首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We have conducted a thorough study on extracellular biosynthesis of silver nanoparticles (AgNPs) by a halotolerant bacterium Bacillus endophyticus SCU-L, which was identified by 16S rRNA gene sequencing analysis. This strain was selected during an ongoing research programme aimed at finding a novel biological method for green nanosynthetic routes using the extremophiles in unexplored hypersaline habitats. The biosynthesized AgNPs were characterized and analyzed with UV–vis spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy and X-ray diffraction. Further, the AgNPs were found to be spherical in shape with an average particle size of about 5.1?nm, and it was stable in aqueous solution for three months period of storage at room temperature under dark condition. Also, the synthesized AgNPs significantly presented antimicrobial activity against Candida albicans, Escherichia coli, Salmonella typhi and Staphylococcus aureus. The above results suggested that the present work may provide a valuable reference and theoretical basis for further exploration on microbial biosynthesis of AgNPs by halotolerant bacteria.  相似文献   

2.
Abstract

Biosynthesis of metal nanoparticles is an area of interest among researchers because of its eco-friendly approach. Current study focuses at biosynthesis of silver nanoparticles (AgNPs) and optimization of physico-chemical conditions to obtain mono-dispersed and stable AgNPs having antimicrobial activity. Initially Bacillus mojavensis BTCB15 produced silver nanoparticles (AgNPs) of 105?nm. Silver nanoparticles (AgNPs) were characterized by particle size analyzer, UV-Vis Spectroscopy, Fourier transforms infrared spectroscopy (FTIR), Atomic force microscopy (AFM), and X-ray diffraction (XRD). Whereas, under optimal conditions of temperature 55?°C, pH 8, addition of surfactant Tween 20, and metal ion K2SO4, about 104% size reduction was achieved with average size of 2.3nm. Molecular characterization revealed 98% sequence homology with Bacillus mojavensis. AgNPs exhibited antibacterial activity at concentrations ranging from 0.5 to 2.5?µg/µl against Escherichia coli BTCB03, Klebsiella pneumonia BTCB04, Acinetobacter sp. BTCB05, and Pseudomonas aeruginosa BTCB01 but none against Staphylococcus aureus BTCB02. Highest antibacterial activity was observed at 0.27?µg/µl and lowest at 0.05?µg/µl of AgNPs indicated by zone of inhibition. Conclusively, under optimum conditions, Bacillus mojavensis BTCB15 was able to produce AgNPs of 2.3?nm size and had antibacterial activity against multi drug resistant pathogens.  相似文献   

3.

The purpose of this study was to select the promising biopreservation bacteriocin producer strain from goat milk and characterize the expressed bacteriocin, related to its physiological and biochemical properties and specificity of operon encoding production and expression of antimicrobial peptide. Brazilian goat milk was used as the source for the selection of bacteriocin-producing lactic acid bacteria. One strain (DF105Mi) stood out for its strong activity against several Listeria monocytogenes strains. Selected strain was identified based on the biochemical and physiological characteristics and 16s rRNA analysis. The bacteriocin production and inhibitory spectrum of strain DF105Mi were studied, together with the evaluation of the effect of temperature, pH, and chemicals on bacteriocin stability and production, activity, and adsorption to target cells as well as to the cell surface of bacteriocin producers. Physiological and bio-molecular analyses based on targeting of different genes, parts of nisin operon were performed in order to investigate the hypothesis that the studied strain can produce and express nisin. Based on biochemical, physiological, and 16s rRNA analysis, the strain DF105Mi was classified as Enterococcus hirae. The selected strain produces a bacteriocin which is stable in a wide range of pH (2.0–12.0), temperature (up to 120 °C), presence of selected chemicals and presents adsorption affinity to different test organisms, process influenced by environmental conditions. Higher bacteriocin production by Ent. hirae DF105Mi was recorded during stationary growth phase, but only when the strain was cultured at 37 °C. The strain’s genetic analysis indicated presence of the genes coding for the production of the bacteriocin nisin. This result was confirmed by cross-checking the sensitivity of the produced strain to commercial nisin A. The strong anti-Listeria activity, bacteriocin adsorption, and stability of produced bacteriocin indicate that Ent. hirae DF105Mi presents a differentiated potential application for biopreservation of fermented dairy products.

  相似文献   

4.
5.
Abstract

Ruta graveolens silver nanoparticles (AgNPs) showed the color change within 30 min and characterized using UV–visible spectra, Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). UV–visible spectrum of R. graveolens AgNPs showed the sharp peak at the wavelength of 440–560 nm. XRD patterns confirmed that crystalline nature of R. graveolens AgNPs and FTIR results revealed that phytochemical reaction of these R. graveolens is responsible for the synthesis of AgNPs. TEM results showed the size of the R. graveolens AgNPs around 30–50 nm with spherical and triangular nature. Further, the antibacterial and antibiofilm activity of R. graveolens AgNPs showed the effective inhibitory activity against clinically important Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Our findings suggest that R. graveolens AgNPs can be exploited toward the development of potential antibacterial agents for various biomedical and environmental applications.  相似文献   

6.

The need for the development of new methods for the reduction or elimination of the infections and diseases caused by mosquitoes and bacteria is very vital. The biomedical applications of silver nanoparticles (AgNPs) synthesized from biological sources especially plant extracts had contributed greatly to the inhibition of several microbes due to the presence of some secondary metabolites found in them. The biological approach of AgNPs synthesis is ecofriendly compared with other methods of AgNPs synthesis. In this study, we investigated the efficiency of AgNPs synthesized using the leaf extract of Morinda citrifolia against selected vector mosquitoes and bacteria. The leaves of Morinda citrifolia obtained were air dried, pulverized, extracted, and mixed with silver nitrate to form AgNPs. The synthesized AgNPs were characterized by UV–Visible spectroscopy, Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). The mosquito repellency and antimicrobial activities of the synthesized AgNPs were determined using standard methods. The peak at 436.14 nm on the UV–Visible spectrum confirmed the formation of AgNPs. The TEM microgram confirmed the synthesis of a spheroidal shape AgNPs with particle sizes in the range of 15–40 nm and an average size of 28 nm. The peak at 3.5 keV on the EDX microgram further confirmed the formation of AgNPs. In addition, the impact of green-synthesized AgNPs on some vector mosquitoes and human pathogens revealed percentage repellency in the range of 17.65 to 60.00% and percentage inhibition zones ranging from 20 to 64% respectively. Our study was the first among other studies to ascertain that AgNPs synthesized using Morinda citrifolia leaf extract possess promising mosquito repellency and antibacterial efficiency.

  相似文献   

7.
Salmonella enterica in cattle production systems may be associated with important human and animal disease issues. However, tremendous diversity exists among Salmonella recovered, and more information is needed about strains of greatest potential health concern, particularly those that are multidrug resistant (MDR). By characterizing Salmonella isolates from commercial feedlot pens, this study aimed to evaluate the strain diversity and prevalence of MDR Salmonella from different types of composite pen samples. Antimicrobial susceptibility profiles, serotype, and presence or absence of the integron-encoded intI1 gene were determined for 530 Salmonella isolates recovered using composite rope (n = 335), feces (n = 59), and water (n = 136) samples from 21 pens in 3 feedlots. The study investigated only pens with available isolates from multiple sample types. Most isolates (83.0%) of the 19 Salmonella serotypes identified were susceptible or intermediately susceptible to all the antimicrobials evaluated. Resistance to sulfisoxazole (14.9%), streptomycin (3.8%), and tetracycline (3.6%) were the most common. None of the isolates tested positive for a class 1 integron, and only 2.5% were resistant to multiple antimicrobials. All the MDR isolates, namely, serotypes Uganda (n = 9), Typhimurium (n = 2), and Give (n = 2), were resistant to at least five antimicrobials. Most MDR isolates (n = 11) were from two pens during 1 week within one feedlot. Overall, many Salmonella isolates collected within a pen were similar in terms of serotype and antimicrobial susceptibility regardless of sample type. However, MDR Salmonella and rare serotypes were not recovered frequently enough to suggest a general strategy for appropriate composite sampling of feedlot cattle populations for Salmonella detection and monitoring.  相似文献   

8.
Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases.  相似文献   

9.
Abstract

The antimicrobial activity of gold and silver nanoparticles (AuNPs, AgNPs), chitosan (CS) and their combinations was established by determining the minimum inhibitory concentration for planktonic (MICPC80) and biofilm growth (MICBC80), for biofilm formation (MICBF80), metabolic activity (MICBM80) and reduction (MICBR80), and for the metabolic activity of preformed biofilm (MICMPB80). Biofilms were quantified in microtitre plates by crystal violet staining and metabolic activity was evaluated by the MTT assay. Chitosan effectively suppressed biofilm formation (0.31–5?mg ml?1) in all the tested strains, except Salmonella enterica Infantis (0.16–2.5?mg ml?1) where CS and its combination with AgNPs induced biofilm formation. Nanoparticles inhibited biofilm growth only when the highest concentrations were used. Even though AuNPs, AgNPs and CS were not able to remove biofilm mass, they reduced its metabolic activity by at least 80%. The combinations of nanoparticles with CS did not show any significant positive synergistic effect on the tested target properties.  相似文献   

10.

Biosynthesis of silver nanoparticles (AgNPs) from marine actinobacteria offers a promising avenue for exploring bacterial extracts as reducing and stabilizing agents. We report extracellular extracts of Rhodococcus rhodochrous (MOSEL-ME29) and Streptomyces sp. (MOSEL-ME28), identified by 16S rRNA gene sequencing for synthesis of AgNPs. Ultrafine silver nanoparticles were biosynthesized using the extracts of R. rhodochrous and Streptomyces sp. and their possible therapeutic applications were studied. The physicochemical properties of nanoparticles were established by HR-SEM/TEM, SAED, UV–Vis, EDS, XRD, and FTIR. UV–Vis spectra displayed characteristic absorption at 430 nm and 412 nm for AgNPs from Streptomyces sp. (S-AgNPs) and Rhodococcus sp. (R-AgNPs), respectively. HR-SEM/TEM, XRD, EDS analysis confirmed the spherical shape, crystalline nature, and elemental formation of silver. Crystallite or grain size was deduced as 5.52 nm for R-AgNPs and 35 nm for S-AgNPs. Zeta-potential indicated electrostatic negative charge for AgNPs, while FTIR revealed the presence of diverse functional groups. Disc diffusion assay indicated the broad-spectrum antibacterial potential of S-AgNPs with the maximum inhibition of B. subtilis while R-AgNPs revealed potency against P. aeruginosa at 10 µg/mL concentration. Biogenic AgNPs revealed antileishmanial activity and the IC50 was calculated as 164 µg/mL and 184 µg/mL for R-AgNPs and S-AgNPs respectively. Similarly, the R-AgNPs and S-AgNPs revealed anti-cancer potential against HepG2 and the IC50 was calculated as 49 µg/mL and 69 µg/mL for R-AgNPs and S-AgNPs, respectively. Moreover, the antioxidant activity showed significant results. MTT assay on RD cells, L20B cells, and Hep-2C indicated intensification in viability by reducing the concentration of R-AgNPs and S-AgNPs. The R-AgNPs and S-AgNPs inhibited sabin-like poliovirus (1TCID50 infection in RD cells). Furthermore, hemocompatibility at low concentrations has been confirmed. Hence, it is concluded that biogenic-AgNPs has the potential to be used in diverse biological applications and that the marine actinobacteria are an excellent resource for fabrication of AgNPs.

  相似文献   

11.
A natural and biocompatible extract of garlic as a support, decorated with silver nanoparticles, is a proposal to generate an effective antifungal agent against dermatophytes at low concentrations. Silver nanoparticles (AgNPs) with a diameter of 26±7 nm were synthesized and their antimycotic activity was examined against Trichophyton rubrum (T. rubrum), inhibiting 94 % of growth at a concentration of 0.08 mg ml?1. Allium sativum (garlic) extract was also obtained (AsExt), and its MIC was 0.04 mg ml?1. To increase the antifungal capacity of those systems, AsExt was decorated with AgNPs, obtaining AsExt‐AgNPs. Using an AsExt concentration of 0.04 mg ml?1 in independent experiments with concentrations from 0.01 to 0.08 mg ml?1 of AgNPs, it was possible to inhibit T. rubrum at all AgNPs concentrations; it proves a synergistic effect between AgNPs and AsExt. Even if 1 % of the minimum inhibitory concentration of AsExt (0.0004 mg ml?1) is used, it was possible to inhibit T. rubrum at all concentrations of AgNPs, demonstrating the successful antimycotic activity potentiation when combining AsExt and AgNPs.  相似文献   

12.
The presence of bacteriocin structural genes (entA, entB, entP, entQ, entAS-48, entL50A/B, bac31, and cylL) encoding different bacteriocins (enterocin A, enterocin B, enterocin P, enterocin Q, enterocin AS-48, enterocin L50A/B, bacteriocin 31 and cytolysin L, respectively), and the production of bacteriocin activity were analysed in 139 E. faecalis and 41 E. faecium clinical isolates of Tunisia. Forty-eight of 139 E. faecalis isolates (34%) and 7 of 41 of E. faecium isolates (17%) were bacteriocin producers. Sixty-two per cent of the bacteriocin-producing enterococci showed inhibitory activity against L. monocytogenes. Different combinations of entA, entB, entP, and entL50A/B genes were detected among the seven bacteriocin-producer E. faecium isolates, and more that one gene were identified in all the isolates. The entA gene was associated in most of the cases with entB gene in E. faecium isolates. Cyl LS were the unique genes detected among E. faecalis (in 24 of 48 bacteriocin-producer isolates, 50%). A β-hemolytic activity was demonstrated in 19 of the 24 cyl LS -positive E. faecalis isolates (79%), this activity being negative in the remaining five isolates. The presence of different bacteriocin structural genes and the production of antimicrobial activities seems to be a common trait of clinical enterococci.  相似文献   

13.

The increasing occurrence of resistance among Pseudomonas aeruginosa clinical isolates necessitates finding alternatives to antibiotics for controlling the infection of such pathogenic bacteria. In this study, lactonase gene ahl-1 from Bacillus weihenstephanensis isolate-P65 was successfully cloned and expressed in Escherichia coli BL21 (DE3) under the control of T7 promoter for utilizing its quorum quenching activity against three multidrug-resistant (MDR) P. aeruginosa clinical isolates. The biological activity of the overexpressed lactonase enzyme (Ahl-1), tested using a synthetic signal and Chromobacterium violaceum CV026 as a biosensor, displayed good catalytic activity using hexanoyl homoserine lactone (HHL) as a substrate and Chromobacterium violaceum (CV026) as a biosensor (77.2 and 133 nm min−1 for the crude and the purified Ahl-lactonase enzymes, respectively). Upon challenging its ability to inhibit the virulence of three MDR P. aeruginosa clinical isolates, recombinant Ahl-1 successfully prevented the accumulation of acylhomoserine lactone signals resulting in a significant reduction in the investigated virulence determinants; protease (from 40 up to 75.5%), pyocyanin (48–75.9%), and rhamnolipids (52.7–63.4%) (P value < 0.05). Ahl-1 also displayed significant inhibitory activities on the swarming motility and biofilm formation of the three tested MDR P. aeruginosa clinical isolates (P value < 0.05). Consequently, Ahl-1 lactonase enzyme in this study is considered a promising therapeutic agent to inhibit P. aeruginosa pathogenicity with no fear of emergence of resistance.

  相似文献   

14.
Biosynthesis of silver nanoparticles (AgNPs) using microorganisms is an important application of nanobiotechnology and green chemistry because of interest by pharmaceutical and food manufacturers. In this study, biosynthesis of AgNPs by a novel Bacillus strain isolated from a soil sample from Sakarya district in Turkey was investigated. Biosynthesis was performed using cell-free supernatant of the bacterium following 24?h growth. Effects of varying AgNO3 concentration (1–10?mM), pH (5–10), and temperature (30–40°C) on the synthesis of AgNPs were determined. Formation of AgNPs was monitored by UV–VIS spectroscopy. Field emission scanning electron microscopy was used to compare morphologies among the various culture conditions. The peaks created by surface plasmon resonance (SPR) of metals were obtained only at 4 and 6?mM AgNO3 concentrations and the maximum concentration for the biosynthesis was observed at 6?mM. The highest yield was achieved at pH 10 and larger nanoparticles were obtained at this pH. The optimum temperatures for biosynthesis were 33 and 37°C. Fourier transform infrared spectroscopy analysis and transmission electron microcopy images confirmed that the proteins served as capping. Energy-dispersive spectroscopy analysis validated the formation of AgNPs. AgNPs exhibited antibacterial activity toward Gram-positive and Gram-negative pathogens.  相似文献   

15.
Bacillus stearothermophilus leucine aminopeptidase II tagged C-terminally with either tri- or nona-lysine (BsLAPII-Lys3/9) was constructed and over-expressed in Escherichia coli M15 (pRep4). The recombinant enzymes were purified to homogeneity by nickel-chelate chromatography and their molecular masses were determined to be approximately 45 kDa by SDS/PAGE. Surface modification of colloidal gold with 16-mercaptohexadecanoic acid was employed to generate the carboxylated nanoparticles. BsLAPII-Lys9 was efficiently immobilized onto the carboxylated gold nanoparticles (AuNP-COOH) and the obtained bioconjugate showed excellent biocatalytic activity in the immobilized form. Additionally, the bioconjugate material exhibited a significant enhancement in temperature stability and could be reused over 5 successive cycles.  相似文献   

16.
Fifty-five strains of enterococci isolated from the piglet intestine were characterized in vitro for probiotic activity. Identification of the isolates revealed Enterococcus faecium as the predominant species (84 %). Forty strains (73 %) were found to produce bacteriocin-like substances (only into solid media) with activity almost only toward Gram-positive genera. Thirty-eight % of strains were resistant to tetracycline, 27 % to chloramphenicol, 18 % to erythromycin and 16 % to vancomycin. In addition to control of strain safety, 6 % of isolates were β-hemolytic and 16 % produced gelatinase. Seven strains selected for further probiotic assays exhibited sufficient survival rate at pH 3.0 after 3 h, in the presence of 1 % ox-bile and lysozyme after 1 d (over 107 CFU/mL in all tests). The adhesion of tested strains to porcine and human intestinal mucus was found in a similar range (1.4–14.0 % and 1.4–17.6 %, respectively). In accordance with current research effort to use and/or to combine various health promoting substances, the sensitivity of all isolates toward plant extracts and toward bacteriocins produced by animal and environmental strains was determined. All enterococci were sensitive toward oregano and sage extracts and toward one (E. faecium EF55 — chicken isolate, activity of 25 600 AU/mL) of ten bacteriocin substances. It means that a similar anti-enterococcal potential of some bacteriocin substances may be observed as for certain plant extracts.  相似文献   

17.
Abstract

The antimicrobial property of stabilized silver nanoparticles (AgNPs) with phospholipid membrane was investigated on both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. The influence of phospholipid concentrations on antibacterial kinetics actions of AgNPs was studied with two different methodologies in order to understand the bactericidal and bacteriostatic effects. The bacterial inactivation of synthesized AgNPs fitted well to the Chick-Watson model with a high regression coefficient, R2 > 0.91. The antibacterial properties of AgNPs depend on the particle size, stabilizer and lecithin concentrations. Only the stabilized AgNPs that have the Klec/Ag values of 1 and 2 presented the inhabitation zone, while unstabilized AgNPs agglomerated quickly, settled on the wells and did not diffuse in agar. In addition, the specific coefficient of lethality depends on the lecithin concentration. An increase in lecithin concentration caused multilayer creation on the AgNPs' surface and reduced the release of AgNPs which led to low bacterial killing rate.  相似文献   

18.
The use of nanoparticles for various purposes, including pest control, has become increasingly popular because of their cost and environmental safety. In the present study, gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were synthesized in an extract of Senna alexandrina Miller leaves with the aim of use against vectors of disease such as Culex pipiens L. (the filarial vector in Saudi Arabia). The nanoparticles were characterized by scanning electron microscopy and spectroscopic techniques. The larvicidal activity of the nanoparticles against Cx. pipiens was evaluated according to the protocol of the World Health Organization. According to the lethal concentration LC50, the result shows differentiation in the sensitivity on mosquitoes. The AuNPs (51.383 ppm) the best one followed by AgNPs (52.525 ppm) while S. alexandrina leaf extract alone (355.25 ppm), the lowest effectiveness. Generally, the Cx. pipiens mosquito larvae proved to be more susceptible to AuNPs and AgNPs than leaf extract alone by about 6.91 and 6.76 times, respectively.  相似文献   

19.
L-Cysteine (Cys) is a non-essential sulfur-containing amino acid, crucial for protein synthesis, detoxification, and several metabolic functions. Cys is widely used in the agricultural, food, cosmetic, and pharmaceutical industries. So, a suitable sensitive and selective sensing approach is of great interest, and a low-cost sensor would be necessary. This article presents silver nanoparticles (EuAgNPs) synthesized by a green synthesis method using Eugenia uniflora L. extracts and photoreduction. The nanoparticles were characterized by UV/VIS, transmission electron microscopy, high-performance liquid chromatography (HPLC), FTIR, and Zeta potential. With the addition of Cys in the EuAgNPs solution, the terminal thiol part of L-cysteine binds on the surface of nanoparticles through Ag−S bond. The EuAgNPs and CysAgNPs coexist until flavonoids bound the amino group of Cys, enhancing the red color of solutions. The EuAgNPs provided selectivity to detect Cys among other amino acids, and its detection limit was found to be 3.8 nM. The sensor has the advantages of low-cost synthesis, fast response, high selectivity, and sensitivity.  相似文献   

20.
The sediment marine samples were obtained from several places along the coastline of the Tuticorin shoreline, Tamil Nadu, India were separated for the presence of bioactive compound producing actinobacteria. The actinobacterial strain was subjected to 16Sr RNA sequence cluster analysis and identified as Nocardiopsis dassonvillei- DS013 NCBI accession number: KM098151. Bacterial mediated synthesis of nanoparticles gaining research attention owing its wide applications in nonmedical biotechnology. In the current study, a single step eco-friendly silver nanoparticles (AgNPs) were synthesized from novel actinobacteria Nocardiopsis dassonvillei- DS013 has been attempted. The actinobacterial mediated silver nanoparticles were characterized by TEM, UV–Visible, XRD, FT-IR spectroscopy. The initial detection of AgNPs was identified using UV–Vis spectrum and confirmed by the appearance of absorbance peak at 408 nm. A Fourier transform infrared spectroscopy (FT-IR) result reveals the presence of protein component in the culture supernatant may act as protecting agents. The XRD pattern indicated that the typical peaks reveal the presence of nanoparticles. The TEM morphology confirms the formation of circular and non uniform distributions of AgNPs with the size range from 30 to 80 nm. The antibacterial activity of both isolated actinobacterial (IA) and silver nanoparticles mediated actinobacterial (SNA) of Nocardiopsis dassonvillei- DS013 were done by well diffusion method against selected clinical isolates of bacteria, namely Escherichia coli, Enterococcus sp., Pseudomonas sp., Klebsiella sp., Proteus sp., Shigella sp., Bacillus subtilis, and Streptococcus sp. When compared to isolated actinobacteria, the SNA shows the better antibacterial activity against clinical isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号