首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ends of linear eukaryotic chromosomes are hidden in nucleoprotein structures called telomeres, and loss of the telomere structure causes inappropriate repair, leading to severe karyotypic and genomic instability. Although it has been shown that DNA damaging agents activate a DNA damage response (DDR), little is known about the signaling of dysfunctional plant telomeres. We show that absence of telomerase in Arabidopsis thaliana elicits an ATAXIA-TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR)-dependent DDR at telomeres, principally through ATM. By contrast, telomere dysfunction induces an ATR-dependent response in telomeric Conserved telomere maintenance component1 (Ctc1)-Suppressor of cdc thirteen (Stn1)-Telomeric pathways in association with Stn1 (CST)-complex mutants. These results uncover a new role for the CST complex in repressing the ATR-dependent DDR pathway in plant cells and show that plant cells use two different DNA damage surveillance pathways to signal telomere dysfunction. The absence of either ATM or ATR in ctc1 and stn1 mutants significantly enhances developmental and genome instability while reducing stem cell death. These data thus give a clear illustration of the action of ATM/ATR-dependent programmed cell death in maintaining genomic integrity through elimination of genetically unstable cells.  相似文献   

2.
Telomere shortening caused by incomplete DNA replication is balanced by telomerase-mediated telomere extension, with evidence indicating that the shortest telomeres are preferred substrates in primary cells. Critically short telomeres are detected by the cellular DNA damage response (DDR) system. In budding yeast, the important DDR kinase Tel1 (homologue of ATM [ataxia telangiectasia mutated]) is vital for telomerase recruitment to short telomeres, but mammalian ATM is dispensable for this function. We asked whether closely related ATR (ATM and Rad3 related) kinase, which is important for preventing replicative stress and chromosomal breakage at common fragile sites, might instead fulfill this role. The newly created ATR-deficient Seckel mouse strain was used to examine the function of ATR in telomerase recruitment and telomere function. Telomeres were recently found to resemble fragile sites, and we show in this study that ATR has an important role in the suppression of telomere fragility and recombination. We also find that wild-type ATR levels are important to protect short telomeres from chromosomal fusions but do not appear essential for telomerase recruitment to short telomeres in primary mouse embryonic fibroblasts from the ATR-deficient Seckel mouse model. These results reveal a previously unnoticed role for mammalian ATR in telomere protection and stability.  相似文献   

3.
4.
Dewar JM  Lydall D 《The EMBO journal》2010,29(23):4020-4034
Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap' telomeres in budding yeast, we show that the telomere capping protein Cdc13 protects telomeres from the activity of the helicase Pif1 and the exonuclease Exo1. Our data support a two-stage model for the DDR at uncapped telomeres; Pif1 and Exo1 resect telomeric DNA <5 kb from the chromosome end, stimulating weak checkpoint activation; resection is extended >5 kb by Exo1 and full checkpoint activation occurs. Cdc13 is also crucial for telomerase recruitment. However, cells lacking Cdc13, Pif1 and Exo1, do not senesce and maintain their telomeres in a manner dependent upon telomerase, Ku and homologous recombination. Thus, attenuation of the DDR at uncapped telomeres can circumvent the need for otherwise-essential telomere capping proteins.  相似文献   

5.
In the budding yeast Saccharomyces cerevisiae, the structure and function of telomeres are maintained by binding proteins, such as Cdc13-Stn1-Ten1 (CST), Yku, and the telomerase complex. Like CST and Yku, telomerase also plays a role in telomere protection or capping. Unlike CST and Yku, however, the underlying molecular mechanism of telomerase-mediated telomere protection remains unclear. In this study, we employed both the CDC13-EST1 fusion gene and the separation-of-function allele est1-D514A to elucidate that Est1 provided a telomere protection pathway that was independent of both the CST and Yku pathways. Est1's ability to convert single-stranded telomeric DNA into a G quadruplex was required for telomerase-mediated telomere protection function. Additionally, Est1 maintained the integrity of telomeres by suppressing the recombination of subtelomeric Y' elements. Our results demonstrate that one major functional role that Est1 brings to the telomerase complex is the capping or protection of telomeres.  相似文献   

6.
Guo X  Deng Y  Lin Y  Cosme-Blanco W  Chan S  He H  Yuan G  Brown EJ  Chang S 《The EMBO journal》2007,26(22):4709-4719
The POT1 (protection of telomeres) protein binds the single-stranded G-rich overhang and is essential for both telomere end protection and telomere length regulation. Telomeric binding of POT1 is enhanced by its interaction with TPP1. In this study, we demonstrate that mouse Tpp1 confers telomere end protection by recruiting Pot1a and Pot1b to telomeres. Knockdown of Tpp1 elicits a p53-dependent growth arrest and an ATM-dependent DNA damage response at telomeres. In contrast to depletion of Trf2, which activates ATM, removal of Pot1a and Pot1b from telomeres initiates an ATR-dependent DNA damage response (DDR). Finally, we show that telomere dysfunction as a result of Tpp1 depletion promotes chromosomal instability and tumorigenesis in the absence of an ATM-dependent DDR. Our results uncover a novel ATR-dependent DDR at telomeres that is normally shielded by POT1 binding to the single-stranded G-overhang. In addition, our results suggest that loss of ATM can cooperate with dysfunctional telomeres to promote cellular transformation and tumor formation in vivo.  相似文献   

7.
Telomere dysfunction promotes genomic instability and carcinogenesis via inappropriate end-to-end chromosomal rearrangements, or telomere fusions. Previous work indicates that the DNA Damage Response (DDR) factor 53BP1 promotes the fusion of telomeres rendered dysfunctional by loss of TRF2, but is dispensable for the fusion of telomeres lacking Pot1 or critically shortened (in telomerase-deficient mice). Here, we examine a role for 53BP1 at telomeres rendered dysfunctional by loss or catalytic inhibition of DNA-PKcs. Using mouse embryonic fibroblasts lacking 53BP1 and/or DNA-PKcs, we show that 53BP1 deficiency suppresses G1-generated telomere fusions that normally accumulate in DNA-PKcs-deficient fibroblasts with passage. Likewise, we find that 53BP1 promotes telomere fusions during the replicative phases of the cell cycle in cells treated with the specific DNA-PKcs inhibitor NU7026. However, telomere fusions are not fully abrogated in DNA-PKcs-inhibited 53BP1-deficient cells, but occur with a frequency approximately 10-fold lower than in control 53BP1-proficient cells. Treatment with PARP inhibitors or PARP1 depletion abrogates residual fusions, while Ligase IV depletion has no measurable effect, suggesting that PARP1-dependent alternative end-joining operates at low efficiency at 53BP1-deficient, DNA-PKcs-inhibited telomeres. Finally, we have also examined the requirement for DDR factors ATM, MDC1 or H2AX in this context. We find that ATM loss or inhibition has no measurable effect on the frequency of NU7026-induced fusions in wild-type MEFs. Moreover, analysis of MEFs lacking both ATM and 53BP1 indicates that ATM is also dispensable for telomere fusions via PARP-dependent end-joining. In contrast, loss of either MDC1 or H2AX abrogates telomere fusions in response to DNA-PKcs inhibition, suggesting that these factors operate upstream of both 53BP1-dependent and -independent telomere rejoining. Together, these experiments define a novel requirement for 53BP1 in the fusions of DNA-PKcs-deficient telomeres throughout the cell cycle and uncover a Ligase IV-independent, PARP1-dependent pathway that fuses telomeres at reduced efficiency in the absence of 53BP1.  相似文献   

8.
TRF1 protects mammalian telomeres from fusion and fragility. Depletion of TRF1 leads to telomere fusions as well as accumulation of γ-H2AX foci and activation of both the ataxia telangiectasia mutated (ATM)- and the ataxia telangiectasia and Rad3 related (ATR)-mediated deoxyribonucleic acid (DNA) damage response (DDR) pathways. 53BP1, which is also present at dysfunctional telomeres, is a target of ATM that accumulates at DNA double-strand breaks and favors nonhomologous end-joining (NHEJ) repair over ATM-dependent resection and homology-directed repair (homologous recombination [HR]). To address the role of 53BP1 at dysfunctional telomeres, we generated mice lacking TRF1 and 53BP1. 53BP1 deficiency significantly rescued telomere fusions in mouse embryonic fibroblasts (MEFs) lacking TRF1, but they showed evidence of a switch from the NHEJ- to HR-mediated repair of uncapped telomeres. Concomitantly, double-mutant MEFs showed evidence of hyperactivation of the ATR-dependent DDR. In intact mice, combined 53BP1/TRF1 deficiency in stratified epithelia resulted in earlier onset of DNA damage and increased CHK1 phosphorylation during embryonic development, leading to aggravation of skin phenotypes.  相似文献   

9.
10.
The ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) kinases coordinate the DNA damage response. The roles described for Arabidopsis thaliana ATR and ATM are assumed to be conserved over other plant species, but molecular evidence is scarce. Here, we demonstrate that the functions of ATR and ATM are only partially conserved between Arabidopsis and maize (Zea mays). In both species, ATR and ATM play a key role in DNA repair and cell cycle checkpoint activation, but whereas Arabidopsis plants do not suffer from the absence of ATR under control growth conditions, maize mutant plants accumulate replication defects, likely due to their large genome size. Moreover, contrarily to Arabidopsis, maize ATM deficiency does not trigger meiotic defects, whereas the ATR kinase appears to be crucial for the maternal fertility. Strikingly, ATR is required to repress premature endocycle onset and cell death in the maize endosperm. Its absence results in a reduction of kernel size, protein and starch content, and a stochastic death of kernels, a process being counteracted by ATM. Additionally, while Arabidopsis atr atm double mutants are viable, no such mutants could be obtained for maize. Therefore, our data highlight that the mechanisms maintaining genome integrity may be more important for vegetative and reproductive development than previously anticipated.

Differently from Arabidopsis, ATR activity in maize plays an essential role under control growth conditions, ensuring genome stability during kernel Development.  相似文献   

11.
Gong Y  de Lange T 《Molecular cell》2010,40(3):377-387
We previously proposed that POT1 prevents ATR signaling at telomeres by excluding RPA from the single-stranded TTAGGG repeats. Here, we use a Shld1-stabilized degron-POT1a fusion (DD-POT1a) to study the telomeric ATR kinase response. In the absence of Shld1, DD-POT1a degradation resulted in rapid and reversible activation of the ATR pathway in G1 and S/G2. ATR signaling was abrogated by shRNAs to ATR and TopBP1, but shRNAs to the ATM kinase or DNA-PKcs did not affect the telomere damage response. Importantly, ATR signaling in G1 and S/G2 was reduced by shRNAs to RPA. In S/G2, RPA was readily detectable at dysfunctional telomeres, and both POT1a and POT1b were required to exclude RPA and prevent ATR activation. In G1, the accumulation of RPA at dysfunctional telomeres was strikingly less, and POT1a was sufficient to repress ATR signaling. These results support an RPA exclusion model for the repression of ATR signaling at telomeres.  相似文献   

12.
Culligan K  Tissier A  Britt A 《The Plant cell》2004,16(5):1091-1104
Ataxia telangiectasia-mutated and Rad3-related (ATR) plays a central role in cell-cycle regulation, transmitting DNA damage signals to downstream effectors of cell-cycle progression. In animals, ATR is an essential gene. Here, we find that Arabidopsis (Arabidopsis thaliana) atr-/- mutants were viable, fertile, and phenotypically wild-type in the absence of exogenous DNA damaging agents but exhibit altered expression of AtRNR1 (ribonucleotide reductase large subunit) and alteration of some damage-induced cell-cycle checkpoints. atr mutants were hypersensitive to hydroxyurea (HU), aphidicolin, and UV-B light but only mildly sensitive to gamma-radiation. G2 arrest was observed in response to gamma-irradiation in both wild-type and atr plants, albeit with slightly different kinetics, suggesting that ATR plays a secondary role in response to double-strand breaks. G2 arrest also was observed in wild-type plants in response to aphidicolin but was defective in atr mutants, resulting in compaction of nuclei and subsequent cell death. By contrast, HU-treated wild-type and atr plants arrested in G1 and showed no obvious signs of cell death. We propose that, in plants, HU invokes a novel checkpoint responsive to low levels of deoxynucleotide triphosphates. These results demonstrate the important role of cell-cycle checkpoints in the ability of plant cells to sense and cope with problems associated with DNA replication.  相似文献   

13.
14.
Coats plus (CP) is a rare autosomal recessive disorder caused by mutations in CTC1, a component of the CST (CTC1, STN1, and TEN1) complex important for telomere length maintenance. The molecular basis of how CP mutations impact upon telomere length remains unclear. The CP CTC1L1142H mutation has been previously shown to disrupt telomere maintenance. In this study, we used CRISPR/Cas9 to engineer this mutation into both alleles of HCT116 and RPE cells to demonstrate that CTC1:STN1 interaction is required to repress telomerase activity. CTC1L1142H interacts poorly with STN1, leading to telomerase‐mediated telomere elongation. Impaired interaction between CTC1L1142H:STN1 and DNA Pol‐α results in increased telomerase recruitment to telomeres and further telomere elongation, revealing that C:S binding to DNA Pol‐α is required to fully repress telomerase activity. CP CTC1 mutants that fail to interact with DNA Pol‐α resulted in loss of C‐strand maintenance and catastrophic telomere shortening. Our findings place the CST complex as an important regulator of both G‐strand extensions by telomerase and C‐strand synthesis by DNA Pol‐α.  相似文献   

15.
End-to-end fusion of critically shortened telomeres in higher eucaryotes is presumed to be mediated by nonhomologous end-joining (NHEJ). Here we describe two PCR-based methods to monitor telomere length and examine the fate of dysfunctional telomeres in Arabidopsis lacking the catalytic subunit of telomerase (TERT) and the DNA repair proteins Ku70 and Mre11. Primer extension telomere repeat amplification relies on the presence of an intact G-overhang, and thus measures functional telomere length. The minimum functional telomere length detected was 300-400 bp. PCR amplification and sequence analysis of chromosome fusion junctions revealed exonucleolytic digestion of dysfunctional ends prior to fusion. In ku70 tert mutants, there was a greater incidence of microhomology at the fusion junction than in tert mutants. In triple ku70 tert mre11 mutants, chromosome fusions were still detected, but microhomology at the junction was no longer favored. These data indicate that both Ku70 and Mre11 contribute to fusion of critically shortened telomeres in higher eucaryotes. Furthermore, Arabidopsis processes critically shortened telomeres as double-strand breaks, using a variety of end-joining pathways.  相似文献   

16.
17.
POT1 is a single-copy gene in yeast and humans that encodes a single-strand telomere binding protein required for chromosome end protection and telomere length regulation. In contrast, Arabidopsis harbors multiple, divergent POT-like genes that bear signature N-terminal OB-fold motifs, but otherwise share limited sequence similarity. Here, we report that plants null for AtPOT1 show no telomere deprotection phenotype, but rather exhibit progressive loss of telomeric DNA. Genetic analysis indicates that AtPOT1 acts in the same pathway as telomerase. In vitro levels of telomerase activity in pot1 mutants are significantly reduced and are more variable than wild-type. Consistent with this observation, AtPOT1 physically associates with active telomerase particles. Although low levels of AtPOT1 can be detected at telomeres in unsynchronized cells and in cells arrested in G2, AtPOT1 binding is significantly enhanced during S-phase, when telomerase is thought to act at telomeres. Our findings indicate that AtPOT1 is a novel accessory factor for telomerase required for positive telomere length regulation, and they underscore the coordinate and extraordinarily rapid evolution of telomere proteins and the telomerase enzyme.  相似文献   

18.
Cells derived from patients with the human genetic disorder ataxia-telangiectasia (A-T) display many abnormalities, including telomere shortening, premature senescence, and defects in the activation of S phase and G(2)/M checkpoints in response to double-strand DNA breaks induced by ionizing radiation. We have previously demonstrated that one of the ATM substrates is Pin2/TRF1, a telomeric protein that binds the potent telomerase inhibitor PinX1, negatively regulates telomere elongation, and specifically affects mitotic progression. Following DNA damage, ATM phosphorylates Pin2/TRF1 and suppresses its ability to induce abortive mitosis and apoptosis (Kishi, S., Zhou, X. Z., Nakamura, N., Ziv, Y., Khoo, C., Hill, D. E., Shiloh, Y., and Lu, K. P. (2001) J. Biol. Chem. 276, 29282-29291). However, the functional importance of Pin2/TRF1 in mediating ATM-dependent regulation remains to be established. To address this question, we directly inhibited the function of endogenous Pin2/TRF1 in A-T cells by stable expression of two different dominant-negative Pin2/TRF1 mutants and then examined their effects on telomere length and DNA damage response. Both the Pin2/TRF1 mutants increased telomere length in A-T cells, as shown in other cells. Surprisingly, both the Pin2/TRF1 mutants reduced radiosensitivity and complemented the G(2)/M checkpoint defect without inhibiting Cdc2 activity in A-T cells. In contrast, neither of the Pin2/TRF1 mutants corrected the S phase checkpoint defect in the same cells. These results indicate that inhibition of Pin2/TRF1 in A-T cells is able to bypass the requirement for ATM in specifically restoring telomere shortening, the G(2)/M checkpoint defect, and radiosensitivity and demonstrate a critical role for Pin2/TRF1 in the ATM-dependent regulation of telomeres and DNA damage response.  相似文献   

19.
Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer.  相似文献   

20.
The checkpoint kinases ATM and ATR are redundantly required for maintenance of stable telomeres in diverse organisms, including budding and fission yeasts, Arabidopsis, Drosophila, and mammals. However, the molecular basis for telomere instability in cells lacking ATM and ATR has not yet been elucidated fully in organisms that utilize both the telomere protection complex shelterin and telomerase to maintain telomeres, such as fission yeast and humans. Here, we demonstrate by quantitative chromatin immunoprecipitation (ChIP) assays that simultaneous loss of Tel1ATM and Rad3ATR kinases leads to a defect in recruitment of telomerase to telomeres, reduced binding of the shelterin complex subunits Ccq1 and Tpz1, and increased binding of RPA and homologous recombination repair factors to telomeres. Moreover, we show that interaction between Tpz1-Ccq1 and telomerase, thought to be important for telomerase recruitment to telomeres, is disrupted in tel1Δ rad3Δ cells. Thus, Tel1ATM and Rad3ATR are redundantly required for both protection of telomeres against recombination and promotion of telomerase recruitment. Based on our current findings, we propose the existence of a regulatory loop between Tel1ATM/Rad3ATR kinases and Tpz1-Ccq1 to ensure proper protection and maintenance of telomeres in fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号