首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
TGFbeta is a potent regulator of cell differentiation in many cell types. On aortic endothelial cells, TGFbeta1 displays angiogenic properties in inducing capillary-like tube formation in collagen I gels, in vitro. We investigated cytoskeletal changes that precede tube formation and related these alterations to the effects of TGFbeta1 on the activation state of members of the RhoGTPase family. TGFbeta1 promotes cell elongation and stress fiber formation in aortic endothelial cells. Using cell lines with inducible expression of Rac1 mutants, we show that these events are mimicked by expression of dominant-negative Rac1 whereas the constitutively active mutant prevents the TGFbeta1-mediated change of phenotype. Although TGFbeta1 induces an initial rise in the Rac1-GTP content, this phase is followed by a prolonged loss of the active form. In contrast, RhoA activity increases progressively and reaches a plateau when Rac1-GTP is no longer detectable. Prolonged inhibition of Rac1 appears necessary and sufficient for the increase in RhoA-GTP. In situ examination of Rho activity in TGFbeta1-treated cells provides evidence that active RhoA relocalizes to the tips of elongated cells. Inhibiting the Rho effector ROCK abrogates tube formation. Thus, Rac1 and RhoA are regulated by TGFbeta1 in the process of endothelial tube formation in collagen I gels.  相似文献   

2.
Negative regulation of NF-kappaB signaling by PIAS1   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

3.
4.
We speculated that the sphingosine-1-phosphate (S1P) receptor S1P(2), which uniquely inhibits cell migration, might mediate inhibitory effects on endothelial cell migration and angiogenesis, different from S1P(1) and S1P(3). Mouse vascular endothelial cells, which endogenously express S1P(2) and S1P(3), but not S1P(1), responded to S1P and epidermal growth factor (EGF) with stimulation of Rac, migration, and the formation of tube-like structures on the Matrigel. The S1P(3)-antagonist VPC-23019 abolished S1P-induced, G(i)-dependent Rac stimulation, cell migration, and tube formation, whereas the S1P(2)-antagonist JTE-013 enhanced these S1P-induced responses, suggesting that S1P(2) exerts inhibitory effects on endothelial Rac, migration, and angiogenesis. S1P(2) overexpression markedly augmented S1P-induced, G(i)-independent inhibition of EGF-induced migration and tube formation. Finally, the blockade of S1P(2) by JTE-013 potentiated S1P-induced stimulation of angiogenesis in vivo in the Matrigel implant assay. These observations indicate that in contrast to S1P(1) and S1P(3), S1P(2) negatively regulates endothelial morphogenesis and angiogenesis most likely through down-regulating Rac.  相似文献   

5.
Kim MJ  Chae JS  Kim KJ  Hwang SG  Yoon KW  Kim EK  Yun HJ  Cho JH  Kim J  Kim BW  Kim HC  Kang SS  Lang F  Cho SG  Choi EJ 《The EMBO journal》2007,26(13):3075-3085
Serum- and glucocorticoid-inducible protein kinase 1 (SGK1) has been implicated in diverse cellular activities including the promotion of cell survival. The molecular mechanism of the role of SGK1 in protection against cellular stress has remained unclear, however. We have now shown that SGK1 inhibits the activation of SEK1 and thereby negatively regulates the JNK signaling pathway. SGK1 was found to physically associate with SEK1 in intact cells. Furthermore, activated SGK1 mediated the phosphorylation of SEK1 on serine 78, resulting in inhibition of the binding of SEK1 to JNK1, as well as to MEKK1. Replacement of serine 78 of SEK1 with alanine abolished SGK1-mediated SEK1 inhibition. Oxidative stress upregulated SGK1 expression, and depletion of SGK1 by RNA interference potentiated the activation of SEK1 induced by oxidative stress in Rat2 fibroblasts. Moreover, such SGK1 depletion prevented the dexamethasone-induced increase in SGK1 expression, as well as the inhibitory effects of dexamethasone on paclitaxel-induced SEK1-JNK signaling and apoptosis in MDA-MB-231 breast cancer cells. Together, our results suggest that SGK1 negatively regulates stress-activated signaling through inhibition of SEK1 function.  相似文献   

6.
TLR信号是生物体重要的病原体模式识别信号,在免疫识别和炎症反应中具有重要作用,其信号异常会导致许多免疫和炎症相关疾病的发生,因此探讨和明确TLR信号通路的调控机制具有非常重要的意义。近年来研究发现,作为重要的基因表达调控的小分子RNA,微RNA(microRNA,miRNA)能与TLR信号通路中众多靶基因mRNA的3’UTR区结合,从而抑制翻译过程或降解mRNA来发挥负性调控作用。本文就miRNA对TLR信号通路中的一些受体、信号分子、调节因子和细胞因子的负性调控作用方面进行阐述。  相似文献   

7.
Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) is an important component in the stress-activated protein kinase pathway. Glutathione S-transferase Mu 1-1 (GST M1-1) has now been shown to inhibit the stimulation of MEKK1 activity induced by cellular stresses such as UV and hydrogen peroxide. GST M1-1 inhibited MEKK1 activation in a manner independent of its glutathione-conjugating catalytic activity. In vitro binding and kinase assays revealed that GST M1-1 directly bound MEKK1 and inhibited its kinase activity. Co-immunoprecipitation analysis showed a physical association between endogenous GST M1-1 and endogenous MEKK1 in L929 cells. Overexpressed GST M1-1 interfered with the binding of MEKK1 to SEK1 in transfected HEK293 cells. Furthermore, GST M1-1 suppressed MEKK1-mediated apoptosis. Taken together, our results suggest that GST M1-1 functions as a negative regulator of MEKK1.  相似文献   

8.
Kidney morphogenesis: cellular and molecular regulation   总被引:16,自引:0,他引:16  
  相似文献   

9.
10.
11.
12.
Presenilin 1 (PS1) plays a pivotal role in Notch signaling and the intracellular metabolism of the amyloid beta-protein. To understand intracellular signaling events downstream of PS1, we investigated in this study the action of PS1 on mitogen-activated protein kinase pathways. Overexpressed PS1 suppressed the stress-induced stimulation of stress-activated protein kinase (SAPK)/c-Jun NH(2)-terminal kinase (JNK) in human embryonic kidney 293 cells. Interestingly, two functionally inactive PS1 mutants, PS1(D257A) and PS1(D385A), failed to inhibit UV-stimulated SAPK/JNK. Furthermore, H(2)O(2-) or UV-stimulated SAPK activity was higher in mouse embryonic fibroblast (MEF) cells from PS1-null mice than in MEF cells from PS(+/+) mice. MEF(PS1(-/-)) cells were more sensitive to the H(2)O(2)-induced apoptosis than MEF(PS1(+/+)) cells. Ectopic expression of PS1 in MEF(PS1(-/-)) cells suppressed H(2)O(2)-stimulated SAPK/JNK activity and apoptotic cell death. Together, our data suggest that PS1 inhibits the stress-activated signaling by suppressing the SAPK/JNK pathway.  相似文献   

13.
Negative regulation of FAK signaling by SOCS proteins   总被引:6,自引:0,他引:6       下载免费PDF全文
Liu E  Côté JF  Vuori K 《The EMBO journal》2003,22(19):5036-5046
Focal adhesion kinase (FAK) becomes activated upon integrin-mediated cell adhesion and controls cellular responses to the engagement of integrins, including cell migration and survival. We show here that a coordinated signaling by integrins and growth factor receptors induces expression of suppressor of cytokine signaling-3 (SOCS-3) and subsequent interaction between endogenous FAK and SOCS-3 proteins in 3T3 fibroblasts. Cotransfection studies demonstrated that SOCS-3, and also SOCS-1, interact with FAK in a FAK-Y397-dependent manner, and that both the Src homology 2 (SH2) and the kinase inhibitory region (KIR) domains of the SOCS proteins contribute to FAK binding. SOCS-1 and SOCS-3 were found to inhibit FAK-associated kinase activity in vitro and tyrosine phosphorylation of FAK in cells. The SOCS proteins also promoted polyubiquitination and degradation of FAK in a SOCS box-dependent manner and inhibited FAK-dependent signaling events, such as cell motility on fibronectin. These studies suggest a negative role of SOCS proteins in FAK signaling, and for a previously unidentified regulatory mechanism for FAK function.  相似文献   

14.
15.
16.
Suppressor of cytokine signaling 1 (SOCS1) is an indispensable regulator of IFNγ signaling and has been implicated in the regulation of liver fibrosis. However, it is not known whether SOCS1 mediates its anti-fibrotic functions in the liver directly, or via modulating IFNγ, which has been implicated in attenuating hepatic fibrosis. Additionally, it is possible that SOCS1 controls liver fibrosis by regulating hepatic stellate cells (HSC), a key player in fibrogenic response. While the activation pathways of HSCs have been well characterized, the regulatory mechanisms are not yet clear. The goals of this study were to dissociate IFNγ-dependent and SOCS1-mediated regulation of hepatic fibrogenic response, and to elucidate the regulatory functions of SOCS1 in HSC activation. Liver fibrosis was induced in Socs1−/−Ifng−/− mice with dimethylnitrosamine or carbon tetrachloride. Ifng−/− and C57BL/6 mice served as controls. Following fibrogenic treatments, Socs1−/−Ifng−/− mice showed elevated serum ALT levels and increased liver fibrosis compared to Ifng−/− mice. The latter group showed higher ALT levels and fibrosis than C57BL/6 controls. The livers of SOCS1-deficient mice showed bridging fibrosis, which was associated with increased accumulation of myofibroblasts and abundant collagen deposition. SOCS1-deficient livers showed increased expression of genes coding for smooth muscle actin, collagen, and enzymes involved in remodeling the extracellular matrix, namely matrix metalloproteinases and tissue inhibitor of metalloproteinases. Primary HSCs from SOCS1-deficient mice showed increased proliferation in response to growth factors such as HGF, EGF and PDGF, and the fibrotic livers of SOCS1-deficient mice showed increased expression of the Pdgfb gene. Taken together, these data indicate that SOCS1 controls liver fibrosis independently of IFNγ and that part of this regulation may occur via regulating HSC proliferation and limiting growth factor availability.  相似文献   

17.
Deng W  Shi M  Han M  Zhong J  Li Z  Li W  Hu Y  Yan L  Wang J  He Y  Tang H  Deubel V  Luo X  Ning Q  Sun B 《The Journal of biological chemistry》2008,283(51):35590-35597
Induction of Type I IFNs is a central event in antiviral responses and must be tightly controlled. The protein kinase TBK1 is critically involved in virus-triggered type I IFN signaling. In this study, we identify an alternatively spliced isoform of TBK1, termed TBK1s, which lacks exons 3-6. Upon Sendai virus (SeV) infection, TBK1s is induced in both human and mouse cells and binds to RIG-1, disrupting the interaction between RIG-I and VISA. Consistent with that result, overexpression of TBK1s inhibits IRF3 nuclear translocation and leads to a shutdown of SeV-triggered IFN-beta production. Taken together, our data indicate that TBK1s plays an inhibitory role in virus-triggered IFN-beta signaling pathways.  相似文献   

18.
Signaling by receptor tyrosine kinases (RTK) mediates a variety of complex cellular functions and in case of deregulation can contribute to pathophysiological processes. A tight and finely tuned control of RTK activity is therefore critical for the cell. We investigated the role of the PEST-type protein-tyrosine phosphatase BDP1 in the regulation of HER2, a member of the epidermal growth factor receptor (EGFR) family of RTKs. Here we demonstrate that HER2 signaling is highly sensitive to BDP1 activity. Overexpression of BDP1 inhibited ligand-induced activation of HER2 but not that of the closely related EGFR. On the other hand, suppression of endogenous BDP1 expression increased the phosphorylation state of HER2. In addition, BDP1 was able to interfere with downstream signaling events by inhibiting the phosphorylation of the adaptor protein Gab1 and reducing mitogen-activated protein kinase activation. Supported by the finding that BDP1 is coexpressed with HER2 in breast cancer cells, we suggest that BDP1 is an important regulator of HER2 activity and thus the first protein-tyrosine phosphatase shown to be involved in HER2 signal attenuation.  相似文献   

19.
Negative regulation of toll-like receptor-mediated signaling by Tollip.   总被引:29,自引:0,他引:29  
Toll-like receptor (TLR)-mediated recognition of pathogens represents one of the most important mechanisms of innate immunity and disease resistance. The adaptor protein Tollip was identified initially as an intermediate in interleukin (IL)-1 signaling. Here we report that Tollip also associates directly with TLR2 and TLR4 and plays an inhibitory role in TLR-mediated cell activation. Inhibition by Tollip is mediated through its ability to potently suppress the activity of IL-1 receptor-associated kinase (IRAK) after TLR activation. In addition, we show for the first time that Tollip is a bona fide substrate for IRAK and is phosphorylated by IRAK upon stimulation with lipopolysaccharide or IL-1. Negative regulation of TLR signaling by Tollip may therefore serve to limit the production of proinflammatory mediators during inflammation and infection.  相似文献   

20.
DNA double-strand breaks (DSBs) are the most severe type of DNA damage and are primarily repaired by non-homologous end joining (NHEJ) and homologous recombination (HR) in the G1 and S/G2 phase, respectively. Although CtBP-interacting protein (CtIP) is crucial in DNA end resection during HR following DSBs, little is known about how CtIP levels increase in an S phase-specific manner. Here, we show that Serpine mRNA binding protein 1 (SERBP1) regulates CtIP expression at the translational level in S phase. In response to camptothecin-mediated DNA DSBs, CHK1 and RPA2 phosphorylation, which are hallmarks of HR activation, was abrogated in SERBP1-depleted cells. We identified CtIP mRNA as a binding target of SERBP1 using RNA immunoprecipitation-coupled RNA sequencing, and confirmed SERBP1 binding to CtIP mRNA in S phase. SERBP1 depletion resulted in reduction of polysome-associated CtIP mRNA and concomitant loss of CtIP expression in S phase. These effects were reversed by reconstituting cells with wild-type SERBP1, but not by SERBP1 ΔRGG, an RNA binding defective mutant, suggesting regulation of CtIP translation by SERBP1 association with CtIP mRNA. These results indicate that SERBP1 affects HR-mediated DNA repair in response to DNA DSBs by regulation of CtIP translation in S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号