首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.  相似文献   

2.
In the present study, we have investigated the effect of intraperitoneal injection of ethanol (3.5 g/kg) on tyrosine phosphorylation in rat brain. Immunoblot analysis using an antiphosphotyrosine antibody revealed that a 130-kDa protein band was detected in the brain extract in response to ethanol administration. This ethanol-stimulated tyrosine phosphorylation of the 130-kDa protein was found in the brain but not in the heart, liver or thymus. The 130-kDa phosphotyrosine-containing protein was identified by immunoprecipitation to be Cas, a crk-associated src substrate. This ethanol-stimulated tyrosine phosphorylation of Cas was observed most prominently in the cerebellum and the cerebral cortex. We further examined the possible involvement of Fyn kinase in ethanol-stimulated Cas tyrosine phosphorylation. Immunecomplex kinase assay showed that Fyn was activated in the cerebellum and cerebral cortex of ethanol-administered rats. Immunoprecipitation experiments also showed that Fyn was co-immunoprecipitated with an anti-Cas antibody in these regions from ethanol-administered rats. Furthermore, exogenous Fyn was shown to phosphorylate Cas from cerebellum and cerebral cortex in vitro. These findings indicate that ethanol stimulates tyrosine phosphorylation of Cas in rat cerebellum and cerebral cortex, and that Fyn may be involved in the process.  相似文献   

3.
The cytoplasmic domain of the cloned erythropoietin (EPO) receptor (EPOR) contains no protein kinase motif, yet addition of EPO to EPO-responsive cells causes an increase in protein-tyrosine phosphorylation. Here we show that addition of EPO or interleukin-3 (IL-3) to an IL-3-dependent cell line expressing the wild-type EPOR causes a small fraction (less than 5%) of total cellular EPOR to shift in gel mobility from 66 to 72 kDa, due at least in part to phosphorylation. Using biotinylated EPO as an affinity reagent, we show that the 72-kDa species is greatly enriched on the cell surface. To demonstrate that a protein kinase activity associates with cell surface EPOR, cells were incubated with biotinylated EPO and then cross-linked with a thiol-cleavable chemical cross-linker. The avidin-agarose-selected complexes were incubated with [gamma-32P]ATP. After in vitro phosphorylation and denaturation without reducing agent, both antiphosphotyrosine and anti-EPOR antibodies immunoprecipitated labeled 72-kDa EPOR and an unidentified 130-kDa phosphoprotein (pp130), indicating that a protein kinase is associated with cell surface EPOR and that a fraction of the EPOR was phosphorylated on tyrosine residues either in the cells or during the cell-free phosphorylation reaction. Under reducing conditions, the 72-kDa phosphorylated EPOR but not pp130 was immunoprecipitated with an anti-EPOR antibody, suggesting that the pp130 is bound to the EPOR by the thiol-cleavable chemical cross-linker. Previously, we showed that deletion of the 42 carboxy-terminal amino acids of the EPOR allows cells to grow in 1/10 the normal EPO concentration, without affecting receptor number or affinity. Two carboxy-terminal truncated EPO receptors that are hyperresponsive to EPO were poorly phosphorylated during the in vitro reaction, suggesting that the carboxy-terminal region of the EPOR contains a site for phosphorylation or a site for interaction with a protein kinase. Our data suggests that phosphorylation or interaction with a protein kinase in the carboxy-terminal region may down-modulate the proliferative action of the EPOR.  相似文献   

4.
Abstract: Triggering of the cell adhesion molecules L1 or N-CAM in a nerve growth cone membrane fraction from fetal rat brain with purified L1 or N-CAM or specific antibodies decreases the steady-state levels of protein tyrosine phosphorylation in the membranes. Here we report that triggering of L1 and N-CAM in the growth cone-enriched membrane fraction with a subset of antibodies directed against the extracellular region of L1 and N-CAM elicited dephosphorylation of endogenous protein substrates, indicating the presence of a cell adhesion molecule-activated phosphatase. The most prominent substrates were a membrane-associated 200-kDa protein and tubulin, both of which were dephosphorylated on tyrosine and serine/threonine residues in response to L1 or N-CAM triggering. The antibody-induced phosphatase was inhibited by agents that blocked tyrosine and serine/threonine phosphatases, including sodium orthovanadate, vanadyl sulfate, zinc cations, heparin, and sodium pyrophosphate. Purified L1 and N-CAM fragments and other antibodies reacting with the extracellular region of these adhesion molecules did not activate the phosphatase but did inhibit tyrosine phosphorylation. These properties suggested that triggering of L1 and N-CAM can lead to either phosphatase activation or tyrosine kinase inhibition in growth cone membranes. These findings implicate protein phosphatases in addition to tyrosine kinases as components of L1 and N-CAM intracellular signaling pathways in growth cones.  相似文献   

5.
An approximately 64-kDa cytoplasmic protein is rapidly phosphorylated in tyrosine in the response of macrophages to colony stimulating factor-1. To identify this protein, BAC1.2F5 macrophages were incubated with or without colony stimulating factor-1, the phosphotyrosine-containing portion of their cytosolic fractions subjected to size exclusion chromatography, and the 45-70-kDa fraction further fractionated by reverse phase high pressure liquid chromatography (RP-HPLC). Tryptic peptides of pooled RP-HPLC fractions from stimulated cells (containing the approximately 64-kDa protein and an approximately 54-kDa protein) and from unstimulated cells (containing the approximately 54-kDa protein alone), were sequenced directly. All seven readable sequences of 8 sequenceable peptides present uniquely in the stimulated fraction were present in the sequence of the src homology 2 domain-containing protein tyrosine phosphatase-1C (PTP-1C). The identity of the approximately 64-kDa protein was confirmed by Western blotting with an antibody raised to a PTP-1C peptide. The rapid, growth factor-induced tyrosine phosphorylation of PTP-1C suggests that it may be involved in very early events in growth factor signal transduction.  相似文献   

6.
Myosin I is an actin-based motor responsible for powering a wide variety of motile activities in amebae and slime molds and has been found previously in vertebrates as the lateral bridges within intestinal epithelial cell microvilli. Although neurons exhibit extensive cellular and intracellular motility, including the production of ameboid-like growth cones during development, the proteins responsible for the motor in these processes are unknown. Here, we report the isolation of a partially purified protein fraction from bovine brain that is enriched for a 150-kDa protein; immunochemical and biochemical analyses suggest that this protein possesses a number of functional properties that have been ascribed to myosin I from various sources. These properties include an elevated K(+)-EDTA ATPase, a modest actin-activated Mg(2+)-ATPase, the ability to bind calmodulin, and a ready association with phospholipid vesicles made from phosphatidylserine, but not from phosphatidylcholine. The combination of these properties, together with a molecular mass of 150 kDa (most myosin I molecules found to date have molecular masses in the range 110-130 kDa) yet recognition by an anti-myosin I antibody, suggests the presence of a new member of the myosin I family within mammalian brain.  相似文献   

7.
A cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein tyrosine phosphorylation is involved in the expression of fertilizing ability in mammalian spermatozoa. However, there are only limited data concerning the identification of protein tyrosine kinase (PTK) that is activated by the cAMP signaling. In this study, we have shown data supporting that boar sperm flagellum possesses a unique cAMP-protein kinase A (PKA) signaling cascade leading to phosphorylation of Syk PTK at the tyrosine residues of the activation loop. Ejaculated spermatozoa were washed and then incubated in a modified Krebs-Ringer HEPES medium (mKRH) containing polyvinyl alcohol (PVA) plus 0.1 mM cBiMPS (a cell-permeable cAMP analog), 0.25 mM sodium orthovanadate (Na3VO4) (a protein tyrosine phosphatase (PTP) inhibitor) or both at 38.5 degrees C for 180 min. Aliquots of the sperm suspensions were recovered before and after incubation and then used to detect sperm tyrosine-phosphorylated proteins by Western blotting and indirect immunofluorescence. In the Western blotting, the anti-phosphotyrosine monoclonal antibody (4G10) recognized several bands including 72-kDa protein in the protein extracts from spermatozoa that were incubated solely with cBiMPS. The tyrosine phosphorylation in these sperm proteins was dependent on cBiMPS and enhanced by the addition of Na3VO4. The 72-kDa tyrosine-phosphorylated protein was apparently reacted with the anti-phospho-Syk antibody (Tyr525/526). Indirect immunofluorescence revealed that the connecting and principal pieces of spermatozoa incubated with cBiMPS and Na3VO4 were stained with the anti-phospho-Syk antibody. However, the reactivity of the 72-kDa protein with the anti-phospho-Syk antibody was reduced by the addition of H-89 (a PKA inhibitor, 0.01-0.1 mM) to the sperm suspensions but not affected by the pretreatment of spermatozoa with BAPTA-AM (an intracellular Ca2+ chelator, 0.1 mM). Fractionation of phosphorylated proteins from the spermatozoa with a detergent Nonidet P-40 suggested that the 72-kDa tyrosine-phosphorylated protein might be a cytoskeletal component. Based on these findings, we have concluded that the cAMP-PKA signaling is linked to the Ca2+-independent tyrosine phosphorylation of Syk in the connecting and principal pieces of boar spermatozoa.  相似文献   

8.
Lipoteichoic acid (LTA) is an amphipathic component of Gram-positive bacteria. Previous studies from this laboratory have shown that at low concentrations, ranging from 0.1 to 10.0 micrograms/ml, LTA binds to mammalian cells and stimulates mitogenic responses as demonstrated by increased DNA and RNA synthesis. Tyrosine kinase appears to be involved in the action of a number of mitogens including epidermal growth factor, platelet-derived growth factor, and insulin. In the present study, we report the novel finding that tyrosine protein kinase activity is increased in human fibroblasts treated with LTA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of the whole cell lysate of fibroblasts cultured with 32Pi showed increased phosphorylation of a 94-kDa polypeptide. Alkali treatment of the gel resulted in a decreased intensity of the 94-kDa phosphorylated protein in control cells, but not in LTA-treated cells, suggesting the addition of phosphate groups to threonine or tyrosine residues. High voltage electrophoresis of the acid hydrolysate of the excised and eluted 94-kDa protein revealed that LTA stimulated the phosphorylation of tyrosine but not threonine residues. These results suggest that LTA acts on mammalian cells by phosphorylating tyrosine residues of certain proteins and thereby may regulate diverse functions of these cells.  相似文献   

9.
Depletion of intracellular calcium stores appears to increase plasma membrane permeability for calcium by an as yet obscure mechanism. We found that the Ca2+ ionophore, A23187, and thrombin elevate cytosolic calcium ([Ca2+]i) equally and cause tyrosine phosphorylation of a 130-kDa protein and to a lesser extent 80- and 60-kDa proteins. Chelation of [Ca2+]i by 1,2-bis(2-aminophenoxyethane)-N,N,N',N'-tetraacetic acid/acetomethoxy ester decreased thrombin-induced tyrosine phosphorylation responses. These results suggested that [Ca2+]i elevation promotes tyrosine phosphorylation. Tyrosine phosphorylation persisted in the presence or absence of extracellular calcium after thrombin stimulation but subsided rapidly after A23187 addition if extracellular calcium was present. When Ca2+/ATPase activity, which is apparently required to maintain calcium stores, is inhibited by low temperature, tyrosine phosphorylation of the 130-kDa protein occurs. Rewarming platelets reverses tyrosine phosphorylation only if extracellular calcium is present. Thapsigargin, a calcium ATPase inhibitor, also induces tyrosine phosphorylation of the 130-kDa protein and prevents dephosphorylation of this protein when added prior to rewarming. These observations suggest that homeostatic levels of calcium in storage compartments favor tyrosine dephosphorylation of specific proteins. Thus the levels of [Ca2+]i and stored calcium appear to control tyrosine phosphorylation antagonistically. Tyrosine phosphorylation may play a role in regulating calcium channel function.  相似文献   

10.
The long-term goal of our work is to understand biochemical mechanisms underlying sperm motility and fertility. In a recent study we showed that tyrosine phosphorylation of a 55-kDa protein varied in direct proportion to motility. Tyrosine phosphorylation of the protein was low in immotile compared to motile epididymal sperm. Inhibition or stimulation of motility by high calcium levels or cAMP, respectively, results in a corresponding decrease or increase in tyrosine phosphorylation of the 55-kDa protein. Here we report purification and identification of this motility-associated protein. Soluble extracts from bovine caudal epididymal sperm were subjected to DEAE-cellulose, Affi-Gel blue, and cellulose phosphate chromatography. Tyrosine phosphate immunoreactive fractions contained glycogen synthase kinase-3 (GSK-3) activity, suggesting a possible correspondence between these proteins. This suggestion was verified by Western blot analyses following one-dimensional and two-dimensional gel electrophoresis of the purified protein using monoclonal and affinity-purified polyclonal antibodies against the catalytic amino-terminus and carboxy-terminus regions of GSK-3. Further confirmation of the identity of these proteins came from Western blot analysis using antibodies specific to the tyrosine phosphorylated GSK-3. Using this antibody, we also showed that GSK-3 tyrosine phosphorylation was high in motile compared to immotile sperm. Immunocytochemistry revealed that GSK-3 is present in the flagellum and the anterior portion of the sperm head. These data suggest that GSK-3, regulated by phosphorylation, could be a key element underlying motility initiation in the epididymis and regulation of mature sperm function.  相似文献   

11.
Protein tyrosine phosphorylation was studied in macrophages and fibroblasts to identify putative components of post-receptor mitogenic pathways that might be functionally conserved in different cell types. Nondenaturing conditions were established for the approximately quantitative recovery of anti-phosphotyrosine antibody (alpha PY)-reactive proteins from cells. A common, 57-kDa alpha PY-reactive protein was identified by V8 protease peptide mapping in colony-stimulating factor-1 (CSF-1)- or granulocyte-macrophage colony-stimulating factor (GM-CSF)-stimulated BAC1.2F5 macrophages, in platelet-derived growth factor-stimulated NIH-3T3 cells, and in CSF-1-stimulated NIH-3T3 cells expressing the c-fms/CSF-1 receptor. The 57-kDa protein was phosphorylated on serine and tyrosine and was the only alpha PY-reactive protein band whose phosphorylation was reproducibly increased in GM-CSF-stimulated cells. The effect of the growth factors on the tyrosine phosphorylation of the 57-kDa protein could be mimicked by treatment of the cells with orthovanadate, a phosphotyrosine protein phosphatase inhibitor. In the absence of growth factors, tyrosine phosphorylation of the 57-kDa protein was higher in v-fms or c-fms (F969, S301)-transformed NIH-3T3 cells than in untransformed NIH-3T3 (c-fms) and NIH-3T3 (c-fms, F969) cells. These data indicate that the 57-kDa protein is a common target for growth factor-stimulated tyrosine phosphorylation and potentially important for growth factor mitogenic signaling.  相似文献   

12.
The monoclonal antibody 2B12 is directed toward p120, a 120-kDa cellular protein originally identified as a protein tyrosine kinase substrate in cells expressing membrane-associated oncogenic variants of pp60src. In this report, we show that p120 was tyrosine phosphorylated in avian cells expressing membrane-associated, enzymatically activated variants of c-src, including variants having structural alterations in the src homology regions 2 and 3. In contrast, p120 was not tyrosine phosphorylated in cells expressing enzymatically activated, nonmyristylated pp60src. Furthermore, p120 was tyrosine phosphorylated in avian cells expressing middle T antigen, the transforming protein of polyomavirus, as well as in rodent cells stimulated with either epidermal growth factor (EGF) or platelet-derived growth factor. Analysis of the time course of p120 tyrosine phosphorylation in EGF-stimulated cells revealed a rapid onset of tyrosine phosphorylation. In addition, both the extent and duration of p120 phosphorylation increased when cells overexpressing the EGF receptor were stimulated with EGF. Biochemical analysis showed that p120 (in both normal and src-transformed cells) was membrane associated, was myristylated, and was phosphorylated on serine and threonine residues. Hence, p120 appears to be a substrate of both nonreceptor- and ligand-activated transmembrane receptor tyrosine kinases and of serine/threonine kinases and is perhaps a component of both mitogen-stimulated and tyrosine kinase oncogene-induced signaling pathways.  相似文献   

13.
Tyrosine phosphorylation of a 55- and 60-kDa protein was observed when EDTA-treated P2 membrane fraction from monkey basal ganglia was incubated with [gamma-32P]-ATP in the presence of Zn2+. Other metal ions were less effective in this phosphorylation. The effect of Zn2+ did not appear to be due to its inhibition of a tyrosine phosphatase. In the presence of Mg2+/Triton X-100 instead of Zn2+, phosphorylation on tyrosine residues of a 17-kDa protein and the external substrate poly(Glu, Tyr) 4:1 copolymer was observed. Both Mg2+ and Triton X-100 were essential for this and Zn2+ inhibited both of these phosphorylations. Convincing evidence for the existence of Zn2+-dependent and Mg2+/Triton X-100-dependent tyrosine protein kinases was obtained when the two kinases could be separated by extraction of the membranes by Triton X-100. The Zn2+-dependent phosphorylation was present exclusively in the Triton-solubilized supernatant whereas the Mg2+/Triton X-100-dependent phosphorylation was found associated with the Triton-insoluble membrane fractions. Externally added histone could also be phosphorylated on tyrosine residues in a Zn2+- or Mg2+/Triton X-100-dependent manner by the supernatant or membrane fraction, respectively.  相似文献   

14.
A chick-embryo fibroblast lambda gt11 cDNA library was screened with affinity-purified antibodies to chick gizzard vinculin. One recombinant was purified to homogeneity and the fusion protein expressed in Escherichia coli strain C600. The fusion protein was unstable, but polypeptides that reacted with vinculin antibodies, but not non-immune immunoglobulin, were detected by Western blotting. The recombinant contained a single EcoRI fragment of 2891 bp with a single open reading frame. The deduced protein sequence could be aligned with that of six CNBr-cleavage peptides and two tryptic peptides derived from chicken gizzard vinculin. AUG-247 has tentatively been identified as the initiation codon, as it is contained within the consensus sequence for initiation sites of higher eukaryotes. The cDNA lacks 3' sequence and encodes 74% of the vinculin sequence, presuming the molecular mass of vinculin to be 130,000 Da. Analysis of the deduced sequence showed no homologies with other protein sequences, but it does display a triple internal repeat of 112 amino acid residues covering residues 259-589. The sequences surrounding the seven tyrosine residues in the available sequence were aligned with the tyrosine autophosphorylation consensus sequence found in protein tyrosine kinases. Tyr-822 showed a good match to this consensus, and may represent one of the two major sites of tyrosine phosphorylation by pp60v-sre. Northern blots showed that the 2.89 kb vinculin cDNA hybridized to one size of mRNA (approx. 7 kb) in chick-embryo fibroblasts, chick smooth muscle and chick skeletal muscle. Southern blots revealed multiple hybridizing bands in genomic DNA.  相似文献   

15.
Talin is a high molecular weight phosphoprotein that is localized at adhesion plaques. We have found that talin phosphorylation increases 3.0-fold upon exposure of chicken embryo fibroblasts to the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. Talin isolated from tumor promoter-treated cells is phosphorylated on serine and threonine residues. Vinculin, a 130 kDa talin-binding protein, also exhibits increased phosphorylation in vivo in response to tumor promoter, but to a lesser degree than does talin. Because tumor-promoting phorbol esters augment protein kinase C activity, we have compared the ability of purified protein kinase C to phosphorylate talin and vinculin in vitro. Both talin and vinculin were found to be substrates for protein kinase C; however, talin was phosphorylated to a greater extent than was vinculin. Cleavage of protein kinase C-phosphorylated talin by the calcium-dependent protease (Type II) revealed that while both the resulting 190-200 and 46 kDa proteolytic peptides were phosphorylated, the majority of label was contained within the 46-kDa fragment. Although incubation of chicken embryo fibroblasts with tumor-promoting phorbol ester induces a dramatic increase in talin phosphorylation, we detected no change in the organization of stress fibers and focal contacts in these cells. Exposure of the cells to tumor promoter did, however, result in a loss of actin and talin-rich cell surface elaborations that resemble focal contact precursor structures.  相似文献   

16.
Abstract: The changes in the levels of tyrosine-phosphorylated proteins in the cytosolic fraction of the rat hippocampus subjected to severe hypoglycemia were analyzed. A marked increase in tyrosine phosphorylation of a 43-kDa protein was observed at 30 min of isoelectric EEG and 30 min and 1 h of recovery. Immunostaining of the same blot with antibody against mitogen-activated protein (MAP) kinase demonstrated a double band of ∼42 and 43 kDa. The increased tyrosine phosphorylation of MAP kinase during hypoglycemic coma and the early recovery period suggests that MAP kinase may be involved in neuronal degeneration and repair.  相似文献   

17.
Platelets provide a useful system for studying Fc gamma receptor-mediated signaling events because these cells express only a single class of Fc gamma receptors and because platelet aggregation and secretion can be activated through Fc gamma receptor stimulation. We report here that stimulation of platelets by cross-linking antibodies to Fc gamma RII or by treatment with an anti-CD9 monoclonal antibody, which acts through Fc gamma RII, causes an induction of tyrosine phosphorylation of multiple platelet proteins. Although the profile of tyrosine-phosphorylated proteins induced by stimulation of this Fc receptor was similar to that induced by thrombin, an additional 40-kDa phosphorylated protein was also detected. This protein co-migrated with Fc gamma RII and was immunoprecipitated with a monoclonal antibody to Fc gamma RII. In addition, after the cross-linking of Fc gamma RII in HEL cells or in COS-1 cells transfected with Fc gamma RII cDNA, the 40-kDa protein immunoprecipitated with anti-Fc gamma RII was also phosphorylated on tyrosine. These data strongly suggest that Fc gamma RII itself is a substrate for a tyrosine kinase(s) activated when Fc gamma RII is stimulated. Fc gamma RII was phosphorylated by the Src protein in vitro, suggesting that this kinase may be responsible for phosphorylation of Fc gamma RII in vivo. These studies establish that activation of platelets and human erythroleukemia cells through Fc gamma RII and CD9 involves an induction of tyrosine phosphorylation of multiple proteins including Fc gamma RII itself and suggest that these phosphorylation events may be involved in Fc gamma RII-mediated cell signaling.  相似文献   

18.
KB cells respond to insulin and insulin-like growth factor I (IGF-I) in a closely similar way (induction of membrane ruffling, stimulation of pinocytosis, and amino acid transport) but respond to epidermal growth factors (EGF) in a similar but distinct way. In the KB cells, using phosphotyrosine-specific antibody we have found that: the receptors for insulin (beta subunit), IGF-I (beta subunit), and EGF undergo tyrosine phosphorylation as early as 10 s after addition of their respective ligands; a 185-kDa protein is rapidly (less than 10 s) tyrosine phosphorylated by insulin and IGF-I through their respective receptor kinases but not EGF; tyrosine phosphorylation of a 190-kDa glycoprotein is rapidly (less than 10 s) induced by EGF through EGF receptor kinase; and tyrosine phosphorylation of a 240-kDa protein is stimulated within 30 s by all three growth factors. These patterns of tyrosine phosphorylation could be causally related to biological responses induced by the three growth factors.  相似文献   

19.
CD157, a recently characterized leukocyte surface antigen, has recently been shown to induce tyrosine phosphorylation of a 130-kDa protein (p130) when cross-linked with its antibody (ligand). We have further investigated the detailed kinetics, behaviour and cell-type specificity of this CD157-stimulated p130 phosphorylation. We demonstrate that CD157-mediated p130 phosphorylation is ligand independent in recombinant CD157-expressing CHO, MCA102 and COS-7 cells but is ligand dependent in HL-60-differentiated monocytes (mHL-60) having enhanced CD157 expression. This p130 phosphorylation is activated only at lower temperatures (0-4 degrees C) in MCA102, COS-7 and mHL-60 cells but is temperature insensitive in CHO cells. We further demonstrate that the CHO/CD157 cell clones have approximately 22-28% slower rates of proliferation than that of a CHO/mock clone. But the MCA102 cell proliferation remains unaffected by CD157 expression. We postulate that the difference in the temperature sensitivity of p130 phosphorylation can be responsible for the discrepancy in the rates of MCA102/CD157 and CHO/CD157 cell proliferation.  相似文献   

20.
Interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor induce the rapid phosphorylation of the c-raf protein in the growth factor-dependent FDC-P1 and DA-3 murine myeloid cell lines. Furthermore, immunoprecipitates of c-raf isolated from growth factor-stimulated cells demonstrate a marked increase in intrinsic protein kinase activity as measured in vitro. IL-3 and granulocyte-macrophage colony-stimulating factor induce phosphorylation of c-raf at both serine and tyrosine residues. Antiphosphotyrosine immunoprecipitates from IL-3-stimulated cells demonstrate the rapid and coordinate phosphorylation of both c-raf and a protein co-migrating with the 140-kDa putative IL-3 receptor component. Collectively, the findings of rapid and coordinate ligand-induced phosphorylation of a potential IL-3 growth factor receptor component and cytoplasmic c-raf with concomitant c-raf activation provide a cogent sequential molecular model for linking external growth stimuli to intracellular signal transduction events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号