首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colony formation was the first step towards evolution of multicellularity in many macroscopic organisms. Dictyostelid social amoebas have used this strategy for over 600 Myr to form fruiting structures of increasing complexity. To understand in which order multicellular complexity evolved, we measured 24 phenotypic characters over 99 dictyostelid species. Using phylogenetic comparative methods, we show that the last common ancestor (LCA) of Dictyostelia probably erected small fruiting structures directly from aggregates. It secreted cAMP to coordinate fruiting body morphogenesis, and another compound to mediate aggregation. This phenotype persisted up to the LCAs of three of the four major groups of Dictyostelia. The group 4 LCA co-opted cAMP for aggregation and evolved much larger fruiting structures. However, it lost encystation, the survival strategy of solitary amoebas that is retained by many species in groups 1–3. Large structures, phototropism and a migrating intermediate ‘slug’ stage coevolved as evolutionary novelties within most groups. Overall, dictyostelids show considerable plasticity in the size and shape of multicellular structures, both within and between species. This probably reflects constraints placed by colonial life on developmental control mechanisms, which, depending on local cell density, need to direct from 10 to a million cells into forming a functional fructification.  相似文献   

2.
Abstract. Cell aggregation in Dictyostelium discoideum is a chemotactic process mediated by cyclic adenosine monophosphate (CAMP), which is detected by cell surface receptors. The cAMP signal is degraded by cAMP phosphodiesterase. The possibility that cAMP signals are also used for cell communication in the multicellular stages was studied by determining whether the cAMP receptors, which are essential for signal transduction, continue to function in these stages. During slug migration, the number of binding sites per cell decreases to about 15% of the maximum level acquired during aggregation. At the onset of fruiting body formation, a three- to Four-Fold increase in cAMP binding activity occurs. This increase coincides with an increase in cAMP phosphodiesterase. Both phenomena suggest that cell-cell communication mediated by cAMP is used during culmination. During both slug migration and early culmination, the prestalk cells exhibit about twice as much binding activity as the prespore cells.  相似文献   

3.
Rapidly developing (rde) mutants of Dictyostelium discoideum, in which cells precociously differentiated into stalk and spore cells without normal morphogenesis, were investigated genetically and biochemically. Genetic complementation tests demonstrated that the 16 rde mutants isolated could be classified into at least two groups (groups A and C) and that the first described rde mutant FR17 (D. R. Sonneborn, G. J. White, and M. Sussman, 1963, Dev. Biol. 7, 79-93) belongs to group A. Morphological studies revealed several differences in development and final morphology between group A and group C mutants. In group A mutants, the time required for cell differentiation from vegetative cells to aggregation competent cells is reduced, whereas the time required for spore and stalk cell differentiation following the completion of aggregation is shortened in group C mutants. This suggests that group C mutants represent a new class of rde mutants and that there exist at least two mechanisms involved in regulating the timing of development in D. discoideum. Measurements of cell-associated and extracellular phosphodiesterase activities, and intracellular and total cAMP levels revealed that cAMP metabolism in both groups is significantly altered during development. Group A mutants showed precocious and excessive production of phosphodiesterase and cAMP during the entire course of development; intracellular cAMP levels in group C mutants were extremely low, and spore and stalk cell differentiation occurred without an apparent increase in these levels. Thus, while cAMP metabolism is abnormal in all the rde mutants studied, there exist several distinct types of derangement, not necessarily involving the overproduction of cAMP.  相似文献   

4.
Starving Dictyostelium cells respond chemotactically to cell-generated waves of cyclic adenosine −3′,5′- monophosphate (cAMP) that guide cell aggregation toward a signaling center. In this process, a large number of cells are recruited, resulting in the formation of aggregation territories that are essential for fruiting body formation. The enzyme PdsA phosphodiesterase (PDE), a crucial component of the signaling system, breaks down the external cAMP and can be either membrane-bound or secreted. The existence of two such forms is unusual in cell biology, and it remains to be determined why they have both been maintained through evolution. Here, using a model of the cAMP signaling system, I show that colonies can successfully organize into aggregates over a wider range of initial cell densities when both forms of PDE are present in an appropriately tuned ratio than when only a single form is present. The model indicates that membrane-bound PDE maintains aggregation-territory integrity in colonies with high initial cell density, whereas the secreted form is important for wave propagation at low cell densities. Thus, the ultimate retention of both forms can increase territory size. These findings have implications for other excitable media, including Ca2+ propagation in cardiac cells and propagation of electrical excitation in nerve axons, since these systems have similar features of spatial nonuniform “release” and “degradation” of the relevant signals.  相似文献   

5.
Differential cell movement is an important mechanism in the development and morphogenesis of many organisms. In many cases there are indications that chemotaxis is a key mechanism controlling differential cell movement. This can be particularly well studied in the starvation-induced multicellular development of the social amoeba Dictyostelium discoideum. Upon starvation, up to 10(5) individual amoebae aggregate to form a fruiting body The cells aggregate by chemotaxis in response to propagating waves of cAMP, initiated by an aggregation centre. During their chemotactic aggregation the cells start to differentiate into prestalk and prespore cells, precursors to the stalk and spores that form the fruiting body. These cells enter the aggregate in a random order but then sort out to form a simple axial pattern in the slug. Our experiments strongly suggest that the multicellular aggregates (mounds) and slugs are also organized by propagating cAMP waves and, furthermore, that cell-type-specific differences in signalling and chemotaxis result in cell sorting, slug formation and movement.  相似文献   

6.
The Dictyostelid social amoebas represent one of nature's several inventions of multicellularity. Though normally feeding as single cells, nutrient stress triggers the collection of amoebas into colonies that form delicately shaped fruiting structures in which the cells differentiate into spores and up to three cell types to support the spore mass. Cyclic adenosine monophosphate (cAMP) plays a very dominant role in controlling morphogenesis and cell differentiation in the model species Dictyostelium discoideum. As a secreted chemoattractant cAMP coordinates cell movement during aggregation and fruiting body morphogenesis. Secreted cAMP also controls gene expression at different developmental stages, while intracellular cAMP is extensively used to transduce the effect of other stimuli that control the developmental program. In this review, I present an overview of the different roles of cAMP in the model D. discoideum and I summarize studies aimed to resolve how these roles emerged during Dictyostelid evolution.  相似文献   

7.
8.
The cyclic nucleotide phosphodiesterase (phosphodiesterase) of Dictyostelium discoideum plays an essential role in development by hydrolyzing the cAMP used as a chemoattractant by aggregating cells. We have studied the biochemistry of the phosphodiesterase and a functionally related protein, the phosphodiesterase inhibitor protein, and have cloned the cognate genes. A 1.8-kb and a 2.2-kb mRNA are transcribed from the single-phosphodiesterase gene. The 2.2-kb mRNA comprises the majority of the phosphodiesterase mRNA found in differentiating cells and is transcribed only during development from a promoter at least 2.5 kb upstream of the translational start site. The 1.8-kb phosphodiesterase mRNA is detected at all stages of growth and development, is present at lower levels than the developmentally induced mRNA, and is transcribed from a site proximal to the protein-coding region. The phosphodiesterase gene contains a minimum of three exons, and a 2.3-kb intron, the longest yet reported for this organism. We have shown that the pdsA gene and four fgd genes affect the accumulation of the phosphodiesterase mRNAs, and we believe that these loci represent a significant portion of the genes regulating expression of the phosphodiesterase. The phosphodiesterase gene was introduced into cells by transformation and used as a tool to explore the effects of cAMP on the terminal stages of development. In cells expressing high levels of phosphodiesterase activity, final morphogenesis cannot be completed, and differentiated spore and stalk cells do not form. We interpret these results to support the hypothesis that cAMP plays an essential role in organizing cell movements in late development as well as in controlling the aggregation of cells in the initial phase of the developmental program.  相似文献   

9.
Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact.  相似文献   

10.
One of the developmentally induced gene products that is essential for chemotaxis of Dictyostelium amoebae is a cyclic nucleotide phosphodiesterase. The enzyme can be secreted or exist in a membrane bound form. This enzyme is missing in the mutant HPX235 which, as a consequence, does not aggregate unless exogenous cAMP phosphodiesterase is supplied. We have introduced multiple copies of the cloned phosphodiesterase gene into mutant amoebae and restored aggregation. The formation of anatomically correct fruiting bodies, which does not occur when exogenous enzyme is added, is also restored by transformation with the gene. The construct that we have used gives rise only to secreted phosphodiesterase and therefore the membrane bound form of the enzyme is not absolutely required for normal aggregation and morphogenesis.  相似文献   

11.
Following consumption of the food supply, cells of the cellular slime mould Dictyostelium discoideum aggregate and form a multicellular organism. The mechanism for cell aggregation is chemotaxis. The chemotactic signal in D. discoideum is released periodically from aggregation centers and propagated from cell to cell. cAMP mediates cell aggregation by acting as chemotactic attractant and as propagator of the signal. cAMP signals are measured by cell-surface receptors. Recent evidence indicates a role for cGMP during cAMP-mediated cell aggregation in D. discoideum .
During cell differentiation to aggregation competence, cAMP binding sites appear at the cell surface, and the activity of the enzymes adenylate cyclase and phosphodiesterase increases several-fold. In the present work we investigate the synthesis of cGMP in D. discoideum . Conditions for the assay of guanylate cyclase in cell homogenates are described. Guanylate cyclase activity was followed during cell differentiation to aggregation competence and found to increase fourfold. These results indicate that cGMP is involved in cell differentiation of D. discoideum . In contrast to adenylate cyclase, which is activated by cAMP, guanylate cyclase was under our conditions activated neither by cAMP, nor by folic acid.  相似文献   

12.
PKA在盘基网柄菌(Dictyostelium discoideum)多细胞发育中的作用   总被引:1,自引:0,他引:1  
在盘基网柄菌(Dictyosteliumdiscoideum)多细胞发育中,蛋白激酶A(proteinkinaseA,PKA)发挥多重作用.细胞聚集阶段,PKA调节腺苷酰环化酶的活性,中转cAMP,诱导dut、pdi等一些发育早期的基因表达;参与启动聚集后的细胞分化和形态构成,增强GBF活性,激活前孢子细胞特有基因的表达;它还精密调控前柄细胞特有基因ecmB的表达,准确启动拔顶发育,诱导孢柄和孢子的成熟.子实体形成后,PKA又是维持孢子休眠和保证孢子有效萌发的必需因子.在PKA调控下,盘基网柄菌有条不紊地完成整个发育过程.  相似文献   

13.
The extracellular matrix (ECM) of Myxococcus xanthus is essential for social (S-) motility and fruiting body formation. An ECM-bound protein, FibA, is homologous to M4 zinc metalloproteases and is important for stimulation by a phosphatidylethanolamine (PE) chemoattractant and for formation of discrete aggregation foci. In this work, we demonstrate that a correlation exists between a reduced ability to respond to PE and the observed defects in fruiting body morphogenesis. Furthermore, the fibA aggregation defect is accentuated by the absence of either PilA, the structural subunit of type IV pili, or DifD, a chemosensory response regulator. The inability to form fruiting bodies is not due to a loss of S-motility, but rather the loss of PilA and pili as pilT fibA mutants form fruiting bodies. The FibA active site residue E342 is important for fruiting body morphogenesis in the absence of PilA. Mutants exhibiting defects in fruiting body morphogenesis also produce fewer viable spores. It is proposed that FibA and PilA act as extracellular sensors for developmental signals.  相似文献   

14.
The effects of cAMP pulses on the capacity of 15 aggregateless mutants to differentiate and construct fruiting bodies are compared to those obtained when mutant cells are starved with wild-type amoebae. Mutant strains are classified into three main groups depending upon the degree to which their phenotypic defects can be corrected. These data extend studies published earlier [Darmon, M., Brachet, P., and Pereira da Silva, L. (1975). Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA72, 3163–3166; Pereira da Silva, L., Darmon, M., Brachet, P., Klein, C., and Barrand, P. (1975). Induction of cell differentiation by the chemotactic signal in Dictyostelium discoideum. In “Proceedings of the Tenth FEBS Meeting,” pp. 269–276]. (1) Only one mutant was unresponsive both to cAMP pulses and to the presence of wild-type amoebae and did not display any of the properties of differentiated cells. (2) Following treatment with cAMP pulses, 11 mutants developed certain properties of aggregation-competent amoebae. They increased their levels of cellular phosphodiesterase, showed an enhanced chemotactic sensitivity to cAMP, and established specific cell contacts. None of these amoebae could differentiate further. They did co-aggregate to some extent with wild-type cells, but failed to differentiate into spores. Rather, mutant cells were excluded from the pseudoplasmodium during the process of morphogenesis of the fruiting body. (3) In contrast, the aggregateless phenotype of three mutants was fully corrected by both cAMP pulses and the presence of wild-type cells. These findings are discussed on the basis of a relationship between the chemotactic signal and cell differentiation.  相似文献   

15.
16.
During starvation-induced Dictyostelium development, up to several hundred thousand amoeboid cells aggregate, differentiate and form a fruiting body. The chemotactic movement of the cells is guided by the rising phase of the outward propagating cAMP waves and results in directed periodic movement towards the aggregation centre. In the mound and slug stages of development, cAMP waves continue to play a major role in the coordination of cell movement, cell-type-specific gene expression and morphogenesis; however, in these stages where cells are tightly packed, cell-cell adhesion/contact-dependent signalling mechanisms also play important roles in these processes.  相似文献   

17.
18.
A secreted counting factor (CF), regulates the size of Dictyostelium discoideum fruiting bodies in part by regulating cell-cell adhesion. Aggregation and the expression of adhesion molecules are mediated by relayed pulses of cAMP. Cells also respond to cAMP with a short cGMP pulse. We find that CF slowly down-regulates the cAMP-induced cGMP pulse by inhibiting guanylyl cyclase activity. A 1-min exposure of cells to purified CF increases the cAMP-induced cAMP pulse. CF does not affect the cAMP receptor or its interaction with its associated G proteins or the translocation of the cytosolic regulator of adenylyl cyclase to the membrane in response to cAMP. Pulsing streaming wild-type cells with a high concentration of cAMP results in the formation of small groups, whereas reducing cAMP pulse size with exogenous cAMP phosphodiesterase during stream formation causes cells to form large groups. Altering the extracellular cAMP pulse size does not phenocopy the effects of CF on the cAMP-induced cGMP pulse size or cell-cell adhesion, indicating that CF does not regulate cGMP pulses and adhesion via CF's effects on cAMP pulses. The results suggest that regulating cell-cell adhesion, the cGMP pulse size, or the cAMP pulse size can control group size and that CF regulates all three of these independently.  相似文献   

19.
Chemotaxis in natural aggregation territories and in a chamber with an imposed gradient of cyclic AMP (cAMP) was found to be defective in a mutant strain of Dictyostelium discoideum that forms slugs unable to migrate. This strain was selected from a population of cells mutagenized by random insertion of plasmids facilitated by introduction of restriction enzyme (a method termed restriction enzyme-mediated integration). We picked this strain because it formed small misshapen fruiting bodies. After isolation of portions of the gene as regions flanking the inserted plasmid, we were able to regenerate the original genetic defect in a fresh host and show that it is responsible for the developmental defects. Transformation of this recapitulated mutant strain with a construct carrying the full-length migA gene and its upstream regulatory region rescued the defects. The sequence of the full-length gene revealed that it encodes a novel protein with a BTB domain near the N terminus that may be involved in protein-protein interactions. The migA gene is expressed at low levels in all cells during aggregation and then appears to be restricted to prestalk cells as a consequence of rapid turnover in prespore cells. Although migA- cells have a dramatically reduced chemotactic index to cAMP and an abnormal pattern of aggregation in natural waves of cAMP, they are completely normal in size, shape, and ability to translocate in the absence of any chemotactic signal. They respond behaviorally to the rapid addition of high levels of cAMP in a manner indicative of intact circuitry connecting receptor occupancy to restructuring of the cytoskeleton. Actin polymerization in response to cAMP is also normal in the mutant cells. The defects at both the aggregation and slug stage are cell autonomous. The MigA protein therefore is necessary for efficiently assessing chemical gradients, and its absence results in defective chemotaxis and slug migration.  相似文献   

20.
A plasma membrane preparation from Dictyostelium discoideum amoebae which contains the high affinity cAMP receptor is described. Ligand specificity and the kinetics of cAMP association and dissociation using isolated plasma membranes were similar to those of intact cells. The changes in cAMP binding activity which occur as cells proceed through their aggregation program were also reflected in the membrane preparations. However, neither the low affinity cAMP binding site nor the oscillatory cAMP binding behavior observed on intact cells was detected with the membrane preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号