首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal binding capabilities, and previous work demonstrated that the protein can coordinate several types of first-row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To improve our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals [Mn(II), Fe(II), Co(II), Cu(I), and Zn(II)] were examined by using a combination of optical spectroscopy and mass spectrometry. Binding of SlyD to Mn(II) or Fe(II) ions was not detected, but the protein coordinates multiple ions of Co(II), Zn(II), and Cu(I) with appreciable affinity (K(D) values in or below the nanomolar range), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is as follows: Mn(II) and Fe(II) < Co(II) < Ni(II) ~ Zn(II) ? Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed.  相似文献   

3.
4.
Mycobacterium tuberculosis NmtR is a Ni(II)/Co(II)-sensing metalloregulatory protein from the extensively studied ArsR/SmtB family. Two Ni(II) ions bind to the NmtR dimer to form octahedral coordination complexes with the following stepwise binding affinities: K(Ni1) = (1.2 ± 0.1) × 10(10) M(-1), and K(Ni2) = (0.7 ± 0.4) × 10(10) M(-1) (pH 7.0). A glutamine scanning mutagenesis approach reveals that Asp91, His93, His104, and His107, all contained within the C-terminal α5 helix, and His3 as part of the conserved α-NH(2)-Gly2-His3-Gly4 motif at the N-terminus make significant contributions to the magnitude of K(Ni). In contrast, substitution of residues from the C-terminal region, His109, Asp114, and His116, previously implicated in Ni(II) binding and metalloregulation in cells, gives rise to wild-type K(Ni) and Ni(II)-dependent allosteric coupling free energies. Interestingly, deletion of residues 112-120 from the C-terminal region (Δ111 NmtR) reduces the Ni(II) binding stoichiometry to one per dimer and greatly reduces Ni(II) responsiveness. H3Q and Δ111 NmtRs also show clear perturbations in the rank order of metal responsiveness to Ni(II), Co(II), and Zn(II) that is distinct from that of wild-type NmtR. (15)N relaxation experiments with apo-NmtR reveal that both N-terminal (residues 2-14) and C- terminal (residues 110-120) regions are unstructured in solution, and this property likely dictates the metal specificity profile characteristic of the Ni(II) sensor NmtR relative to other ArsR family regulators.  相似文献   

5.
6.
7.
8.
A novel emissive tetra-naphthylmethylene pendant-armed macrocyclic ligand and a series of complexes with monovalent and divalent metal ions have been synthesized. Solid compounds have been isolated as mononuclear (Co(II), Cu(II) and Zn(II)) or dinuclear (Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Ag(I)), complexes, depending on the counterions used. The chemical and photophysical properties of the free ligand, the protonation behavior and its metal complexes have been investigated in solution. UV-Vis spectroscopy has revealed a 1:1 binding stoichiometry for Cu(II), Zn(II), Cd(II), Ni(II) and Co(II), and 2:1 molar ratio for Ag(I). In chloroform, the free ligand presents two emission bands related to the monomer naphthalene emission and a red-shifted band attibutable to an exciplex due to a charge transfer from the nitrogen lone electron pair to the excited chromophore. Upon protonation of the free amines or due to metal complexation, the exciplex band disappears. The crystal structure of [Ag2L(NO3)2] is also reported. The structure reveals that both metal ions are into the macrocyclic cavity in a distorted square plane {AgN3O} environment. Each Ag(I) atom interacts with two neighbouring amine nitrogen atoms, one pyridine nitrogen and one oxygen atom from a monodentate nitrate ion.  相似文献   

9.
Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.  相似文献   

10.
Although microorganisms have the potential to reduce metals, products with elementary forms are unusual. In the present study, a strain of Pseudomonas sp. MBR was tested for its ability to reduce metal ions to their elementary forms coupled to biomineralization under aerobic conditions. The Pseudomonas sp. MBR strain was able to reduce metals such as Fe(III), Mn(II), Cu(II), Ni(II), Cd(II), Co(II), Al(III), Se(IV), and Te(IV) as electron acceptors to elementary forms using citrate, lactate, pyruvate, succinate, malate, glucose, or ethanol as electron donors. Growth and reduction during biomineralization occurred within the pH range of 6.0 to 11.0 and temperature range of 4 to 40 °C, with an optimum growth temperature of 28 °C. The resistance of Ni(II) varied from 0.5 to 5 mM. Ni(II) reduction was still observed when nitrate was present in addition to oxygen as a potential electron acceptor. The Ni(II) reduction efficiency was related with the molar ratio of the electron donor to Ni(II). Unlike other dissimilatory metal-reducing bacteria, which oxidizes organic matter with Fe(III) or Mn(IV) as the sole electron acceptor coupled to energy production under facultative anaerobic conditions, this strain used oxygen as an electron acceptor combined with metal reduction. The aerobic metal reduction may relate to a co-metabolic reduction. Transmission electron microscopy images demonstrated that the cells had the ability to accumulate heavy metals, and that the detoxicity mechanism was intracellular metal reduction. These results suggested that the use of Pseudomonas sp. MBR could be promising for toxic heavy metal bioremediation and biological metallurgy.  相似文献   

11.
Cysteine-rich Zn(II)-binding sites in proteins serve two distinct functions: to template or stabilize specific protein folds, and to facilitate chemical reactions such as alkyl transfers. We are interested how the protein environment controls metal site properties, specifically, how naturally occurring tetrahedral Zn(II) sites are affected by the surrounding protein. We have studied the Co(II)- and Zn(II)-binding of a series of derivatives of L36, a small zinc ribbon protein containing a (Cys)(3)His metal coordination site. UV-vis spectroscopy was used to monitor metal binding by peptides at pH 6.0. For all derivatives, the following trends were observed: (1) Zn(II) binds tighter than Co(II), with an average K (A) (Zn) /K (A) (Co) of 2.8(+/-2.0)x10(3); (2) mutation of the metal-binding ligand His32 to Cys decreases the affinity of L36 derivatives for both metals; (3) a Tyr24 to Trp mutation in the beta-sheet hydrophobic cluster increases K (A) (Zn) and K (A) (Co) ; (4) mutation in the beta-hairpin turn, His20 to Asn generating an Asn-Gly turn, also increases K (A) (Zn) and K (A) (Co) ; (5) the combination of His20 to Asn and Tyr24 to Trp mutations also increases K (A) (Zn) and K (A) (Co) , but the increments versus C(3)H are less than those of the single mutations. Furthermore, circular dichroism, size-exclusion chromatography, and 1D and 2D (1)H NMR experiments show that the mutations do not change the overall fold or association state of the proteins. L36, displaying Co(II)- and Zn(II)-binding sensitivity to various sequence mutations without undergoing a change in protein structure, can therefore serve as a useful model system for future structure/reactivity studies.  相似文献   

12.
ZntA from Escherichia coli is a P-type ATPase that confers resistance to Pb(II), Zn(II), and Cd(II) in vivo. We had previously shown that purified ZntA shows ATP hydrolysis activity with the metal ions Pb(II), Zn(II), and Cd(II). In this study, we utilized the acylphosphate formation activity of ZntA to further investigate the substrate specificity of ZntA. The site of phosphorylation was Asp-436, as expected from sequence alignments. We show that in addition to Pb(II), Zn(II), and Cd(II), ZntA is active with Ni(II), Co(II), and Cu(II), but not with Cu(I) and Ag(I). Thus, ZntA is specific for a broad range of divalent soft metal ions. The activities with Ni(II), Co(II), and Cu(II) are extremely low; the activities with these non-physiological substrates are 10-20-fold lower compared with the values obtained with Pb(II), Zn(II), and Cd(II). Similar results were obtained with DeltaN-ZntA, a ZntA derivative lacking the amino-terminal metal binding domain. By characterizing the acylphosphate formation reaction in ZntA in detail, we show that a step prior to enzyme phosphorylation, most likely the metal ion binding step, is the slow step in the reaction mechanism in ZntA. The low activities with Ni(II), Co(II), and Cu(II) are because of a further decrease in the rate of binding of these metal ions. Thus, metal ion selectivity in ZntA and possibly other P1-type ATPases is based on the charge and the ligand preference of particular metal ions but not on their size.  相似文献   

13.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

14.
Mononuclear and binuclear transition metal [Co(II), Cu(II), Ni(II) and Zn(II)] acetylsalicylates of the type [M(L) 2], [M(L) 2 Cl 2] and [(M) 2 (L) 4] have been prepared and characterized on the basis of their physical, spectral and analytical data. The complexes have been investigated in an in vivo animal model for anti-inflammatory activity and show a better effect and a more potent action than acetylsalicylic acid.  相似文献   

15.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X-ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N- and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest d(x(2)-y(2)) as the ground state. X-ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   

16.
VanZile ML  Chen X  Giedroc DP 《Biochemistry》2002,41(31):9776-9786
The Synechococcus PCC 7942 smt operon is responsible for cellular resistance to excess zinc and consists of two divergently transcribed genes, smtB and smtA. SmtB is the Zn(II)-sensing metal-regulated repressor of the system and binds to a 12-2-12 imperfect inverted repeat in the smtA O/P region. Using fluorescence anisotropy to monitor SmtB-smt O/P multiple equilibria, we show that four SmtB homodimers bind to a 40 bp oligonucleotide containing a single 12-2-12 inverted repeat. The binding affinities of the first two dimers are very tight (K(int) = 2.9 x 10(9) M(-1)) with the affinities of the third and fourth dimers lower by approximately 10- and approximately 30-fold, respectively. A single monomer equivalent of Zn(II), Cd(II), or Co(II) promotes disassembly of the oligomeric complex to a mixture of (P(2)).D and (P(2))(2).D SmtB dimer-DNA complexes with the intrinsic affinity of all SmtB homodimers for DNA greatly reduced by approximately 500-2000-fold. Substitution or derivatization of cysteines which comprise the alpha3N metal binding site (Cys14 and Cys61) [VanZile, M. L., et al. (2002) Biochemistry 41, 9765-9775] has no effect on allosteric negative regulation by Zn(II); in contrast, H106Q SmtB, harboring a single zinc-liganding substitution in the alpha5 metal binding site, is refractory to zinc-induced disassembly of SmtB-DNA complexes. The alpha5 metal binding sites are therefore regulatory for Zn(II) sensing in vitro and in vivo, while the high-affinity alpha3N sites play some other role. This finding for SmtB is the opposite of that previously determined for Staphylococcus aureus pI258 CadC, a Pb(II)/Cd(II)/Bi(III) sensor [Busenlehner, L. S., et al. (2002) J. Mol. Biol. 319, 685-701], thus providing insight into the origin of functional metal ion selectivity in this family of metal sensor proteins.  相似文献   

17.
Schiff's bases were obtained from aromatic/heterocyclic sulfonamides and amino-sulfonamide derivatives, such as sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide and 5-amino-1,3,4-thiadiazole-2-sulfonamide. Metal complexes of some of these Schiff's bases, incorporating Zn(II), Co(II), Ni(II) and Cu(II) ions, were also prepared and tested as inhibitors of the zinc enzyme carbonic anhydrase (CA), and more specifically the red blood cell isozymes I and II. The Schiff's bases behaved as medium potency CA I and CA II inhibitors, whereas their metal complexes showed a highly enhanced potency, with several low nanomolar CA II inhibitors detected.  相似文献   

18.
This paper reports biosorption of Zn(II), Cu(II) and Co(II) onto O. angustissima biomass from single, binary and ternary metal solutions, as a function of pH and metal concentrations via Central Composite Design generated by statistical software package Design Expert 6.0. The experimental design revealed that metal interactions could be best studied at lower pH range i.e. 4.0-5.0, which facilitates adequate availability of all the metal ions. The sorption capacities for single metal decreased in the order Zn(II)>Co(II)>Cu(II). In absence of any interfering metals, at pH 4.0 and an initial metal concentration of 0.5 mM in the solution, the adsorption capacities were 0.33 mmol/g Zn(II), 0.26 mmol/g Co(II) and 0.12 mmol/g Cu(II). In a binary system, copper inhibited both Zn(II) and Co(II) sorption but the extent of inhibition of former was greater than the latter; sorption values being 0.14 mmol/g Zn(II) and 0.27 mmol/g Co(II) at initial Zn(II) and Co(II) concentration of 1.5 mM each, pH 4.0 and 1mM Cu(II) as the interfering metal. Zn(II) and Co(II) were equally antagonistic to each others sorption; Zn(II) and Co(II) sorption being 0.23 and 0.24 mmol/g, respectively, at initial metal concentration of 1.5 mM each, pH 4.0 and 1mM interfering metal concentration. In contrast, Cu(II) sorption remained almost unaffected at lower concentrations of the competing metals. Thus, in binary system inhibition dominance observed was Cu(II)>Zn(II), Cu(II)>Co(II) and Zn(II) approximately Co(II), due to this the biosorbent exhibited net preference/affinity for Cu(II) sorption over Zn(II) or Co(II). Hence, the affinity series showed a trend of Cu(II)>Co(II)>Zn(II). In a ternary system, increasing Co(II) concentration exhibited protection against the inhibitory effect of Cu(II) on Zn(II) sorption. On the other hand, the inhibitory effect of Zn(II) and Cu(II) on Co(II) sorption was additive. The model equation for metal interactions was found to be valid within the design space.  相似文献   

19.
Regulation of mammalian melanogenesis. II: The role of metal cations   总被引:2,自引:0,他引:2  
Melanogenesis can be divided into two phases. The first one involves two tyrosinase-catalyzed oxidations from tyrosine to dopaquinone and a very fast chemical step leading to dopachrome. The second phase, from dopachrome to melanin, can proceed spontaneously through several incompletely known reactions. However, some metal transition ions and protein factors different from tyrosinase might regulate the reaction rate and determine the structure and relative concentrations of the intermediates. The study of the effects of some divalent metal ions (Zn, Cu, Ni and Co) on some steps of the melanogenesis pathway has been approached using different radiolabeled substrates. Zn(II) inhibited tyrosine hydroxylation whereas Ni(II) and Co(II) were activators. Ni(II), Cu(II) and Co(II) accelerated chemical reactions from dopachrome but inhibited its decarboxylation. Dopachrome tautomerase also decreased decarboxylation. When metal ions and this enzyme act together, the inhibition of decarboxylation was greater than that produced by each agent separately, but amount of carboxylated units incorporated to the melanin was not higher than the amount incorporated in the presence of only cations. The amount of total melanin formed from tyrosine was increased by the presence of both agents. The action of Zn(II) was different from other ions also in the second phase of melanogenesis, and its effect on decarboxylation was less pronounced. Since tyrosine hydroxylation is the rate-limiting step in melanogenesis, Zn(II) inhibited the pathway. This ion seems to be the most abundant cation in mammalian melanocytes. Therefore, under physiological conditions, the regulatory role of metal ions and dopachrome tautomerase does not seem to be mutually exclusive, but rather complementary.  相似文献   

20.
Complexes of Mn(II), Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pt(II) with 2,6-diacetylpyridine bis(N4-azacyclic thiosemicarbazones), abbreviated as H2L, have been prepared and characterized by elemental analysis, molar conductance, magnetic moments (300-78 K) and spectral studies. On the basis of these studies, a distorted six-coordinate structure for Fe(L)Cl and a distorted five-coordinate structure for M(L) (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), or Pt(II] are suggested. The ligands undergo deprotonation and appear to coordinate through the thione sulphur, the imine nitrogen and pyridyl nitrogen. All the ligands and metal complexes were screened for their antitumor activity against P 388 lymphocytic leukemia test system in mice, and it was found that a few of them possess significant activity at the dosages used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号