首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The present study was performed to determine the influence of absence of angiotensin type 1A (AT(1A)) and/or AT(1B) receptor feedback regulation of kidney neuronal nitric oxide synthase (nNOS) and renin protein expression. Kidneys were harvested from wild-type (WT), AT(1A)(-/-), AT(1B)(-/-), and AT(1A)(-/-)AT(1B)(-/-) mice and immunostained for nNOS and renin protein localization. AT(1A)(-/-) and AT(1A)(-/-)AT(1B)(-/-) kidneys demonstrated an increase in the percentage of glomeruli with nNOS-positive afferent and interlobular arterioles compared with WT mice. Density of vascular nNOS immunostaining was 20-fold higher in kidneys of AT(1A)(-/-) and AT(1A)(-/-)AT(1B)(-/-) compared with WT mice. Density of macula densa nNOS immunostaining was 7-fold higher in AT(1A)(-/-)AT(1B)(-/-) than in WT mice. Percent of glomeruli positive for juxtaglomerular (JG) cell renin was 3-fold higher, whereas the density of JG cell renin immunostaining was 15-fold higher in kidneys of AT(1A)(-/-) and AT(1A)(-/-)AT(1B)(-/-) compared with WT mice. Kidneys of AT(1A)(-/-) and AT(1A)(-/-)AT(1B)(-/-) mice displayed recruitment of renin protein expression along afferent and interlobular arterioles. Absence of AT(1) receptor signaling resulted in enhanced nNOS protein expression in both microvascular and tubular structures. Enhanced NO generation may contribute to the reduced renal vascular tone and blood pressure observed with blockade of the renin-angiotensin system.  相似文献   

3.
Summary The occurrence and distribution of renin was investigated in meso- and metanephric kidneys of pig embryos in various gestational stages. The immunohistochemical peroxidase-antiperoxidase-method (PAP) was used on paraffin sections after application of an antiserum against mouse renin which cross reacts with pig renin. Renin immunoreactivity was already found in the mesonephros of 21 day pig embryos (crown-rump(CR)-length 12 mm) with the strongest reaction in the media of the juxtaglomerular afferent arteriole. Efferent vessels, mesonephric arteries, and the aortic wall also contained scattered renin-positive cells. In the definitive kidney, renin was not detected prior to the 25 mm CR-length-stage. In 45 mm embryos, immunocytochemical staining was observed not only in the media of kidney arteries and arterioles, but also in proximal tubules after pinocytic absorption of filtered renin. TEM-studies revealed that the media of both the mesonephric and the developing metanephric arteries and arterioles contains epithelioid cells whose ultrastructure is very similar to that of renin-producing cells in the adult organ. The observed distribution of renin-producing cells along the entire renal arterial tree points to the possibility that the major function of the renin-angiotensin system in the fetal animal is to participate in the stabilization of renal perfusion pressure.  相似文献   

4.
The occurrence and distribution of renin was investigated in meso- and metanephric kidneys of pig embryos in various gestational stages. The immunohistochemical peroxidase-antiperoxidase-method (PAP) was used on paraffin sections after application of an antiserum against mouse renin which cross reacts with pig renin. Renin immunoreactivity was already found in the mesonephros of 21 day pig embryos (crown-rump(CR)-length 12 mm) with the strongest reaction in the media of the juxtaglomerular afferent arteriole. Efferent vessels, mesonephric arteries, and the aortic wall also contained scattered renin-positive cells. In the definitive kidney, renin was not detected prior to the 25 mm CR-length-stage. In 45 mm embryos, immunocytochemical staining was observed not only in the media of kidney arteries and arterioles, but also in proximal tubules after pinocytic absorption of filtered renin. TEM-studies revealed that the media of both the mesonephric and the developing metanephric arteries and arterioles contains epithelioid cells whose ultrastructure is very similar to that of renin-producing cells in the adult organ. The observed distribution of renin-producing cells along the entire renal arterial tree points to the possibility that the major function of the renin-angiotensin system in the fetal animal is to participate in the stabilization of renal perfusion pressure.  相似文献   

5.
We previously found that deletion of connexin 40 (Cx40) causes a misdirection of renin-expressing cells from the media layer of afferent arterioles to the perivascular tissue, extraglomerular mesangium, and periglomerular and peritubular interstitium. The mechanisms underlying this aberrant renin expression are unknown. Here, we questioned the relevance of cyclooxygenase-2 (COX-2) activity for aberrant renin expression in Cx40-deficient kidneys. We found that COX-2 mRNA levels were increased three-fold in the renal cortex of Cx40-deficient kidneys relative to wild-type (wt) kidneys. In wt kidneys, COX-2 immunoreactivity was minimally detected in the juxtaglomerular region, but renin expression was frequently associated with COX-2 immunoreactivity in Cx40-deficient kidneys. Treatment with COX-2 inhibitors for 1 wk lowered renin mRNA levels in wt kidneys by about 40%. In Cx40-deficient kidneys, basal renin mRNA levels were increased two-fold relative to wt kidneys, and these elevated mRNA levels were reduced to levels of untreated wt mice by COX-2 inhibitors. In parallel, renin immunoreactive areas were clearly reduced by COX-2 inhibitors such that renin expression vanished and decreased significantly in the periglomerular and peritubular extensions. Notably, COX-2 inhibitor treatment lowered plasma renin concentration (PRC) in wt kidneys by about 40% but did not affect the highly elevated PRC levels in Cx40-deficient mice. These findings suggest that aberrant renin-producing cells in Cx40-deficient kidneys express significant amounts of COX-2, which contribute to renin expression in these cells, in particular, those in the periglomerular and peritubular position. Apparently, these disseminated cells do not contribute to the enhanced renin secretion rates of Cx40-deficient kidneys.  相似文献   

6.
Here we investigate the biochemical, molecular, and cellular changes directed toward blood pressure homeostasis that occur in the endocrine branch of the renin-angiotensin system of mice having one angiotensinogen gene inactivated. No compensatory up-regulation of the remaining normal allele occurs in the liver, the main tissue of angiotensinogen synthesis. No significant changes occur in expression of the genes coding for the angiotensin converting enzyme or the major pressor-mediating receptor for angiotensin, but plasma renin concentration in the mice having only one copy of the angiotensinogen gene is greater than twice wild-type. This increase is mediated primarily by a modest increase in the proportion of renal glomeruli producing renin in their juxtaglomerular apparatus and by four times wild-type numbers of renin-producing cells along afferent arterioles of the glomeruli rather than by up-regulating renin production in cells already committed to its synthesis.  相似文献   

7.
Summary In five species (mouse, rat, rabbit, rhesus monkey and man) the renin status of the preglomerular arterioles was examined using two immunohistochemical methods: the measurement of the renin-positive portion of the vessels, reflecting the respective number of granulated cells, and the semiquantitative assessment of the renin concentration in the juxtaglomerular epithelioid cells with antibody dilution series. The main objective of the study was to compare the interzonal with the intrazonal internephron heterogeneitics, i.e. the differences between the average renin status of the preglomerular arterioles in the superficial, intermediate and juxtamedullar cortex with the differences between the renin status of the individual afferent arterioles in one and the same cortex region. In contrast to small interzonal heterogeneities, substantial intrazonal differences in the renin status of the corresponding nephrons were found.  相似文献   

8.
In five species (mouse, rat, rabbit, rhesus monkey and man) the renin status of the preglomerular arterioles was examined using two immunohistochemical methods: the measurement of the renin-positive portion of the vessels, reflecting the respective number of granulated cells, and the semiquantitative assessment of the renin concentration in the juxtaglomerular epithelioid cells with antibody dilution series. The main objective of the study was to compare the interzonal with the intrazonal internephron heterogeneities, i.e. the differences between the average renin status of the preglomerular arterioles in the superficial, intermediate and juxtamedullar cortex with the differences between the renin status of the individual afferent arterioles in one and the same cortex region. In contrast to small interzonal heterogeneities, substantial intrazonal differences in the renin status of the corresponding nephrons were found.  相似文献   

9.
Renin-synthesizing cells are crucial in the regulation of blood pressure and fluid-electrolyte homeostasis. Adult mammals subjected to manipulations that threaten homeostasis increase circulating renin by increasing the number of renin-expressing/-releasing cells. We hypothesize that the ability of adult cells to synthesize renin does not occur randomly in any cell type, depending instead on the cell's lineage. To determine the fate of renin-expressing cells, we generated knockin mice expressing cre recombinase in renin-expressing cells and crossed them with reporter mice. Results show that renin-expressing cells are precursors for a variety of cells that differentiate into non-renin-expressing cells such as smooth-muscle, epithelial, mesangial, and extrarenal cells. In the kidney, these cells retain the capability to synthesize renin when additional hormone is required to reestablish homeostasis: specific subpopulations of apparently differentiated cells are "held in reserve" to respond (repeatedly) by de-differentiating and expressing renin in response to stress, and re-differentiating when the crisis passes.  相似文献   

10.
Connexins in renal arterioles affect autoregulation of arteriolar tonus and renal blood flow and are believed to be involved in the transmission of the tubuloglomerular feedback (TGF) response across the cells of the juxtaglomerular apparatus. Connexin40 (Cx40) also plays a significant role in the regulation of renin secretion. We investigated the effect of deleting the Cx40 gene on autoregulation of afferent arteriolar diameter in response to acute changes in renal perfusion pressure. The experiments were performed using the isolated blood perfused juxtamedullary nephron preparation in kidneys obtained from wild-type or Cx40 knockout mice. Renal perfusion pressure was increased in steps from 75 to 155 mmHg, and the response in afferent arteriolar diameter was measured. Hereafter, a papillectomy was performed to inhibit TGF, and the pressure steps were repeated. Conduction of intercellular Ca(2+) changes in response to local electrical stimulation was examined in isolated interlobular arteries and afferent arterioles from wild-type or Cx40 knockout mice. Cx40 knockout mice had an impaired autoregulatory response to acute changes in renal perfusion pressure compared with wild-type mice. Inhibition of TGF by papillectomy significantly reduced autoregulation of afferent arteriolar diameter in wild-type mice. In Cx40 knockout mice, papillectomy did not affect the autoregulatory response, indicating that these mice have no functional TGF. Also, Cx40 knockout mice showed no conduction of intercellular Ca(2+) changes in response to local electrical stimulation of interlobular arteries, whereas the Ca(2+) response to norepinephrine was unaffected. These results suggest that Cx40 plays a significant role in the renal autoregulatory response of preglomerular resistance vessels.  相似文献   

11.
The effects of intracerebroventricular (ICV) injection of angiotensin II (ANG II) on blood pressure and water intake were examined with the use of ANG II receptor-deficient mice. ICV injection of ANG II increased systolic blood pressure in a dose-dependent manner in wild-type (WT) mice and ANG type 2 AT(2) receptor null (knockout) (AT(2)KO) mice; however, this increase was significantly greater in AT(2)KO mice than in WT mice. The pressor response to a central injection of ANG II in WT mice was inhibited by ICV preinjection of the selective AT(1) receptor blocker valsartan but exaggerated by the AT(2) receptor blocker PD-123319. ICV injection of ANG II also increased water intake. It was partly but significantly suppressed both in AT(2)KO and AT(1)aKO mice. Water intake in AT(2)/AT(1)aKO mice did not respond to ICV injection of ANG II. Both valsartan and PD-123319 partly inhibited water intake in WT mice. These results indicate an antagonistic action between central AT(1)a and AT(2) receptors in the regulation of blood pressure, but they act synergistically in the regulation of water intake induced by ANG II.  相似文献   

12.
The important cardiovascular regulator renin contains a strong in vitro enhancer 2.7 kb upstream of its gene. Here we tested the in vivo role of the mouse Ren-1c enhancer. In renin-expressing As4.1 cells stably transfected with Ren-1c promoter with or without enhancer, expression of linked beta-geo reporter, stable expression, and colony formation were dependent on the presence of the enhancer. We then generated mice carrying a targeted deletion of the enhancer (REKO mice) and found marked depletion of renin in renal juxtaglomerular and submandibular ductal cells, as well as hyperplasia of macula densa cells. Plasma creatinine was increased, but electrolytes were normal. Male REKO mice implanted with telemetry devices had 9 +/- 1 mm Hg lower mean arterial pressure (p < 0.001), which was partly normalized by a high NaCl diet. Locomotor activity was lower, and baroreflex sensitivity was normal. Markedly reduced mean arterial pressure variability in the midfrequency band indicated a contribution of reduced sympathetic vasomotor tone to the hypotension. In conclusion, the renin enhancer is critical for renin gene expression and physiological sequelae, including response to alteration in salt intake. The REKO mouse may be useful as a low renin expression model.  相似文献   

13.
Summary The intrarenal distribution of renin in the mouse kidney was evaluated in a semiquantitative immunocytochemical study using an antiserum against pure mouse renin and the PAP technique. The bulk of renin positive cells was found in the media of the afferent arteriole. When examining the geometry of renin distribution about 35% of the afferent vessels were seen to be renin positive only over a distance of 20 m, about 60% over a distance of 30 m. In the remaining afferent arterioles, renin was also found upstream over distances up to 100 or even 200 m. These results are discussed with regard to the stimuli for renin secretion, especially the macula densa signal. — At the vascular pole of the glomerulus, virtually 100% of the afferent, and 20%–40% of the efferent arterioles were found to be renin positive at an antiserum dilution of 1:1,000. As some efferent vessels — especially those of the juxtamedullar region — show scattered activity occasionally over a distance of more than 100 m, it is suggested that the figure of 20%–40% should be taken as a minimal count for renin positive efferent arterioles. — To compare the renin content of superficial and juxtamedullary, afferent and efferent arterioles in normal salt and salt depleted mice, the fraction of positive renin reactions close to the vascular pole was determined at antiserum concentrations of 10–3, 10–4, 2×10–4 and 10–5. By this semiquantitative immunocytochemical method the afferent arterioles of superficial glomeruli could be shown to contain significantly higher renin concentrations than those of juxtamedullar glomeruli. This result was in agreement with biochemical renin estimations in mouse kidney slices taken from cortical and juxtamedullar sites. Sodium deprivation was followed by only a slight elevation of the fraction of positive superficial afferent arterioles (confirmed by the biochemical data). In contrast, sodium deprivation induced a highly significant increase of the number of positive superficial efferent vessels. This result is discussed with regard to (controversial) reports on a preferential efferent vasoconstrictor tone sustained by angiotensin II especially under the condition of sodium depletion. Juxtamedullar vasa afferentia and efferentia did not respond significantly to sodium restriction. —The Goormaghtigh cell field was found to be renin negative in superficial as well as in juxtamedullar glomeruli both in normal salt and salt deprived mice. Inspecting nearly 5,000 glomeruli, only 5 clearly renin positive mesangial cells were seen close to the glomerular stalk. In contrast, renin positive media cells could not seldom be seen in interlobular arteries and at the point of their branching into afferent arterioles.A first account of these results was given at the Rottach-Egern Satellite Symposium of the VIIth International Congress of Nephrology: The juxtaglomerular apparatus and the tubuloglomerular feedback mechanism — morphology, biochemistry and function, June 3 to 5, 1981These studies were supported by the Deutsche Forschungsgemeinschaft within the SFB 90 Cardiovasculäres System  相似文献   

14.
One of the major physiological regulators for the production and release of renin from the kidney is blood pressure. The juxtaglomerular (JG) cells, located primarily at the afferent arterioles leading to the glomerulus, are thought to be the baroreceptor of the kidney and adjust their ability to secrete renin in an inverse relationship to changes in pressure (mechanical force). The characteristics of JG cells that allow them to sense and respond to changes in mechanical force at the cellular level are not clear. By use of a renin-expressing clonal cell line (As4.1) as a model for JG cells, it was the purpose of this paper to identify cellular pathways that are activated by mechanical distension. Fura 2-labeled As4.1 cells were mechanically probed to observe changes of intracellular calcium concentration ([Ca(2+)](i)). Mechanical distension of As4.1 cells resulted in an influx of Ca(2+) to the cytosol, mediated by stretch-activated ion channels and dependent on the presence of extracellular Ca(2+). Furthermore, cyclic mechanical distension elevated total inositol phosphates (IP) in As4.1 cells. This response was also dependent on the presence of extracellular Ca(2+), and the addition of U-73122, a phospholipase C (PLC) antagonist, significantly attenuated the increase of IP. Taken together, these findings demonstrate the calcium-dependent activation of PLC and the subsequent increase of IP and [Ca(2+)](i) to be a potentially important pathway for the modality of pressure sensing by renin-expressing cells in response to mechanical stimulation.  相似文献   

15.
16.
Renin-expressing cells are peculiar in that they act as differentiated cells, producing the hormone renin, while they also seem to act as progenitors for other renal cell types. As such, they may have functions independent of their ability to generate renin/angiotensin. To test this hypothesis, we ablated renin-expressing cells during development by placing diphtheria toxin A chain (DTA) under control of the Ren1d mouse renin promoter by homologous recombination in a two-renin gene strain (Ren2 and Ren1d). Renin-expressing cells are essentially absent from kidneys in homozygotes (DTA/DTA) which, unlike wild-type mice, are unable to recruit renin-expressing cells when homeostasis is threatened. In contrast, renin staining in the submandibular gland (SMG), which expresses mainly Ren2, is normal. Homozygous mice survive normally, but the kidneys are small and have morphological abnormalities: 25% of the glomeruli are hyperplastic or atrophic, tubules are dilated and atrophic, and areas of undifferentiated cells exist near the atrophic glomeruli and tubules. However, in contrast to the very abnormal renal vessels found when renin-angiotensin system genes are deleted, the kidney vessels in homozygotes have normal wall thickness and no decrease in lumen size. Homozygotes have severely reduced kidney and plasma renin concentrations and females have reduced blood pressure. Homozygotes have elevated blood urea nitrogen and potassium levels, which are suggestive of altered renal function. We conclude that renin cells per se are necessary for the morphological integrity of the kidney and may have a role in maintenance of normal kidney function.  相似文献   

17.
We asked whether cyclooxygenase (COX) activity controls the renin-angiotensin system in the postnatal period. During kidney development, renin peaked at postnatal days 0-1 at the mRNA, tissue protein [renal renin concentration (RRC)], and plasma renin concentration (PRC) levels and was widely expressed along preglomerular vessels. PRC and renin mRNA expression was elevated until weaning in the 4th postnatal week compared with adult rats. Renocortical COX-2 was restricted to Tamm-Horsfall protein-positive cells in the thick ascending limb of Henle's loop, and cortical COX-2 mRNA and protein expression were elevated along with PRC in the 2nd and 3rd postnatal weeks. In contrast, cortical COX-1 expression was constant, but medullary COX-1 expression increased eightfold from the 1st to 4th postnatal week. A COX-2-selective blocker, parecoxib, and a nonselective blocker, indomethacin, given in a period with COX-2 induction from postnatal day 6 to day 12, markedly decreased PRC, but not renin mRNA or RRC. Inhibition of angiotensin AT(1) receptors by candesartan from postnatal day 1 to day 5 increased COX-2 mRNA (2.5-fold), protein, and distribution, renin mRNA (7-fold) and PRC (20- to 70-fold), but had no influence on COX-1 mRNA. Thus, due to very low levels of expression, COX-2 is unlikely to be responsible for the birth peak of renin, but COX-2 activity supports renin secretion later in the suckling period. ANG II negatively feeds back on renocortical COX-2 expression in the 1st postnatal days with high activity of the renin system. We suggest that suckling in the rat is correlated to an enhanced, COX-2-mediated, secretory activity of renin-producing juxtaglomerular cells.  相似文献   

18.
Adenosine mediates tubuloglomerular feedback responses via activation of A(1)-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A(1)-receptor knockout (A(1)(-/-)) and wild-type (A(1)(+/+)) mice we investigated the hypothesis that A(1)-receptors modulate arteriolar and blood pressure responses during NO synthase (NOS) inhibition or ANG II treatment. Blood pressure and renal afferent arteriolar responses were measured in nontreated mice and in mice with prolonged N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) or ANG II treatment. The hypertensive responses to L-NAME and ANG II were clearly attenuated in A(1)(-/-) mice. Arteriolar contractions to L-NAME (10(-4) mol/l; 15 min) and cumulative ANG II application (10(-12) to 10(-6) mol/l) were lower in A(1)(-/-) mice. Simultaneous treatment with tempol (10(-4) mol/l; 15 min) attenuated arteriolar responses in A(1)(+/+) but not in A(1)(-/-) mice, suggesting differences in ROS formation. Chronic treatment with L-NAME or ANG II did not alter arteriolar responses in A(1)(-/-) mice, but enhanced maximal contractions in A(1)(+/+) mice. In addition, chronic treatments were associated with higher plasma levels of dimethylarginines (asymmetrical and symmetrical) and oxidative stress marker malondialdehyde in A(1)(+/+) mice, and gene expression analysis showed reduced upregulation of NOS-isoforms and greater upregulation of NADPH oxidases. In conclusion, adenosine A(1)-receptors enhance preglomerular responses during NO inhibition and ANG II treatment. Interruption of A(1)-receptor signaling blunts l-NAME and ANG II-induced hypertension and oxidative stress and is linked to reduced responsiveness of afferent arterioles.  相似文献   

19.
Summary The PAP-technique and antibodies to myosin were used to demonstrate the prerequisites for vasoconstriction in the juxtaglomerular part of the preglomerular arteriole as compared with its proximal segment in rats and mice. In contrast with the myosin-positive/renin-negative proximal part of the afferent arteriole no myosin-like activity could be demonstrated in its distal, renin-positive part. In accordance, no thick myofilaments were found in fully differentiated juxtaglomerular epithelioid cells replete with mature secretory granules. Stimulation of the renin-angiotensin system was followed by an increase of the reninpositive/myosin-negative portions of the preglomerular arteriole. Marked interspecies and internephron variations in the length of this vessel segment under control and stimulated conditions were observed.The juxtaglomerular part of the preglomerular arteriole close to the macula densa seems therefore to have only limited capabilities for vasoconstriction. This finding may be of importance regarding the tubulo-glomerular feedback, a mechanism allegedly triggered by the so-called macula densa-signal. It is suggested that this non-contractile segment of the afferent arteriole may represent the renal vascular receptor responsible for the increase of renin secretion during pressure reduction.Unlike the afferent arterioles, most of the efferent arterioles showed the highest level of their weak but distinct myosin-like immunoreactivity in the juxtaglomerular region, indicating some efferent juxtaglomerular vasoconstrictive ability.These studies were supported by the German Research Foundation within the Forschergruppe Niere/Heidelberg  相似文献   

20.
We constructed transgenic mice containing a renin-promoter SV40 T antigen fusion transgene with the intention of inducing neoplasia in renin-expressing cells and isolating renin-expressing cell lines in vitro. We examined six kidney tumors from mice representing three different transgenic lines and found they expressed their endogenous renin gene. Initially, five nonclonal kidney tumor-derived cell lines were established which expressed their endogenous renin gene in addition to the transgene. They retained active renin intracellularly and constitutively secreted an inactive form of renin (prorenin). One of these cell lines was cloned to homogeneity. This line maintained high level expression of renin mRNA throughout 3 months of continuous culture. Although the cells contained an equal proportion of active and inactive renin, the species constitutively secreted into the media was predominantly (95%) prorenin. However, active renin secretion was stimulated 2.3- and 4.6-fold by treatment with 8-bromo-cAMP after 4 and 15 h, respectively. In addition, the presence of multiple secretory granules was confirmed by ultrastructural analysis. These cells, which express renin mRNA and can regulate secretion of active renin, should provide an excellent tool for studying renin gene regulation and secretion. Furthermore, these mice should provide a useful source for the establishment of renin-expressing cell lines from a variety of renin-expressing tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号