthermore, the aggregates were larger in SSA1-21 cells, but the size of NGMC polymers was unchanged. Possibly, NGMC aggregates are bigger in SSA1-21 cells because they contain more polymers. Our data suggest that Ssa1-21p interferes with disruption of large Sup35p aggregates, which lack or have limited capacity to function as seed, into polymers that function more efficiently as [PSI+] seeds.  相似文献   

16.
The endoplasmic reticulum (ER) of the budding yeast Saccharomyces cerevisiae contains a well-characterized, essential member of the Hsp70 family of molecular chaperones, Kar2p. Kar2p has been shown to be involved in the translocation of proteins into the ER as well as the proper folding of proteins in that compartment. We report the characterization of a novel Hsp70 of the ER, Ssi1p. Ssi1p, which shares 24% of the amino acids of Kar2p, is not essential for growth under normal conditions. However, deletion of SSI1 results in cold sensitivity as well as enhanced resistance to manganese. The localization of Ssi1p to the ER, suggested by the presence of a conserved S. cerevisiae ER retention signal at its C terminus, was confirmed by subcellular fractionation, protease protection assays, and immunofluorescence. The SSI1 promoter contains an element with similarity to the unfolded protein response element of KAR2. Like KAR2, SSI1 is induced both in the presence of tunicamycin and in a kar2-159 mutant strain, conditions which lead to an accumulation of unfolded proteins in the ER. Unlike KAR2, however, SSI1 is not induced by heat shock. Deletion of SSI1 shows a complex pattern of genetic interactions with various conditional alleles of KAR2, ranging from synthetic lethality to synthetic rescue. Interestingly, SSI1 deletion strains show a partial block in translocation of multiple proteins into the ER, suggesting that Ssi1p plays a direct role in the translocation process.  相似文献   

17.
HspBP1 belongs to a family of eukaryotic proteins recently identified as nucleotide exchange factors for Hsp70. We show that the S. cerevisiae ortholog of HspBP1, Fes1p, is required for efficient protein folding in the cytosol at 37 degrees C. The crystal structure of HspBP1, alone and complexed with part of the Hsp70 ATPase domain, reveals a mechanism for its function distinct from that of BAG-1 or GrpE, previously characterized nucleotide exchange factors of Hsp70. HspBP1 has a curved, all alpha-helical fold containing four armadillo-like repeats unlike the other nucleotide exchange factors. The concave face of HspBP1 embraces lobe II of the ATPase domain, and a steric conflict displaces lobe I, reducing the affinity for nucleotide. In contrast, BAG-1 and GrpE trigger a conserved conformational change in lobe II of the ATPase domain. Thus, nucleotide exchange on eukaryotic Hsp70 occurs through two distinct mechanisms.  相似文献   

18.
Hsp70 has been implicated in nuclear localization signal (NLS)-directed nuclear transport. Saccharomyces cerevisiae contains distinct SSA and SSB gene families of cytosolic Hsp70s. The nucleocytoplasmic localization of Ssa1p and Ssb1p was investigated using green fluorescent protein (GFP) fusions. Whereas GFP-Ssa1p localized both to the nucleus and cytoplasm, GFP-Ssb1p appeared only in the cytosol. The C-terminal domain of Ssb1p contains a leucine-rich nuclear export signal (NES) that is necessary and sufficient to direct nuclear export. The accumulation of GFP-Ssb1p in the nuclei of xpo1-1 cells suggests that Ssb1p shuttles across the nuclear envelope. Elevated levels of SSA1 but not SSB1 suppressed the NLS-GFP nuclear localization defects of nup188-Delta cells. Studies with Ssa1p/Ssb1p chimeras revealed that the Ssb1p NES is sufficient and necessary to inhibit the function of Ssa- or Ssb-type Hsp70s in nuclear transport. Thus, NES-less Ssb1p stimulates nuclear transport in nup188-Delta cells and NES-containing Ssa1p does not. We conclude that the differential function of Ssa1p and Ssb1p in nuclear transport is due to the NES-directed export of the Ssb1p and not to functional differences in their ATPase or peptide binding domains.  相似文献   

19.
Pdr5p in Saccharomyces cerevisiae is a functional homologue of mammalian P-glycoprotein implicated in multidrug resistance (MDR). In order to obtain useful inhibitors to overcome MDR in clinical tumors, screening of Pdr5p inhibitors has been carried out. We isolated a fungal strain producing Pdr5p inhibitors using our original assay system, and it was classified as Trichoderma sp. P24-3. The purified inhibitor was identified as isonitrile, 3-(3'-isocyano-cyclopent-2'-enylidene)-propionic acid, a compound whose carboxyl residue is essential for the inhibitory activity. A non-toxic concentration of the isonitrile (41.5 microg/ml, 255 microM) inhibited Pdr5p-mediated efflux of cycloheximide or cerulenin in Pdr5p-overexpressing cells. In addition, addition of the isonitrile led to accumulation of rhodamine 6G, a substrate of Pdr5p, in the Pdr5p-overexpressing cells. The inhibitory profiles of the isonitrile against S1360 mutants (S1360A and S1360F) of Pdr5p were different from those of FK506 and enniatin. The isonitrile did not influence PDR5 gene expression and the amount of Pdr5 protein, nor did it inhibit the function of Snq2p, a homologue of Pdr5p. Interestingly, the isonitrile inhibited the function of Cdr1p and Cdr2p, Pdr5p homologues in pathogenic yeast Candida albicans. Thus, it was found that the isonitrile shows a different inhibitory spectrum from that of FK506 and enniatin as a potent inhibitor for Pdr5p, Cdr1p, and Cdr2p.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号