首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The signaling mechanisms that regulate CLC anion channels are poorly understood. Caenorhabditis elegans CLH-3b is a member of the CLC-1/2/Ka/Kb channel subfamily. CLH-3b is activated by meiotic cell-cycle progression and cell swelling. Inhibition is brought about by GCK-3 kinase-mediated phosphorylation of S742 and S747 located on a ∼176 amino acid disordered domain linking CBS1 and CBS2. Much of the inter-CBS linker is dispensable for channel regulation. However, deletion of a 14 amino acid activation domain encompassing S742 and S747 inhibits channel activity to the same extent as GCK-3. The crystal structure of CmCLC demonstrated that CBS2 interfaces extensively with an intracellular loop connecting membrane helices H and I, the C-terminus of helix D, and a short linker connecting helix R to CBS1. Point mutagenesis of this interface identified two highly conserved aromatic amino acid residues located in the H-I loop and the first α-helix (α1) of CBS2. Mutation of either residue to alanine rendered CLH-3b insensitive to GCK-3 inhibition. We suggest that the dephosphorylated activation domain normally interacts with CBS1 and/or CBS2, and that conformational information associated with this interaction is transduced through a conserved signal transduction module comprising the H-I loop and CBS2 α1.  相似文献   

2.
Changes in phosphorylation regulate the activity of various ClC anion transport proteins. However, the physiological context under which such regulation occurs and the signaling cascades that mediate phosphorylation are poorly understood. We have exploited the genetic model organism Caenorhabditis elegans to characterize ClC regulatory mechanisms and signaling networks. CLH-3b is a ClC anion channel that is expressed in the worm oocyte and excretory cell. Channel activation occurs in response to oocyte meiotic maturation and swelling via serine/threonine dephosphorylation mediated by the type I phosphatases GLC-7α and GLC-7β. A Ste20 kinase, germinal center kinase (GCK)-3, binds to the cytoplasmic C terminus of CLH-3b and inhibits channel activity in a phosphorylation-dependent manner. Analysis of hyperpolarization-induced activation kinetics suggests that phosphorylation may inhibit the ClC fast gating mechanism. GCK-3 is an ortholog of mammalian SPAK and OSR1, kinases that bind to, phosphorylate, and regulate the cell volume–dependent activity of mammalian cation-Cl cotransporters. Using mass spectrometry and patch clamp electrophysiology, we demonstrate here that CLH-3b is a target of regulatory phosphorylation. Concomitant phosphorylation of S742 and S747, which are located 70 and 75 amino acids downstream from the GCK-3 binding site, are required for kinase-mediated channel inhibition. In contrast, swelling-induced channel activation occurs with dephosphorylation of S747 alone. Replacement of both S742 and S747 with glutamate gives rise to kinase- and swelling-insensitive channels that exhibit activity and biophysical properties similar to those of wild-type CLH-3b inhibited by GCK-3. Our studies provide novel insights into ClC regulation and mechanisms of cell volume signaling, and provide the foundation for studies aimed at defining how conformational changes in the cytoplasmic C terminus alter ClC gating and function in response to intracellular signaling events.  相似文献   

3.
CLH-3b is a Caenorhabditis elegans ClC anion channel that is expressed in the worm oocyte. The channel is activated during oocyte meiotic maturation and in response to cell swelling by serine/threonine dephosphorylation events mediated by the type 1 phosphatases GLC-7alpha and GLC-7beta. We have now identified a new member of the Ste20 kinase superfamily, GCK-3, that interacts with the CLH-3b COOH terminus via a specific binding motif. GCK-3 inhibits CLH-3b in a phosphorylation-dependent manner when the two proteins are coexpressed in HEK293 cells. clh-3 and gck-3 are expressed predominantly in the C. elegans oocyte and the fluid-secreting excretory cell. Knockdown of gck-3 expression constitutively activates CLH-3b in nonmaturing worm oocytes. We conclude that GCK-3 functions in cell cycle- and cell volume-regulated signaling pathways that control CLH-3b activity. GCK-3 inactivates CLH-3b by phosphorylating the channel and/or associated regulatory proteins. Our studies provide new insight into physiologically relevant signaling pathways that control ClC channel activity and suggest novel mechanisms for coupling cell volume changes to cell cycle events and for coordinately regulating ion channels and transporters that control cellular Cl- content, cell volume, and epithelial fluid secretion.  相似文献   

4.
Mammalian Ste20-like proline/alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinases phosphorylate and regulate cation-coupled Cl(-) cotransporter activity in response to cell volume changes. SPAK and OSR1 are activated via phosphorylation by upstream with-no-lysine (WNK) kinases. In Caenorhabditis elegans, the SPAK/OSR1 ortholog germinal center kinase (GCK)-3 binds to and regulates the activity of the cell volume- and meiotic cell cycle-dependent ClC anion channel CLH-3b. We tested the hypothesis that WNK kinases function in the GCK-3/CLH-3b signaling cascade. CLH-3b heterologously expressed in human embryonic kidney (HEK) cells was unaffected by coexpression with the single C. elegans WNK kinase, WNK-1, or kinase-dead WNK-1 dominant-negative mutants. RNA interference (RNAi) knockdown of the single Drosophila WNK kinase had no effect on the activity of CLH-3b expressed in Drosophila S2 cells. Similarly, RNAi silencing of C. elegans WNK-1 had no effect on basal or cell volume-sensitive activity of CLH-3b expressed endogenously in worm oocytes. Previous yeast 2-hybrid studies suggested that ERK kinases may function upstream of GCK-3. Pharmacological inhibition of ERK signaling disrupted CLH-3b activity in HEK cells in a GCK-3-dependent manner. RNAi silencing of the C. elegans ERK kinase MPK-1 or the ERK phosphorylating/activating kinase MEK-2 constitutively activated native CLH-3b. MEK-2 and MPK-1 play important roles in regulating the meiotic cell cycle in C. elegans oocytes. Cell cycle-dependent changes in MPK-1 correlate with the pattern of CLH-3b activation observed during oocyte meiotic maturation. We postulate that MEK-2/MPK-1 functions upstream from GCK-3 to regulate its activity during cell volume and meiotic cell cycle changes.  相似文献   

5.
All eukaryotic and some prokaryotic ClC anion transport proteins have extensive cytoplasmic C-termini containing two cystathionine-β-synthase (CBS) domains. CBS domain secondary structure is highly conserved and consists of two a-helices and three b-strands arranged as b1-a1-b2-b3-a2. ClC CBS domain mutations cause muscle and bone disease and alter ClC gating. However, the precise functional roles of CBS domains and the structural bases by which they regulate ClC function are poorly understood. CLH-3a and CLH-3b are C. elegans ClC anion channel splice variants with strikingly different biophysical properties. Splice variation occurs at cytoplasmic N- and C-termini and includes several amino acids that form a2 of the second CBS domain (CBS2). We demonstrate that interchanging a2 between CLH-3a and CLH-3b interchanges their gating properties. The "R-helix" of ClC proteins forms part of the ion conducting pore and selectivity filter and is connected to the cytoplasmic C-terminus via a short stretch of cytoplasmic amino acids termed the "R-helix linker". C-terminus conformation changes could cause R-helix structural rearrangements via this linker. X-ray structures of three ClC protein cytoplasmic C-termini suggest that a2 of CBS2 and the R-helix linker could be closely apposed and may therefore interact. We found that mutating apposing amino acids in a2 and the R-helix linker of CLH-3b was sufficient to give rise to CLH-3a-like gating. We postulate that the R-helix linker interacts with CBS2 a2, and that this putative interaction provides a pathway by which cytoplasmic C-terminus conformational changes induce conformational changes in membrane domains that in turn modulate ClC function.  相似文献   

6.
All eukaryotic and some prokaryotic ClC anion transport proteins have extensive cytoplasmic C-termini containing two cystathionine-β-synthase (CBS) domains. CBS domain secondary structure is highly conserved and consists of two α-helices and three β-strands arranged as β1-α1-β2-β3-α2. ClC CBS domain mutations cause muscle and bone disease and alter ClC gating. However, the precise functional roles of CBS domains and the structural bases by which they regulate ClC function are poorly understood. CLH-3a and CLH-3b are C. elegans ClC anion channel splice variants with strikingly different biophysical properties. Splice variation occurs at cytoplasmic N- and C-termini and includes several amino acids that form α2 of the second CBS domain (CBS2). We demonstrate that interchanging α2 between CLH-3a and CLH-3b interchanges their gating properties. The “R-helix” of ClC proteins forms part of the ion-conducting pore and selectivity filter and is connected to the cytoplasmic C-terminus via a short stretch of cytoplasmic amino acids termed the “R-helix linker”. C-terminus conformation changes could cause R-helix structural rearrangements via this linker. X-ray structures of three ClC protein cytoplasmic C-termini suggest that α2 of CBS2 and the R-helix linker could be closely apposed and may therefore interact. We found that mutating apposing amino acids in α2 and the R-helix linker of CLH-3b was sufficient to give rise to CLH-3a-LIKE gating. We postulate that the R-helix linker interacts with CBS2 α2, and that this putative interaction provides a pathway by which cytoplasmic C-terminus conformational changes induce conformational changes in membrane domains that in turn modulate ClC function.Key words: ClC channel, chloride channel, homology model  相似文献   

7.
Inactivation of both brain and cardiac Na+ channels is modulated by activation of protein kinase C (PKC) but in different ways. Previous experiments had shown that phosphorylation of serine 1506 in the highly conserved loop connecting homologous domains III and IV (LIII/IV) of the brain Na+ channel alpha subunit is necessary for all effects of PKC. Here we examine the importance of the analogous serine for the different modulation of the rH1 cardiac Na+ channel. Serine 1505 of rH1 was mutated to alanine to prevent its phosphorylation, and the resulting mutant channel was expressed in 1610 cells. Electrophysiological properties of these mutant channels were indistinguishable from those of wild-type (WT) rH1 channels. Activation of PKC with 1-oleoyl-2-acetyl-sn-glycerol (OAG) reduced WT Na+ current by 49.3 +/- 4.2% (P < 0.01) but S1505A mutant current was reduced by only 8.5 +/- 5.4% (P = 0.29) when the holding potential was -94 mV. PKC activation also caused a -17-mV shift in the voltage dependence of steady-state inactivation of the WT channel which was abolished in the mutant. Thus, phosphorylation of serine 1505 is required for both the negative shift in the inactivation curve and the reduction in Na+ current by PKC. Phosphorylation of S1505/1506 has common and divergent effects in brain and cardiac Na+ channels. In both brain and cardiac Na+ channels, phosphorylation of this site by PKC is required for reduction of peak Na+ current. However, phosphorylation of S1506 in brain Na+ channels slows and destabilizes inactivation of the open channel. Phosphorylation of S1505 in cardiac, but not S1506 in brain, Na+ channels causes a negative shift in the inactivation curve, indicating that it stabilizes inactivation from closed states. Since LIII/IV containing S1505/S1506 is completely conserved, interaction of the phosphorylated serine with other regions of the channel must differ in the two channel types.  相似文献   

8.
CLH-3a and CLH-3b are swelling-activated, alternatively spliced Caenorhabditis elegans ClC anion channels that have identical membrane domains but exhibit marked differences in their cytoplasmic NH2 and COOH termini. The major differences include a 71-amino acid CLH-3a NH2-terminal extension and a 270-amino acid extension of the CLH-3b COOH terminus. Splice variation gives rise to channels with striking differences in voltage, pH, and Cl sensitivity. On the basis of structural and functional insights gained from crystal structures of bacterial ClCs, we suggested previously that these functional differences are due to alternative splicing of the COOH terminus that may change the accessibility and/or function of pore-associated ion-binding sites. We recently identified a mutant worm strain harboring a COOH-terminal deletion mutation in the clh-3 gene. This mutation removes 101 COOH-terminal amino acids unique to CLH-3b and an additional 64 upstream amino acids shared by both channels. CLH-3b is expressed in the worm oocyte, which allowed us to characterize the mutant channel, CLH-3bC, in its native cellular environment. CLH-3bC exhibits altered voltage-dependent gating as well as pH and Cl sensitivity that resemble those of CLH-3a. This mutation also alters channel inhibition by Zn2+, prevents ATP depletion-induced activation, and dramatically reduces volume sensitivity. These results suggest that the deleted COOH-terminal region of CLH-3bC functions to modulate channel sensitivity to voltage and extracellular ions. This region also likely plays a role in channel regulation and cell volume sensitivity. Our findings contribute to a growing body of evidence indicating that cytoplasmic domains play key roles in the gating and regulation of eukaryotic ClCs. chloride; cell volume; voltage-gated anion channel  相似文献   

9.
WNK kinases are a small group of unique serine/threonine protein kinases that are conserved among multicellular organisms. Mutations in WNK1-4 cause pseudohypoaldosteronism type II-a form of hypertension. WNKs have been linked to the STE20 kinases and ion carriers, but the underlying molecular mechanisms by which WNKs regulate cellular processes in whole animals are unknown. The Caenorhabditis elegans WNK-like kinase WNK-1 interacts with and phosphorylates germinal centre kinase (GCK)-3--a STE20-like kinase--which is known to inactivate CLH-3, a CIC chloride channel. The wnk-1 or gck-3 deletion mutation causes an Exc phenotype, a defect in the tubular extension of excretory canals. Expression of the activated form of GCK-3 or the clh-3 deletion mutation can partly suppress wnk-1 or gck-3 defects, respectively. These results indicate that WNK-1 controls the tubular formation of excretory canals by activating GCK-3, resulting in downregulation of CIC channel activity.  相似文献   

10.
ClC voltage-gated anion channels have been identified in bacteria, yeast, plants, and animals. The biophysical and structural properties of ClCs have been studied extensively, but relatively little is known about their precise physiological functions. Furthermore, virtually nothing is known about the signaling pathways and molecular mechanisms that regulate channel activity. The nematode Caenorhabditis elegans provides significant experimental advantages for characterizing ion channel function and regulation. We have shown previously that the ClC Cl- channel homologue CLH-3 is expressed in C. elegans oocytes, and that it is activated during meiotic maturation and by cell swelling. We demonstrate here that depletion of intracellular ATP or removal of Mg2+, experimental maneuvers that inhibit kinase function, constitutively activate CLH-3. Maturation- and swelling-induced channel activation are inhibited by type 1 serine/threonine phosphatase inhibitors. RNA interference studies demonstrated that the type 1 protein phosphatases CeGLC-7alpha and beta, both of which play essential regulatory roles in mitotic and meiotic cell cycle events, mediate CLH-3 activation. We have suggested previously that CLH-3 and mammalian ClC-2 are orthologues that play important roles in heterologous cell-cell interactions, intercellular communication, and regulation of cell cycle-dependent physiological processes. Consistent with this hypothesis, we show that heterologously expressed rat ClC-2 is also activated by serine/threonine dephosphorylation, suggesting that the two channels have common regulatory mechanisms.  相似文献   

11.
Six ClC-type chloride channel genes have been identified in Caenorhabditis elegans, termed clh-1 through clh-6. cDNA sequences from these genes suggest that clh-2, clh-3, and clh-4 may code for multiple channel variants, bringing the total to at least nine channel types in this nematode. Promoter-driven green fluorescent protein (GFP) expression in transgenic animals indicates that the protein CLH-5 is expressed ubiquitously, CLH-6 is expressed mainly in nonneuronal cells, and the remaining isoforms vary from those restricted to a single cell to those expressed in over a dozen cells of the nematode. In an Sf9 cell expression system, recombinant CLH-2b, CLH-4b, and CLH-5 did not form functional plasma membrane channels. In contrast, both CLH-1 and CLH-3b produced strong, inward-rectifying chloride currents similar to those arising from mammalian ClC2, but which operate over different voltage ranges. Our demonstration of multiple CLH protein variants and comparison of expression patterns among the clh gene family provides a framework, in combination with the electrical properties of the recombinant channels, to further examine the physiology and cell-specific role each isoform plays in this simple model system.  相似文献   

12.
In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.  相似文献   

13.
BACKGROUND: ClC anion channels are ubiquitous and have been identified in organisms as diverse as bacteria and humans. Despite their widespread expression and likely physiological importance, the function and regulation of most ClCs are obscure. The nematode Caenorhabditis elegans offers significant experimental advantages for defining ClC biology. These advantages include a fully sequenced genome, cellular and molecular manipulability, and genetic tractability. RESULTS: We show by patch clamp electrophysiology that C. elegans oocytes express a hyperpolarization- and swelling-activated Cl(-) current with biophysical characteristics strongly resembling those of mammalian ClC-2. Double-stranded RNA-mediated gene interference (RNAi) and single-oocyte RT-PCR demonstrated that the channel is encoded by clh-3, one of six C. elegans ClC genes. CLH-3 is inactive in immature oocytes but can be triggered by cell swelling. However, CLH-3 plays no apparent role in oocyte volume homeostasis. The physiological signal for channel activation is the induction of oocyte meiotic maturation. During meiotic maturation, the contractile activity of gonadal sheath cells, which surround oocytes and are coupled to them via gap junctions, increases dramatically. These ovulatory sheath cell contractions are initiated prematurely in animals in which CLH-3 expression is disrupted by RNAi. CONCLUSIONS: The inwardly rectifying Cl(-) current in C. elegans oocytes is due to the activity of a ClC channel encoded by clh-3. Functional and structural similarities suggest that CLH-3 and mammalian ClC-2 are orthologs. CLH-3 is activated during oocyte meiotic maturation and functions in part to modulate ovulatory contractions of gap junction-coupled gonadal sheath cells.  相似文献   

14.
He L  Denton J  Nehrke K  Strange K 《Biophysical journal》2006,90(10):3570-3581
CLH-3a and CLH-3b are Caenorhabditis elegans ClC channel splice variants that exhibit striking differences in voltage, Cl(-), and H(+) sensitivity. The major primary structure differences between the channels include a 71 amino acid CLH-3a N-terminal extension and a 270 amino acid extension of the CLH-3b C-terminus. Deletion of the CLH-3a N-terminus or generation of a CLH-3a/b chimera has no effect on channel gating. In contrast, deletion of a 169 amino acid C-terminal CLH-3b splice insert or deletion of the last 11 amino acids of cystathionine-beta-synthase domain 1 gives rise to functional properties identical to those of CLH-3a. Voltage-, Cl(-)-, and H(+)-dependent gating of both channels are lost when their glutamate gates are mutated to alanine. Glutamate gate cysteine mutants exhibit similar degrees of inhibition by MTSET, but the inhibition time constant of CLH-3b is sevenfold greater than that of CLH-3a. Differences in MTSET inhibition are reversed by deletion of the same cytoplasmic C-terminal regions that alter CLH-3b gating. Our results indicate that splice variation of the CLH-3b cytoplasmic C-terminus alters extracellular structure and suggest that differences in the conformation of the outer pore vestibule and associated glutamate gate may account for differences in CLH-3a and CLH-3b gating.  相似文献   

15.
Kv2.1 channels exhibit a U-shaped voltage-dependence of inactivation that is thought to represent preferential inactivation from preopen closed states. However, the molecular mechanisms underlying so-called U-type inactivation are unknown. We have performed a cysteine scan of the S3-S4 and S5-P-loop linkers and found sites that are important for U-type inactivation. In the S5-P-loop linker, U-type inactivation was preserved in all mutant channels except E352C. This mutation, but not E352Q, abolished closed-state inactivation while preserving open-state inactivation, resulting in a loss of the U-shaped voltage profile. The reducing agent DTT, as well as the C232V mutation in S2, restored U-type inactivation to the E352C mutant, which suggests that residues 352C and C232 may interact to prevent U-type inactivation. The R289C mutation, in the S3-S4 linker, also reduced U-type inactivation. In this case, DTT had little effect but application of MTSET restored wild-type-like U-type inactivation behavior, suggestive of the importance of charge at this site. Kinetic modeling suggests that the E352C and R289C inactivation phenotypes largely resulted from reductions in the rate constants for transitions from closed to inactivated states. The data indicate that specific residues within the S3-S4 and S5-P-loop linkers may play important roles in Kv2.1 U-type inactivation.  相似文献   

16.
The pentapeptide KIFMK, which contains three clustered hydrophobic amino acid residues of isoleucine, phenylalanine, and methionine (IFM) in the sodium channel inactivation gate on the cytoplasmic linker between domains III and IV (III-IV linker), is known to restore fast inactivation to the mutant sodium channels having a defective inactivation gate or to accelerate the inactivation of the wild-type sodium channels. To investigate the docking site of KIFMK and to clarify the mechanisms for restoring the fast inactivation, we have studied the interactions between KIFMK and the fragment peptide in the III-IV linker GGQDIFMTEEQK (MP-1A; G1484-K1495 in rat brain IIA) by one- and two-dimensional (1)H-NMR and circular dichroism (CD) spectroscopies. KIFMK was found to increase the helical content of MP-1A in 80% trifluoroethanol (TFE) solution by approximately 11%. A pentapeptide, KIFMT, which can restore inactivation but less effectively than KIFMK, also increased the helical content of MP-1A, but to a lesser extent ( approximately 6%) than did KIFMK. In contrast, KDIFMTK, which is ineffective in restoring inactivation, decreased the helical content ( approximately -4%). Furthermore, we studied the interactions between KIFMK and modified peptides from MP-1A, that is, MP-1NA (D1487N), MP-1QEA (E1492Q), or MP-1EQA (E1493Q). The KIFMK was found to increase the helical content of MP-1EQA to an extent nearly identical to that of MP-1A, whereas it was found to decrease those of MP-1NA and MP-1QEA. These findings mean that KIFMK, by allowing each of the Lys residues to interact with D1487 and E1492, respectively, stabilized the helical structure of the III-IV linker around the IFM residues. This helix-stabilizing effect of KIFMK on the III-IV linker may restore and/or accelerate fast inactivation to the sodium channels having a defective inactivation gate or to wild-type sodium channels.  相似文献   

17.
Mutations associated with sodium channel-linked inherited Long-QT syndrome often result in a gain of channel function by disrupting channel inactivation. A small fraction of channels fail to inactivate (burst) at depolarized potentials where normal (wild type) channels fully inactivate. These noninactivating channels give rise to a sustained macroscopic current. We studied the effects of protein kinase A stimulation on sustained current in wild type and three disease-linked C-terminal mutant channels (D1790G, Y1795C, and Y1795H). We show that protein kinase A stimulation differentially affects gating in the mutant channels. Wild type, Y1795C, and Y1795H channels are insensitive to protein kinase A stimulation, whereas "bursting" in the D1790G mutant is markedly enhanced by protein kinase A-dependent phosphorylation. Our results suggest that the charge at position 1790 of the C terminus of the channel modulates the response of the cardiac sodium channel to protein kinase A stimulation and that phosphorylation of residue 36 in the N terminus and residue 525 in the cytoplasmic linker joining domains I and II of the channel alpha subunit facilitate destabilization of inactivation and thereby increase sustained current.  相似文献   

18.
TRPC4 and TRPC5 proteins share 65% amino acid sequence identity and form Ca2+-permeable nonselective cation channels. They are activated by stimulation of receptors coupled to the phosphoinositide signaling cascade. Replacing a conserved glycine residue within the cytosolic S4–S5 linker of both proteins by a serine residue forces the channels into an open conformation. Expression of the TRPC4G503S and TRPC5G504S mutants causes cell death, which could be prevented by buffering the Ca2+ of the culture medium. Current-voltage relationships of the TRPC4G503S and TRPC5G504S mutant ion channels resemble that of fully activated TRPC4 and TRPC5 wild-type channels, respectively. Modeling the structure of the transmembrane domains and the pore region (S4-S6) of TRPC4 predicts a conserved serine residue within the C-terminal sequence of the predicted S6 helix as a potential interaction site. Introduction of a second mutation (S623A) into TRPC4G503S suppressed the constitutive activation and partially rescued its function. These results indicate that the S4–S5 linker is a critical constituent of TRPC4/C5 channel gating and that disturbance of its sequence allows channel opening independent of any sensor domain.  相似文献   

19.
20.
Voltage-dependent inactivation of CaV2.3 channels was investigated using point mutations in the beta-subunit-binding site (AID) of the I-II linker. The quintuple mutant alpha1E N381K + R384L + A385D + D388T + K389Q (NRADK-KLDTQ) inactivated like the wild-type alpha1E. In contrast, mutations of alpha1E at position R378 (position 5 of AID) into negatively charged residues Glu (E) or Asp (D) significantly slowed inactivation kinetics and shifted the voltage dependence of inactivation to more positive voltages. When co-injected with beta3, R378E inactivated with tau(inact) = 538 +/- 54 ms (n = 14) as compared with 74 +/- 4 ms (n = 21) for alpha1E (p < 0.001) with a mid-potential of inactivation E(0.5) = -44 +/- 2 mV (n = 10) for R378E as compared with E(0.5) = -64 +/- 3 mV (n = 9) for alpha1E. A series of mutations at position R378 suggest that positively charged residues could promote voltage-dependent inactivation. R378K behaved like the wild-type alpha1E whereas R378Q displayed intermediate inactivation kinetics. The reverse mutation E462R in the L-type alpha1C (CaV1.2) produced channels with inactivation properties comparable to alpha1E R378E. Hence, position 5 of the AID motif in the I-II linker could play a significant role in the inactivation of Ca(V)1.2 and CaV2.3 channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号