首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
 The Suppressor of fused [Su(fu)] gene of Drosophila melanogaster encodes a protein containing a PEST sequence [sequence enriched in proline (P), glutamic acid (E), serine (S) and threonine (T)] which acts as an antagonist to the serine-threonine kinase Fused in Hedgehog (Hh) signal transduction during embryogenesis. The Su(fu) gene isolated from a distantly related Drosophila species, D. virilis, shows significantly high homology throughout its protein sequence with its D. melanogaster counterpart. We show that these two Drosophila homologs of Su(fu) are functionally interchangeable in enhancing the fused phenotype. We have also isolated mammalian homologs of Su(fu). The absence of the PEST sequence in the mammalian Su(fu) protein suggests a different regulation for this product between fly and vertebrates. Using the yeast two-hybrid method, we show that the murine Su(fu) protein can interact directly with the Fused and Cubitus interruptus proteins, known partners of Su(fu) in Drosophila. These data are discussed in the light of their evolutionary relationships. Received: 11 September 1998 / Accepted: 9 December 1998  相似文献   

4.
We describe the rudolph mouse, a mutant with striking defects in both central nervous system and skeletal development. Rudolph is an allele of the cholesterol biosynthetic enzyme, hydroxysteroid (17-beta) dehydrogenase 7, which is an intriguing finding given the recent implication of oxysterols in mediating intracellular Hedgehog (Hh) signaling. We see an abnormal sterol profile and decreased Hh target gene induction in the rudolph mutant, both in vivo and in vitro. Reduced Hh signaling has been proposed to contribute to the phenotypes of congenital diseases of cholesterol metabolism. Recent in vitro and pharmacological data also indicate a requirement for intracellular cholesterol synthesis for proper regulation of Hh activity via Smoothened. The data presented here are the first in vivo genetic evidence supporting both of these hypotheses, revealing a role for embryonic cholesterol metabolism in both CNS development and normal Hh signaling.  相似文献   

5.
Drosophila abl and genetic redundancy in signal transduction.   总被引:2,自引:0,他引:2  
Genetic studies on Drosophila Abl and, more recently, on mouse c-Abl and c-Src indicate that the functions of these non-receptor tyrosine kinases may duplicate activities of other molecules within signal transduction pathways. In Drosophila, second-site mutations have been recovered that disrupt the redundant functions so that the Abl tyrosine kinase is essential to the formation of axonal connections in the embryonic central nervous system and for attachment of embryonic muscles to the body wall. Molecular isolation and analysis of the genes identified by these second-site mutations should define the molecular basis for the genetic redundancy.  相似文献   

6.
7.
The mechanism of IL-5 signal transduction   总被引:14,自引:0,他引:14  
Cytokines are important regulators ofhematopoiesis. They exert their actions by binding to specificreceptors on the cell surface. Interleukin-5 (IL-5) is a criticalcytokine that regulates the growth, activation, and survival ofeosinophils. Because eosinophils play a seminal role in thepathogenesis of asthma and allergic diseases, an understanding of thesignal transduction mechanism of IL-5 is of paramount importance. TheIL-5 receptor is a heterodimer of - and -subunits. The-subunit is specific, whereas the -subunit is common to IL-3,IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF)receptors and is crucial for signal transduction. It has been shownthat there are two major signaling pathways of IL-5 in eosinophils.IL-5 activates Lyn, Syk, and JAK2 and propagates signals through theRas-MAPK and JAK-STAT pathways. Studies suggest that Lyn, Syk, and JAK2tyrosine kinases and SHP-2 tyrosine phosphatase are important foreosinophil survival. In contrast to their survival-promoting activity,Lyn and JAK2 appear to have no role in eosinophil degranulation orexpression of surface adhesion molecules. Raf-1 kinase, on the otherhand, is critical for eosinophil degranulation and adhesion moleculeexpression. Btk is involved in IL-5 stimulation of B cell function.However, it does not appear to be important for eosinophil function.Thus a clear segregation of signaling molecules based on theirfunctional importance is emerging. This review describes the signaltransduction mechanism of the IL-3/GM-CSF/IL-5 receptor system andcompares and contrasts IL-5 signaling between eosinophils and B cells.

  相似文献   

8.
9.
10.
Elucidation of a universal size-control mechanism in Drosophila and mammals   总被引:3,自引:0,他引:3  
Dong J  Feldmann G  Huang J  Wu S  Zhang N  Comerford SA  Gayyed MF  Anders RA  Maitra A  Pan D 《Cell》2007,130(6):1120-1133
  相似文献   

11.
12.
13.
Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems.  相似文献   

14.
In the Drosophila visual cascade, the transient receptor potential (TRP) calcium channel, phospholipase Cbeta (no-receptor-potential A), and an eye-specific isoform of protein kinase C (eye-PKC) comprise a multimolecular signaling complex via their interaction with the scaffold protein INAD. Previously, we showed that the interaction between INAD and eye-PKC is a prerequisite for deactivation of a light response, suggesting eye-PKC phosphorylates proteins in the complex. To identify substrates of eye-PKC, we immunoprecipitated the complex from head lysates using anti-INAD antibodies and performed in vitro kinase assays. Wild-type immunocomplexes incubated with [(32)P]ATP revealed phosphorylation of TRP and INAD. In contrast, immunocomplexes from inaC mutants missing eye-PKC, displayed no phosphorylation of TRP or INAD. We also investigated protein phosphatases that may be involved in the dephosphorylation of proteins in the complex. Dephosphorylation of TRP and INAD was partially suppressed by the protein phosphatase inhibitors okadaic acid, microcystin, and protein phosphatase inhibitor-2. These phosphatase activities were enriched in the cytosol of wild-type heads, but drastically reduced in extracts prepared from glass mutants, which lack photoreceptors. Our findings indicate that INAD functions as RACK (receptor for activated PKC), allowing eye-PKC to phosphorylate INAD and TRP. Furthermore, dephosphorylation of INAD and TRP is catalyzed by PP1/PP2A-like enzymes preferentially expressed in photoreceptor cells.  相似文献   

15.
16.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC), like the other members of the membrane guanylate cyclase family, is a single transmembrane-spanning protein. The transmembrane domain separates the protein into two regions, extracellular and intracellular. The extracellular region contains the ANF-binding domain and the intracellular region the catalytic domain located at the C-terminus of the protein. Preceding the catalytic domain, the intracellular region is comprised of the following functional domains: juxtaposed 40 amino acids to the transmembrane domain is the ATP-regulated module (ARM) domain [also termed the kinase homology domain (KHD)], and the putative dimerization domain. The ANF-RGC signaling is initiated by hormone, ANF, binding to its extracellular binding site. The binding signal is transduced through the transmembrane domain to the intracellular portion where ATP binding to the ARM domain partially activates the cyclase and prepares it for subsequent steps involving phosphorylation and attaining the fully activated state. This chapter reviews the signaling modules of ANF-RGC.  相似文献   

17.
Mukherjee T  Schäfer U  Zeidler MP 《Genetics》2006,172(3):1683-1697
The JAK/STAT pathway was first identified in mammals as a signaling mechanism central to hematopoiesis and has since been shown to exert a wide range of pleiotropic effects on multiple developmental processes. Its inappropriate activation is also implicated in the development of numerous human malignancies, especially those derived from hematopoietic lineages. The JAK/STAT signaling cascade has been conserved through evolution and although the pathway identified in Drosophila has been closely examined, the full complement of genes required to correctly transduce signaling in vivo remains to be identified. We have used a dosage-sensitive dominant eye overgrowth phenotype caused by ectopic activation of the JAK/STAT pathway to screen 2267 independent, newly generated mutagenic P-element insertions. After multiple rounds of retesting, 23 interacting loci that represent genes not previously known to interact with JAK/STAT signaling have been identified. Analysis of these genes has identified three signal transduction pathways, seven potential components of the pathway itself, and six putative downstream pathway target genes. The use of forward genetics to identify loci and reverse genetic approaches to characterize them has allowed us to assemble a collection of genes whose products represent novel components and regulators of this important signal transduction cascade.  相似文献   

18.
19.
Control mechanism of JAK/STAT signal transduction pathway   总被引:7,自引:0,他引:7  
Yamada S  Shiono S  Joo A  Yoshimura A 《FEBS letters》2003,534(1-3):190-196
  相似文献   

20.
In humans, dysfunctions of the Hedgehog receptors Patched and Smoothened are responsible for numerous pathologies. However, signaling mechanisms involving these receptors are less well characterized in mammals than in Drosophila. To obtain structure-function relationship information on human Patched and Smoothened, we expressed these human receptors in Drosophila Schneider 2 cells. We show here that, as its Drosophila counterpart, human Patched is able to repress the signaling pathway in the absence of Hedgehog ligand. In response to Hedgehog, human Patched is able to release Drosophila Smoothened inhibition, suggesting that human Patched is expressed in a functional state in Drosophila cells. We also provide experiments showing that human Smo, when expressed in Schneider cells, is able to bind the alkaloid cyclopamine, suggesting that it is expressed in a native conformational state. Furthermore, contrary to Drosophila Smoothened, human Smoothened does not interact with the kinesin Costal 2 and thus is unable to transduce the Hedgehog signal. Moreover, cell surface fluorescent labeling suggest that human Smoothened is enriched at the Schneider 2 plasma membrane in response to Hedgehog. These results suggest that human Smoothened is expressed in a functional state in Drosophila cells, where it undergoes a regulation of its localization comparable with its Drosophila homologue. Thus, we propose that the upstream part of the Hedgehog pathway involving Hedgehog interaction with Patched, regulation of Smoothened by Patched, and Smoothened enrichment at the plasma membrane is highly conserved between Drosophila and humans; in contrast, signaling downstream of Smoothened is different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号