首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
7.
The neuropeptide pituitary adenylate cyclase activating polypeptide (ADCYAP 1, or PACAP) has been demonstrated to enhance gonadotropin-releasing hormone (GnRH)-induced gonadotropin secretion and regulate gonadotropin subunit gene expression in cultures of anterior pituitary cells. In the present study, we used in situ hybridization and real-time polymerase chain reaction to examine the expression of Pacap mRNA within the paraventricular nucleus (PVN) and anterior pituitary throughout the estrous cycle of the rat. Levels of luteinizing hormone in serum and pituitary gonadotropin subunit mRNAs were evaluated and displayed cyclic fluctuations similar to those reported previously. Pacap mRNA expression in the PVN and pituitary varied significantly during the estrous cycle, with the greatest changes occurring on the day of proestrus. Pacap mRNA levels in the PVN declined significantly on the morning of diestrus. During proestrus, PVN Pacap mRNA levels significantly increased 3 h before the gonadotropin surge and then declined. Pituitary expression of Pacap mRNA also varied on the afternoon of proestrus with a moderate decline at the time of the gonadotropin surge and a significant increase later in the evening. Expression of the mRNA species encoding the 288 amino acid form of follistatin increased significantly following the rise in pituitary Pacap mRNA, at the termination of the secondary surge in follicle-stimulating hormone beta (Fshb) gene expression. These results suggest that PACAP is involved in events before and following the gonadotropin surge, perhaps through increased gonadotroph sensitivity to GnRH and suppression of Fshb subunit expression through increased follistatin, as previously observed in vitro.  相似文献   

8.
Adenylate cyclase-activating polypeptide 1 (ADCYAP1) binds both Gs- and Gq-coupled receptors and stimulates adenylate cyclase/cAMP and protein kinase C/mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathways in pituitary gonadotrophs. In this study, we investigated the cAMP and MAPK3/1 signaling pathways induced by ADCYAP1 stimulation and examined the effects of ADCYAP1 on the expression of gonadotropin subunit genes using a clonal gonadotroph cell line, LbetaT2. ADCYAP1 increased intracellular cAMP accumulation up to 19-fold in LbetaT2 cells. Common alpha-glycoprotein subunit gene (Cga) promoter activity was strongly activated by both ADCYAP1 and the cyclic-AMP analog, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Both had little effect on luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoter activities. Cga promoter activity was significantly increased by transfection with constitutively active cAMP-dependent protein kinase (PKA). Activities of the Lhb and Fshb promoters were only modestly increased. Both ADCYAP1 and CPT-cAMP induced MAPK3/1 activation in LbetaT2 cells. The MEK inhibitor, U0126, and the PKA inhibitors, H89 and cAMP-dependent protein kinase peptide inhibitor (PKI), completely inhibited MAPK3/1 activation by either ADCYAP1 or CPT-cAMP. Using luciferase reporter constructs containing cis-elements, the cAMP response element (Cre) promoter was stimulated about 4-fold by ADCYAP1. ADCYAP1-induced Cre promoter activity was completely inhibited by H89, but not by U0126. ADCYAP1 also increased the activity of the serum response element (Sre) promoter, a target for MAPK3/1, and treatment of the cells with U0126 completely inhibited ADCYAP1-induced Sre promoter activity. ADCYAP1-increased Cga promoter activity was inhibited partially by both H89 and U0126. Although combining the inhibitors showed an additive inhibition effect, it did not result in complete inhibition. These results suggest that in LbetaT2 cells, ADCYAP1 mainly increases Cga through activation of PKA and MAPK3/1, as well as through an additional unknown pathway.  相似文献   

9.
10.
Pituitary Fshb concentrations increase markedly and selectively beginning on Postnatal Day 20 in the male rat. To evaluate the factors potentially responsible for this rise in FSH, we adjusted the time of weaning, which is generally also on Day 20. Male rat pups were provided nutrients by suckling only and were weaned to laboratory chow earlier (Day 17) or later (Day 23) than normally performed in animal facilities (Day 20). Between ages 17 and 29 days, significant increases were seen in serum LH (1.4-fold) and FSH (2.4-fold) levels; pituitary expression of Lhb (5.4-fold), Fshb (21.3-fold), and inhibin beta B (Inhbb, 2.26-fold) mRNAs; and testicular expression of Inhbb (10-fold) mRNA. Concurrently, significant decreases occurred in serum inhibin B levels (1.8-fold); pituitary adenylate cyclase-activating polypeptide (Adcyap1, 4.2-fold), total follistatin (Fst, 3.5-fold), and Fst isoform 288 (5.6-fold) mRNAs; and testicular expression of inhibin beta A (8.2-fold) mRNA. Early weaning significantly increased serum FSH but not LH and increased pituitary expression of Fshb and GnRH receptor (Gnrhr) mRNAs but not Lhb. Early weaning also significantly decreased serum inhibin B but increased testicular expression of the Inhbb subunit. Early weaning also caused pituitary expression of Fst and Adcyap1 to decline earlier than in the control group. Immediately after weaning, growth accelerated substantially, and the time of weaning produced significant and differential effects on circulating leptin levels that were not related to indices of FSH production. From these observations, we propose the novel hypothesis that the increase in growth rate subsequent to weaning signals circulating inhibin B levels to fall and pituitary Adcyap1 and consequently Fst expression to decrease, and that these events together facilitate the rise in Fshb and Gnrhr expression by increasing pituitary activin signaling.  相似文献   

11.
To determine the role of each estrogen receptor (ER) form (ERalpha, ERbeta) in mediating the estrogen actions necessary to maintain proper function of the hypothalamic-pituitary-gonadal axis, we have characterized the hypothalamic-pituitary-gonadal axis in female ER knockout (ERKO) mice. Evaluation of pituitary function included gene expression assays for Gnrhr, Cga, Lhb, Fshb, and Prl. Evaluation of ovarian steroidogenic capacity included gene expression assays for the components necessary for estradiol synthesis: i.e. Star, Cyp11a, Cyp17, Cyp19, Hsd3b1, and Hsd17b1. These data were corroborated by assessing plasma levels of the respective peptide and steroid hormones. alphaERKO and alphabetaERKO females exhibited increased pituitary Cga and Lhb expression and increased plasma LH levels, whereas both were normal in betaERKO. Pituitary Fshb expression and plasma FSH were normal in all three ERKOs. In the ovary, all three ERKOs exhibited normal expression of Star, Cyp11a, and Hsd3b1. In contrast, Cyp17 and Cyp19 expression were elevated in alphaERKO but normal in betaERKO and alphabetaERKO. Plasma steroid levels in each ERKO mirrored the steroidogenic enzyme expression, with only the alphaERKO exhibiting elevated androstenedione and estradiol. Elevated plasma testosterone in alphaERKO and alphabetaERKO females was attributable to aberrant expression of Hsd17b3 in the ovary, representing a form of endocrine sex reversal, as this enzyme is unique to the testes. Enhanced steroidogenic capacity in alphaERKO ovaries was erased by treatment with a GnRH antagonist, indicating these phenotypes to be the indirect result of excess LH stimulation that follows the loss of ERalpha in the hypothalamic-pituitary axis. Overall, these findings indicate that ERalpha, but not ERbeta, is indispensable to the negative-feedback effects of estradiol that maintain proper LH secretion from the pituitary. The subsequent hypergonadism is illustrated as increased Cyp17, Cyp19, Hsd17b1, and ectopic Hsd17b3 expression in the ovary.  相似文献   

12.
13.
14.
Metformin is an insulin sensitizer molecule used for the treatment of infertility in women with polycystic ovary syndrome and insulin resistance. It modulates the reproductive axis, affecting the release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). However, metformin's mechanism of action in pituitary gonadotropin-secreting cells remains unclear. Adenosine 5' monophosphate-activated protein kinase (PRKA) is involved in metformin action in various cell types. Here, we investigated the effects of metformin on gonadotropin secretion in response to activin and GnRH in primary rat pituitary cells (PRP), and studied PRKA in rat pituitary. In PRP, metformin (10 mM) reduced LH and follicle-stimulating hormone (FSH) secretion induced by GnRH (10(-8) M, 3 h), FSH secretion, and mRNA FSHbeta subunit expression induced by activin (10(-8) M, 12 or 24 h). The different subunits of PRKA are expressed in pituitary. In particular, PRKAA1 is detected mainly in gonadotrophs and thyrotrophs, is less abundant in lactotrophs and somatotrophs, and is undetectable in corticotrophs. In PRP, metformin increased phosphorylation of both PRKA and acetyl-CoA carboxylase. Metformin decreased activin-induced SMAD2 phosphorylation and GnRH-induced mitogen-activated protein kinase (MAPK) 3/1 (ERK1/2) phosphorylation. The PRKA inhibitor compound C abolished the effects of metformin on gonadotropin release induced by GnRH and on FSH secretion and Fshb mRNA induced by activin. The adenovirus-mediated production of dominant negative PRKA abolished the effects of metformin on the FSHbeta subunit mRNA and SMAD2 phosphorylation induced by activin and on the MAPK3/1 phosphorylation induced by GnRH. Thus, in rat pituitary cells, metformin decreases gonadotropin secretion and MAPK3/1 phosphorylation induced by GnRH and FSH release, FSHbeta subunit expression, and SMAD2 phosphorylation induced by activin through PRKA activation.  相似文献   

15.
Our laboratory reported previously that chimeric genes encoding either rat somatostatin (SS) or human GH (hGH), but containing the identical mouse metallothionein-I (MT) promoter/enhancer sequences and hGH 3'-flanking sequences, were selectively expressed in the gonadotrophs of transgenic mice. The experiments reported here were designed to identify the DNA sequences responsible for this unexpected cell-specific expression within the anterior pituitary. We produced new transgenic mice expressing fusion genes that tested separately the requirement of the MT or 3'-hGH sequences for gonadotroph expression. A fusion gene that retained the original MT and SS sequences, with a simian virus 40 polyadenylation signal exchanged for the 3'-hGH sequences, no longer directed strong pituitary expression, but was active in the liver. In contrast, a cytomegalovirus promoter/enhancer-SS-hGH fusion gene was expressed at the same high level in the anterior pituitaries of transgenic mice as the originally studied MT-SS-hGH gene. Immunohistochemical analysis indicated that pituitary expression of the cytomegalovirus promoter/enhancer-SS-hGH fusion gene was also restricted to gonadotroph cells in adult mice. These studies indicate that sequences within the 3'-flanking region of the hGH gene can direct expression of chimeric genes to pituitary cells that do not normally produce growth hormone.  相似文献   

16.
Fish are ectothermic vertebrates, and their gonadal development and spawning are affected by changes in environmental temperature. Recent global temperature changes have increased the importance of studying the effect of temperature on reproduction. The aim of this paper was to study the effect of temperature on oogenesis and hormone gene expression related to reproduction and growth in the blue gourami female maintained under non-reproductive and reproductive conditions. In females under non-reproductive conditions, vitellogenic oocytes, gonadotropin-releasing hormone 3 (GnRH3), β luteinizing hormone (βLH) and growth hormone (GH) mRNA levels were affected by temperature changes. In females maintained under reproductive conditions with non-reproductively active males, a percentage of females in the final oocyte maturation (FOM) stage, pituitary adenylyl cyclase activating polypeptide (PACAP and PRP-PACAP), gonadotropins and GH mRNA levels were affected due to temperature changes. In females maintained under reproductive conditions with reproductively active males, also GnRH3 and insulin-like growth factor 1 (IGF-1) were affected by temperature changes. In conclusion, in blue gourami females, changes in environmental temperature affect oogenesis through changes in brain and pituitary hormone mRNA levels.  相似文献   

17.
This report introduces a gonadotrope-specific cre transgenic mouse capable of ablating floxed genes in mature pituitary gonadotropes. Initial analysis of this transgenic line, Tg(Lhb-cre)1Sac, reveals that expression is limited to the pituitary cells that produce luteinizing hormone beta, beginning appropriately at e17.5. Cre activity is detectable by a reporter gene in nearly every LHbeta-producing cell, but the remaining hormone-producing cell types and other organs exhibit little to no activity. We used the Tg(Lhb-cre)1Sac strain to assess the role Pitx2 in gonadotrope function. The gonadotrope-specific Pitx2 knockout mice exhibit normal expression of LHbeta, sexual maturation, and fertility, suggesting that Pitx2 is not required for gonadotrope maintenance or for regulated production of gonadotropins.  相似文献   

18.
To understand the role of microRNAs (miRNAs) in pituitary development, a group of pituitary-specific miRNAs were identified, and Dicer1 was then conditionally knocked out using the Pitx2-Cre mouse, resulting in the loss of mature miRNAs in the anterior pituitary. The Pitx2-Cre/Dicer1 mutant mice demonstrate growth retardation, and the pituitaries are hypoplastic with an abnormal branching of the anterior lobe, revealing a role for microRNAs in pituitary development. Growth hormone, prolactin, and thyroid-stimulating hormone β-subunit expression were decreased in the Dicer1 mutant mouse, whereas proopiomelanocortin and luteinizing hormone β-subunit expression were normal in the mutant pituitary. Further analyses revealed decreased Pit-1 and increased Lef-1 expression in the mutant mouse pituitary, consistent with the repression of the Pit-1 promoter by Lef-1. Lef-1 directly targets and represses the Pit-1 promoter. miRNA-26b (miR-26b) was identified as targeting Lef-1 expression, and miR-26b represses Lef-1 in pituitary and non-pituitary cell lines. Furthermore, miR-26b up-regulates Pit-1 and growth hormone expression by attenuating Lef-1 expression in GH3 cells. This study demonstrates that microRNAs are critical for anterior pituitary development and that miR-26b regulates Pit-1 expression by inhibiting Lef-1 expression and may promote Pit-1 lineage differentiation during pituitary development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号