首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fermentations with new recombinant organisms.   总被引:7,自引:0,他引:7  
United States fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharoymces cerevisiae and Zymomonas mobilis for pentose utilization. We have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21-34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different "industrially hardened" strains may find separate applications in the fermentation of specific feedstocks.  相似文献   

2.
The co-utilization of sugars, particularly xylose and glucose, during industrial fermentation is essential for economically feasible processes with high ethanol productivity. However, the major problem encountered during xylose/glucose co-fermentation is the lower consumption rate of xylose compared with that of glucose fermentation. Here, we therefore attempted to construct high xylose assimilation yeast by using industrial yeast strain with high β-glucosidase activity on the cell surface. We first constructed the triple auxotrophic industrial strain OC2-HUT and introduced four copies of the cell-surface-displaying β-glucosidase (BGL) gene and two copies of a xylose-assimilating gene into its genome to generate strain OC2-ABGL4Xyl2. It was confirmed that the introduction of multiple copies of the BGL gene increased the cell-surface BGL activity, which was also correlated to the observed increase in xylose-assimilating ability. The strain OC2-ABGL4Xyl2 was able to consume xylose during cellobiose/xylose co-fermentation (0.38 g/h/g-DW) more rapidly than during glucose/xylose co-fermentation (0.18 g/h/g-DW). After 48 h, 5.77% of the xylose was consumed despite the co-fermentation conditions, and the observed ethanol yield was 0.39 g-ethanol/g-total sugar. Our results demonstrate that a BGL-displaying and xylose-assimilating industrial yeast strain is capable of efficient xylose consumption during the co-fermentation with cellobiose. Due to its high performance for fermentation of mixtures of cellobiose and xylose, OC2-ABGL4Xyl2 does not require the addition of β-glucosidase and is therefore a promising yeast strain for cost-effective ethanol production from lignocellulosic biomass.  相似文献   

3.
Lignocellulosic biomass is a sustainable feedstock for fuel ethanol production, but it is characterized by low mass and energy densities, and distributed production with relatively small scales is more suitable for cellulosic ethanol, which can better balance cost for the feedstock logistics. Lignocellulosic biomass is recalcitrant to degradation, and pretreatment is needed, but more efficient pretreatment technologies should be developed based on an in-depth understanding of its biosynthesis and regulation for engineering plant cell walls with less recalcitrance. Simultaneous saccharification and co-fermentation has been developed for cellulosic ethanol production, but the concept has been mistakenly defined, since the saccharification and co-fermentation are by no means simultaneous. Lignin is unreactive, which not only occupies reactor spaces during the enzymatic hydrolysis of the cellulose component and ethanol fermentation thereafter, but also requires extra mixing, making high solid loading difficult for lignocellulosic biomass and ethanol titers substantially compromised, which consequently increases energy consumption for ethanol distillation and stillage discharge, presenting another challenge for cellulosic ethanol production. Pentose sugars released from the hydrolysis of hemicelluloses are not fermentable with Saccharomyces cerevisiae used for ethanol production from sugar- and starch-based feedstocks, and engineering the brewing yeast and other ethanologenic species such as Zymomonas mobilis with pentose metabolism has been performed within the past decades. However strategies for the simultaneous co-fermentation of pentose and hexose sugars that have been pursued overwhelmingly for strain development might be modified for robust ethanol production. Finally, unit integration and system optimization are needed to maximize economic and environmental benefits for cellulosic ethanol production. In this article, we critically reviewed updated progress, and highlighted challenges and strategies for solutions.  相似文献   

4.
充分利用木质纤维素中的糖分是提高以此类生物质为原料生产二代燃料乙醇经济盈利性的基本要求,也是实现其他生物基化学品规模化生产的基础。传统的乙醇生产微生物酿酒酵母Saccharomyces cerevisiae具有独特的生产性能及内在优势,是备受关注的底盘细胞,但其不能有效地利用戊糖。利用代谢工程、合成生物学策略,对二代燃料乙醇生产专用酿酒酵母的精准构制持续研究了30余年,已明显改善了其对木糖/葡萄糖的乙醇共发酵能力。近年来关注点集中在早期忽略的限速步骤即糖转运环节的研究上,以期实现不同糖分各行其道、高效专一性转运蛋白各行其责的二代燃料乙醇生产特种酿酒酵母所需的糖转运理想状态。文中主要综述了酿酒酵母戊糖转运蛋白的研究进展,及酿酒酵母的木糖和L-阿拉伯糖代谢工程的研究现状。  相似文献   

5.
Restricted glucose catabolite repressed mutants of P. stipiti CCY 39501 were selected using UV irradiation. Four mutants were obtained which assimilated glucose slower than the native strain of P. stipitis and the degree of glucose repression was about 2-fold lower for P5-90-133 and P5-200-16 mutants and about 10-fold lower for P5-80-7 and P5-80-35 mutants. P5-80-7 and P5-80-35 produced very small amounts of ethanol from glucose and xylose, whereas P5-90-133 and P5-200-16 fermented sugars at the wild-type level. These two mutants were selected for co-fermentation process with native strain of S. cerevisiae V30 or Ja(a), as well as with their respiratory deficient mutants. During co-culture process of P. stipitis mutants with native strains of S. cerevisiae the ethanol yields obtained ranged from 0.38 to 0.45 g/g, and this alcohol was produced mainly from glucose. But, when also xylose, besides glucose was fermented to ethanol during co-fermentation of both mutant strains, lower yields of ethanol (0.28-0.40 g/g) were obtained.  相似文献   

6.
In the bioethanol production process, high solid saccharification and glucose/xylose co-fermentation are important technologies for obtaining increased ethanol concentrations; however, bench-scale studies using combinations of these methods are limited. In this study, we hydrolyzed high solid concentration of milled eucalyptus using commercial enzymes and obtained 138.4 g/L total monomeric sugar concentration. These sugars were fermented to 53.5 g/L of ethanol by a xylose-utilizing recombinant Saccharomyces cerevisiae strain, MA-R4. These experiments were performed in bench scale (using 50 L scale solid mixer and 70 L scale fermenter). The results obtained in this study were comparable to our previous results in laboratory scale, indicating that we successfully achieved an efficient high solid saccharification and glucose/xylose co-fermentation system in bench scale.  相似文献   

7.
During the fermentation of lignocellulosic hydrolyzates to ethanol by native pentose-fermenting yeasts such as Scheffersomyces (Pichia) stipitis NRRL Y-7124 (CBS 5773) and Pachysolen tannophilus NRRL Y-2460, the switch from glucose to xylose uptake results in a diauxic lag unless process strategies to prevent this are applied. When yeast were grown on glucose and resuspended in mixed sugars, the length of this lag was observed to be a function of the glucose concentration consumed (and consequently, the ethanol concentration accumulated) prior to the switch from glucose to xylose fermentation. At glucose concentrations of 95 g/L, the switch to xylose utilization was severely stalled such that efficient xylose fermentation could not occur. Further investigation focused on the impact of ethanol on cellular xylose transport and the induction and maintenance of xylose reductase and xylitol dehydrogenase activities when large cell populations of S. stipitis NRRL Y-7124 were pre-grown on glucose or xylose and then presented mixtures of glucose and xylose for fermentation. Ethanol concentrations around 50 g/L fully repressed enzyme induction although xylose transport into the cells was observed to be occurring. Increasing degrees of repression were documented between 15 and 45 g/L ethanol. Repitched cell populations grown on xylose resulted in faster fermentation rates, particularly on xylose but also on glucose, and eliminated diauxic lag and stalling during mixed sugar conversion by P. tannophilus or S. stipitis, despite ethanol accumulations in the 60 or 70 g/L range, respectively. The process strategy of priming cells on xylose was key to the successful utilization of high mixed sugar concentrations because specific enzymes for xylose utilization could be induced before ethanol concentration accumulated to an inhibitory level.  相似文献   

8.
酿酒酵母木糖发酵酒精途径工程的研究进展   总被引:17,自引:1,他引:16  
途径工程(Pathway engineering),被称为第三代基因工程,改变代谢流向,开辟新的代谢途径是途径工程的主要目的。利用途径工程理念,对酿酒酵母(Saccharomyces cerevisiae)代谢途径进行理性设计,以拓展这一传统酒精生产菌的底物范围,使其充分利用可再生纤维质水解物中的各种糖分,是酿酒酵母酒精途径工程的研究热点之一。这里介绍了近年来酿酒酵母以木糖为底物的酒精途径工程的研究进展。  相似文献   

9.

Background  

In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring) form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate q xylose (g xylose/g dry cell weight/h) of 0.08. The study presented herein was performed with the aim of analysing (external) factors that limit q xylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose.  相似文献   

10.
Natural ability to ferment the major sugars (glucose and xylose) of plant biomass is an advantageous feature of Escherichia coli in biofuel production. However, excess glucose completely inhibits xylose utilization in E. coli and decreases yield and productivity of fermentation due to sequential utilization of xylose after glucose. As an approach to overcome this drawback, E. coli MG1655 was engineered for simultaneous glucose (in the form of cellobiose) and xylose utilization by a combination of genetic and evolutionary engineering strategies. The recombinant E. coli was capable of utilizing approximately 6 g/L of cellobiose and 2 g/L of xylose in approximately 36 h, whereas wild-type E. coli was unable to utilize xylose completely in the presence of 6 g/L of glucose even after 75 hours. The engineered strain also co-utilized cellobiose with mannose or galactose; however, it was unable to metabolize cellobiose in the presence of arabinose and glucose. Successful cellobiose and xylose co-fermentation is a vital step for simultaneous saccharification and co-fermentation process and a promising step towards consolidated bioprocessing.  相似文献   

11.
High-performance liquid chromatography (HPLC) coupled to an evaporative light scattering detector was used to quantitatively determine glucose and cellobiose in hydrolyzates from the production of cellulose nanofillers from modified lignocellulosic materials. Prevail Carbohydrate ES 5 μ column proved more suitable for achieving the chromatographic separation of the model pulp hydrolyzate into its constituent sugars than the YMC-Pack Polyamine column. Linear calibration curves for the various sugars in the mixtures were developed. Glucose and cellobiose were clearly detectable in pulp hydrolyzates obtained from enzyme-mediated hydrolysis of recycled pulp, pine and hardwood dissolving pulps. Finally, the amount of glucose in the pulp hydrolyzates was generally higher than cellobiose.  相似文献   

12.
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.  相似文献   

13.
We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.  相似文献   

14.
A feed control strategy, based on estimated sugar concentrations, was developed with the purpose of avoiding severe inhibition of the yeast Saccharomyces cerevisiae during fermentation of spruce hydrolyzate. The sum of the fermentable hexose sugars, glucose and mannose, was estimated from on-line measurements of carbon dioxide evolution rate and biomass concentration by use of a simple stoichiometric model. The feed rate of the hydrolyzate was controlled to maintain constant sugar concentration during fed-batch fermentation, and the effect of different set-point concentrations was investigated using both untreated and detoxified hydrolyzates. The fed-batch cultivations were evaluated with respect to cellular physiology in terms of the specific ethanol productivities, ethanol yields, and viability of the yeast. The simple stoichiometric model used resulted in a good agreement between estimated sugar concentrations and off-line determinations of sugar concentrations. Furthermore, the control strategy used made it possible to maintain a constant sugar concentration without major oscillations in the feed rate or the sugar concentration. For untreated hydrolyzates the average ethanol productivity could be increased by more than 130% compared to batch fermentation. The average ethanol productivity was increased from 0.12 to 0.28 g/g h. The productivity also increased for detoxified hydrolyzates, where an increase of 16% was found (from 0.50 to 0.58 g/g h).  相似文献   

15.
Bacteria engineered for fuel ethanol production: current status   总被引:46,自引:4,他引:42  
The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing microorganisms capable of fermenting sugars not fermentable by brewers' yeast. The most significant of these is xylose. The greatest successes have been in the engineering of Gram-negative bacteria: Escherichia coli, Klebsiella oxytoca, and Zymomonas mobilis. E. coli and K. oxytoca are naturally able to use a wide spectrum of sugars, and work has concentrated on engineering these strains to selectively produce ethanol. Z. mobilis produces ethanol at high yields, but ferments only glucose and fructose. Work on this organism has concentrated on introducing pathways for the fermentation of arabinose and xylose. The history of constructing these strains and current progress in refining them are detailed in this review.  相似文献   

16.
In this work an Escherichia coli metabolically engineered to ferment lignocellulosic biomass sugars to succinic acid was tested for growth and fermentation of detoxified softwood dilute sulfuric acid hydrolyzates, and the minimum detoxification requirements were investigated with activated carbon and/or overliming treatments. Detoxified hydrolyzates supported fast growth and complete fermentation of all hydrolyzate sugars to succinate at yields comparable to pure sugar, while untreated hydrolyzates were unable to support either growth or fermentation. Activated carbon treatment was able to remove significantly more HMF and phenolics than overliming. However, in some cases, overliming treatment was capable of generating a fermentable hydrolyzate where activated carbon treatment was not. The implications of this are that in addition to the known organic inhibitors, the changes in the inorganic content and/or composition due to overliming are significant to the hydrolyzate toxicity. It was also found that any HMF remaining after detoxification was completely metabolized during aerobic cell growth on the hydrolyzates that were capable of supporting growth.  相似文献   

17.
Aims: A Lactobacillus buchneri strain NRRL B‐30929 can convert xylose and glucose into ethanol and chemicals. The aims of the study were to survey three strains (NRRL B‐30929, NRRL 1837 and DSM 5987) for fermenting 17 single substrates and to exam NRRL B‐30929 for fermenting mixed substrates from biomass hydrolysates. Methods and Results: Mixed acid fermentation was observed for all three L. buchneri strains using various carbohydrates; the only exception was uridine which yielded lactate, acetate and uracil. Only B‐30929 is capable of utilizing cellobiose, a desired trait in a potential biocatalyst for biomass conversion. Flask fermentation indicated that the B‐30929 strain can use all the sugars released from pretreated hydrolysates, and producing 1·98–2·35 g l?1 ethanol from corn stover hydrolysates and 2·92–3·01 g l?1 ethanol from wheat straw hydrolysates when supplemented with either 0·25× MRS plus 1% corn steep liquor or 0·5× MRS. Conclusions: The L. buchneri NRRL B‐30929 can utilize mixed sugars in corn stover and wheat straw hydrolysates for ethanol and other chemical production. Significance and Impact of the Study: These results are valuable for future research in engineering L. buchneri NRRL B‐30929 for fermentative production of ethanol and chemicals from biomass.  相似文献   

18.
为了选育高效利用木糖、葡萄糖共发酵,并使乙醇产量有所提高的酿酒酵母工程菌株。以酿酒酵母Saccharomyces cerevisiae W5和休哈塔假丝酵母Candida shehatae 20335为亲本株,确定了双亲株原生质体灭活剂量,并进行原生质体融合获得融合子,用高效液相色谱(HPLC)测定融合子以木糖、葡萄糖单碳源及混合碳源发酵时的乙醇得率。结果表明,获得一株发酵性能优良的融合子HDY2-14,其利用木糖和葡萄糖单碳源发酵的乙醇得率分别为0.213g/g和0.257g/g,混合碳源发酵的乙醇得率为0.310g/g,其中混合碳源乙醇得率比亲本株W5和20335的乙醇得率分别提高了20.2%和15.2%。  相似文献   

19.
In this paper, the feasibility of a technology for fermenting sugar mixtures representative of cellulosic biomass hydrolyzates with native industrial yeast strains is demonstrated. This paper explores the isomerization of xylose to xylulose using a bi-layered enzyme pellet system capable of sustaining a micro-environmental pH gradient. This ability allows for considerable flexibility in conducting the isomerization and fermentation steps. With this method, the isomerization and fermentation could be conducted sequentially, in fed-batch, or simultaneously to maximize utilization of both C5 and C6 sugars and ethanol yield. This system takes advantage of a pH-dependent complexation of xylulose with a supplemented additive to achieve up to 86% isomerization of xylose at fermentation conditions. Commercially-proven Saccharomyces cerevisiae strains from the corn-ethanol industry were used and shown to be very effective in implementation of the technology for ethanol production.  相似文献   

20.
The performance of single, and series of, continuous stirred-tank (CSTBR) and fluidized-bed bioreactor (FBBR) in anaerobic continuous cultivation of glucose in defined media and dilute-acid hydrolyzates at dilution rates 0.22, 0.43, 0.65 and 0.86 h(-1) using immobilized Saccharomyces cerevisiae CBS 8066, was investigated. While the single CSTBR and FBBR could not take up more than 77% and 92% of glucose in a defined medium at dilution rate 0.86 h(-1), addition of the second bioreactor decreased the residual glucose to less than 1.1% of the incoming sugar. A similar trend was obtained in cultivation of dilute-acid hydrolyzates. A CSTBR could take up 75% and 54% of the initial fermentable sugars at dilution rates 0.43 and 0.86 h(-1), while the addition of the FBBR improved the assimilation of the sugars to 100% and 86%, respectively. The ethanol yields from the hydrolyzate were between 0.41 and 0.48 g/g in all the experiments. The specific and volumetric ethanol productivities were 1.13 g/gh and 5.98 g/Lh for the single bioreactor and 0.98 g/gh and 5.49 g/Lh for the serial bioreactor at the highest dilution rate, respectively. Glycerol was the only important by-product in terms of concentration, and yielded 0.05-0.07 g/g from the hydrolyzate. From the initial 3.98 g/L acetic acid present in the hydrolyzate, 0.1-0.8 g/L was assimilated by the cells. The yeast cells were accumulated close to the surface of the beads. While the cells had a dry-weight concentration of 129 g/L close to the surface of the beads, the concentration in the core was only 13 g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号