首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Silver-copper and silver-cobalt proteins have been prepared in which Ag+ resides in the native copper site of superoxide dismutase and either Cu2+ of Co2+ reside in the zinc site. The electron paramagnetic resonance (EPR) spectrum of the copper and the visible absorption spectrum of the cobalt greatly resemble those of either Cu4 of Cu2,Cu2,Co2 proteins, respectively, in which the copper of the native copper sites has been reduced. It was found that, unlike cyanide, azide anion would not perturb the EPR spectrum of Ag2,Cu2 protein. Since azide produces the same perturbation upon the EPR spectrum of native and Cu2 proteins, it must bind to the copper and not the zinc of superoxide dismutase. A model of the metal sites of the enzyme has been fitted to a 3-A electron-density map using an interactive molecular graphics display. The model shows that histidine-61, which appears to bind both copper and zinc, does not lie in the plane of the copper and its three other histidine ligands, but occupies a position intermediate between planar and axial. This feature probably accounts for the rhombicity of the EPR spectrum and the activity of the enzyme.  相似文献   

2.
3.
Diethyldithiocarbamate reacted with superoxide dismutase from bovine erythrocytes. Changes in both optical and esr spectra, which accompanied this reaction, indicated involvement of the Cu(II). The reaction was accelerated by raising the concentrations of the reactants, elevating the temperature, and lowering the pH, in the range 10.2 to 5.5, and it was independent of the presence of oxygen. During the first phase of this reaction the Cu(II).diethyldithiocarbamate complex remained bound to the enzyme and the catalytic activity did not diminish. There followed a second and slower process which was accompanied by the appearance of colloidal Cu(II).chelate complex and by a loss of activity which could be restored by the addition of CuSO4. All of the observations are accomodated by a model in which 1 diethyldithiocarbamate molecule reacts/copper center, with retention of activity, in Phase I, while a second diethyldithiocarbamate displaces the copper, with a loss of activity, in Phase II.  相似文献   

4.
Copper-zinc superoxide dismutase (CuZnSOD) specifically catalyzes the removal of superoxide radicals to protect cellular function against the generation of superoxide-dependent hydroxyl radicals ((.)OH). However, an unexpected observation reveals that denatured CuZnSOD (dCuZnSOD) itself induces (.)OH formation. This dCuZnSOD-dependent (.)OH generation was not inhibited by active CuZnSOD, suggesting that it is a superoxide-independent process. Sodium cyanide, histidine, and N,N'-diethyldithiocarbamate abolished (.)OH generation, implying that Cu may be responsible for dCuZnSOD-induced (.)OH formation. Catalase eliminated ()OH generation, suggesting that hydrogen peroxide may be involved in the mechanism of dCuZnSOD-mediated (.)OH production. Furthermore, nitric oxide ((.)NO) completely inhibited dCuZnSOD-induced (.)OH radical generation, indicating that (.)NO is an important (.)OH radical scavenger. Our results shed new light on the effect of dysfunctional CuZnSOD and suggest that structural disorder of the enzyme may be one of the endogenous pathways of toxic (.)OH formation in biological systems.  相似文献   

5.
Immunolocalization of copper-zinc superoxide dismutase. II. Rat   总被引:2,自引:0,他引:2  
Copper-zinc superoxide dismutase (CuZn SOD) has been localized in formalin-fixed rat tissues. Staining with a modified immunoenzyme bridge technique using the avidin-biotin-peroxidase complex revealed abundant endogenous CuZn SOD in cells that function in transporting ions, either cellularly, as in the case of tracheal, bronchiolar, and colonic epithelial cells, gastric oxyntic cells, and cells lining the salivary ducts and proximal convoluted tubules in the nephron, or intracellularly, as exemplified by skeletal muscle and neurons. Additionally, the enzyme was consistently demonstrable in hepatocytes, endocrine cells of the islets of Langerhans, and the highly membranous oligodendrocytes in the central nervous system. Cellular processes that maintain high ionic gradients appear especially vulnerable to the superoxide anion, thus necessitating the presence of CuZn SOD to scavenge toxic free radicals of oxygen. Comparison of these observations with other immunocytochemical reports indicates that the cellular distribution of CuZn SOD varies between different species.  相似文献   

6.
Caulobacter crescentus is one of a small number of bacterial species that contain a periplasmic copper-zinc superoxide dismutase (CuZnSOD). A C. crescentus mutant, with the CuZnSOD gene interrupted by a promoterless cat gene, was constructed and characterized to analyze CuZnSOD function. Periplasmic SOD does not protect against oxyradical damage in the cytosol or play a major role in maintaining the integrity of the cell envelope. Studies of the effect of sodium citrate on plating efficiency suggest that CuZnSOD protects a periplasmic or membrane function(s) requiring magnesium or calcium.  相似文献   

7.
Two superoxide dismutases (SOD I and SOD II) were purified from Acanthamoeba castellanii and characterized for several biochemical properties. Analysis of the primary structure and inhibition studies revealed that SOD I is iron SOD (Fe-SOD), with a molecular mass of 50 kDa, and SOD II is copper-zinc SOD (Cu,Zn-SOD), with a molecular mass of 38 kDa. Both enzymes have a homodimeric structure consisting of 2 identical subunits, each with a molecular mass of 26 and 19 kDa for SOD I and SOD II, respectively. The isoelectric points of SOD I and SOD II were 6.4 and 3.5, respectively, and there were no isoenzyme forms detected. Both enzymes show a broad optimal pH of 7.0-11.0. Because no differences were observed in the apparent molecular weight of SOD I after addition of the reducing agent 2-mercaptoethanol, the subunits do not appear to be linked covalently by disulfide bonds. However, the subunits of SOD II were covalently linked by intra- and interdisulfide bonds. Western blot analyses showed that the 2 enzymes have different antigenicity. Both enzymes occur as cytoplasmic and detergent-extractable fractions. These enzymes may be potential virulence factors of A. castellanii by acting both as antioxidants and antiinflammatory agents. These enzymes may be attractive targets for chemotherapy and immunodiagnosis of acanthamoebiasis.  相似文献   

8.
Yeast lacking copper-zinc superoxide dismutase (sod1?) have a number of oxygen-dependent defects, including auxotrophies for lysine and methionine and sensitivity to oxygen. Here we report additional defects in metabolic regulation. Under standard growth conditions with glucose as the carbon source, yeast undergo glucose repression in which mitochondrial respiration is deemphasized, energy is mainly derived from glycolysis, and ethanol is produced. When glucose is depleted, the diauxic shift is activated, in which mitochondrial respiration is reemphasized and stress resistance increases. We find that both of these programs are adversely affected by the lack of Sod1p. Key events in the diauxic shift do not occur and sod1? cells do not utilize ethanol and stop growing. The ability to shift to growth on ethanol is gradually lost as time in culture increases. In early stages of culture, sod1? cells consume more oxygen and have more mitochondrial mass than wild-type cells, indicating that glucose repression is not fully activated. These changes are at least partially dependent on the activity of the Hap2,3,4,5 complex, as indicated by CYC1-lacZ reporter assays. These changes may indicate a role for superoxide in metabolic signaling and regulation and/or a role for glucose derepression in defense against oxidative stress.  相似文献   

9.
Phosphate is an inhibitor of copper-zinc superoxide dismutase   总被引:2,自引:0,他引:2  
The superoxide dismutase (SOD) activity of bovine copper-zinc superoxide dismutase (Cu,Zn-SOD) in 50 mM Hepes [4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid], pH 7.4, was decreased by approximately 50% when the solution was made 10 mM in phosphate, in spite of the fact that the ionic strength of both solutions was adjusted to be equal. A similar experiment was carried out with bovine Cu,Zn-SOD chemically modified at Arg-141 with phenylglyoxal, which consequently had approximately 20% of the activity of the unmodified protein. (This activity was shown not to be due to residual unmodified protein.) Addition of 10 mM phosphate to solutions of the modified protein caused only a small decrease (less than 5%) in the SOD activity. The presence of phosphate also caused the affinity of Cu,Zn-SOD for binding azide or cyanide anions to be reduced; this effect of phosphate was also much less for the arginine-modified protein. We conclude that the inhibitory effect of phosphate on bovine Cu,Zn-SOD is due primarily to the neutralization of the positive charge on the side chain of Arg-141. The effect of increasing ionic strength on the activities of the native and arginine-modified proteins was also investigated. We found that at high concentrations of phosphate (greater than or equal to 10 mM), the SOD activities of native and arginine-modified Cu,Zn-SOD were inhibited comparably when the ionic strength was increased. This effect is presumably due to the lysine residues near the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The inhibitory effect of vanadate species on the enzymatic activity of bovine copper-zinc superoxide dismutase has been investigated at different pH values and vanadium concentrations. A definite inhibitory effect, clearly related to the main negative charge of each of the vanadate solutions, has been found. The results suggest that the origin of the inhibitory effect may be similar to that found for the phosphate ion, i.e., a diminution of the effectiveness of the substrate electronic guidance mechanism by partial neutralization of the charges close to the active site. Under physiological conditions, the inhibitory effect of vanadate is somewhat smaller than the phosphate.  相似文献   

11.
We describe here the identification of sodC gene from enteroaggregative Escherichia coli (EAggEC). A 294 bp gene-specific fragment was amplified from the organism by DNA as well as RT-PCR using primers from bacterial sodC sequences. The metal co-factor present in the protein was confirmed by running samples in native gels and inhibiting with 2 mM potassium cyanide. However, the nonpathogenic E. coli possesses the gene but does not express it. Thus, the presence of copper-zinc superoxide dismutase encoded by sodC was demonstrated for the first time in EAggEC, which means it could be a novel candidate for a virulence marker.  相似文献   

12.
The intrinsic fluorescence decay of human Cu,Zn superoxide dismutase was measured by frequency-domain techniques. The protein consists of two subunits, each containing one tryptophan and no tyrosine residues. Using a synchrotron radiation source, which allows facile selection of the excitation wavelength, the dependence of the emission decay upon excitation was studied. No significant excitation wavelength effects were found. The two tryptophans contained in the dimer, although fully equivalent and exposed to solvent, showed a fluorescence decay that cannot be described by a single lifetime. Either two lifetimes, or one Lorentzian-shaped continuous distribution of lifetimes, are needed to obtain a good fit. Under identical experimental conditions, control experiments showed that N-acetyltryptophanamide, an analogue of tryptophanyl residues in proteins, decays with a single lifetime. The heterogeneous decay of tryptophan fluorescence in superoxide dismutase is interpreted as due to the presence of static and/or dynamic conformers in the protein that decay with different lifetimes. The two models of discrete lifetimes and continuous distribution of lifetimes are discussed with reference to measurements on holo- and apo-human superoxide dismutase.  相似文献   

13.
The complete amino acid sequence of copper-zinc superoxide dismutase from Neurospora crassa is reported. The subunit consists of 153 amino acids and has a Mr of 15,850. The primary structure was determined by automated and manual sequence analysis of peptides obtained by digestions of the carboxymethylated and aminoethylated enzyme with trypsin and thermolysin. The protein is devoid of tryptophan and methionine and displays a free amino terminus. Comparison of the amino acid sequence with those from human erythrocyte, bovine erythrocyte, horse liver, swordfish liver, and yeast copper-zinc superoxide dismutases reveals a high degree of sequence homology among the six enzymes. Most prominently, the regions containing the amino acid residues participating in the metal-binding and the half-cystine residues forming the intramolecular disulfide bridge are highly conserved. The invariant amino acids Pro 74 and Asp 76 of the four vertebrate and yeast superoxide dismutases were found to be substituted by arginine and alanine, respectively, in the Neurospora enzyme. These radical substitutions occurring in the zinc ligand region, known to form a characteristic loop structure in bovine erythrocyte copper-zinc superoxide dismutase (Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C. (1982) J. Mol. Biol. 160, 181-217), however, do not affect the catalytic properties of the Neurospora enzyme.  相似文献   

14.
We report here the isolation of a tandem duplication of a small region of the third chromosome of Drosophila melanogaster containing the Cu-Zn superoxide dismutase (cSOD) gene. This duplication is associated with a dosage-dependent increase in cSOD activity. The biological consequences of hypermorphic levels of cSOD in genotypes carrying this duplication have been investigated under diverse conditions of oxygen stress imposed by acute exposure to ionizing radiation, chronic exposure to paraquat, and the normoxia of standard laboratory culture. We find that a 50% increase in cSOD activity above the normal diploid level confers increased resistance to ionizing radiation and, in contrast, confers decreased resistance to the superoxide-generating agent paraquat. The duplication is associated with a minor increase in adult life-span under conditions of normoxia. These results reveal important features of the biological function of cSOD within the context of the overall oxygen defense system of Drosophila.  相似文献   

15.
16.
Copper-zinc superoxide dismutases (CuZnSODs) are infrequently found in bacteria although widespread in eukaryotes. Legionella pneumophila, the causative organism of Legionnaires' disease, is one of a small number of bacterial species that contain a CuZnSOD, residing in the periplasm, in addition to an iron SOD (FeSOD) in their cytoplasm. To investigate CuZnSOD function, we purified the enzyme from wild-type L. pneumophila, obtained amino acid sequence data from isolated peptides, cloned and sequenced the gene from a L. pneumophila library, and then constructed and characterized a CuZnSOD null mutant. In contrast to the cytoplasmic FeSOD, the CuZnSOD of L. pneumophila is not essential for viability. However, CuZnSOD is critical for survival during the stationary phase of growth. The CuZnSOD null mutant survived 10(4)- to 10(6)-fold less than wild-type L. pneumophila. In wild-type L. pneumophila, the specific activity of CuZnSOD increased during the transition from exponential to stationary-phase growth while the FeSOD activity was constant. These data support a role of periplasmic CuZnSOD in survival of L. pneumophila during stationary phase. Since L. pneumophila survives extensive periods of dormancy between growth within hosts. CuZnSOD may contribute to the ability of this bacterium to be a pathogen. In exponential phase, wild-type and CuZnSOD null strains grew with comparable doubling times. In cultured HL-60 and THP-1 macrophage-like cell lines and in primary cultures of human monocytes, multiplication of the CuZnSOD null mutant was comparable to that of wild type. This indicated that CuZnSOD is not essential for intracellular growth within macrophages or for killing of macrophages in those systems.  相似文献   

17.
In the absence of suitable oxidizable substrates, the peroxidase reaction of copper-zinc superoxide dismutase (SOD) oxidizes SOD itself, ultimately resulting in its inactivation. A SOD-centered free radical adduct of 2-methyl-2-nitrosopropane (MNP) was detected upon incubation of SOD with the spin trap and a hydroperoxide (either H(2)O(2) or peracetic acid). Proteolysis by Pronase converted the anisotropic electron paramagnetic resonance (EPR) spectrum of MNP/(center dot)SOD to a nearly isotropic spectrum with resolved hyperfine couplings to several atoms with non-zero nuclear spin. Authentic histidinyl radical (from histidine + HO(center dot)) formed a MNP adduct with a very similar EPR spectrum to that of the Pronase-treated MNP/(center dot)SOD, suggesting that the latter was centered on a histidine residue. An additional hyperfine coupling was detected when histidine specifically (13)C-labeled at C-2 of the imidazole ring was used, providing evidence for trapping at that atom. All of the experimental spectra were convincingly simulated assuming hyperfine couplings to 2 nearly equivalent nitrogen atoms and 2 different protons, also consistent with trapping at C-2 of the imidazole ring. Free histidinyl radical consumed oxygen, implying peroxyl radical formation. MNP-inhibitable oxygen consumption was also observed when cuprous SOD but not cupric SOD was added to a H(2)O(2) solution. Formation of 2-oxohistidine, the stable product of the SOD-hydroperoxide reaction, required oxygen and was inhibited by MNP. These results support formation of a transient SOD-peroxyl radical.  相似文献   

18.
We here evaluate cataract formation in mice lacking the cytosolic copper-zinc superoxide dismutase (CuZn-SOD) in an in vitro model using irradiation with visible light and riboflavin as a photosensitizing agent. Isolated, cultured lenses from wild-type and CuZn-SOD-null mice were irradiated for 1.5 h by a daylight fluorescent light after preincubation with 10 microM riboflavin for 24 h. Cataract formation was evaluated daily with digital image analysis and ocular staging, and after 5 d 86Rb uptake and water contents of the lenses were determined. Basal superoxide concentrations in freshly isolated lenses from wild-type and CuZn-SOD-null mice were determined with lucigenin-derived chemiluminescense, and enzymatic activities of all three SOD isoenzymes in the murine lens were determined with a direct spectrophotometric method. The cytosolic CuZn-SOD accounts for 90% of the total SOD activity of the murine lens. CuZn-SOD-null lenses showed a doubled basal superoxide concentration, and were more prone to develop photochemical cataract in the present model with more opacification, more hydration, and less 86Rb uptake than lenses from wild-type mice. We conclude that CuZn-SOD is an important superoxide scavenger in the lens, and that it may have a protective role against cataract formation.  相似文献   

19.
20.
In evaluating the relative expression of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in vivo in states like Down syndrome in which one dismutase is present at increased levels, we measured activities of both enzymes, in tissues of control and transgenic mice constitutively expressing increased levels of CuZnSOD, during exposure to normal and elevated oxygen tensions. Using SOD gel electrophoresis assay, CuZnSOD and MnSOD activities of brain, lung, heart, kidney, and liver from mice exposed to either normal (21%) or elevated (>99% oxygen, 630 torr) oxygen tensions for 120 h were compared. Whereas CuZnSOD activity was elevated in tissues of transgenic relative to control mice under both normoxic or hyperoxic conditions, MnSOD activities in organs of transgenic mice were remarkably similar to those of controls under both conditions. To confirm the accuracy of this method in quantitating MnSOD relative to CuZnSOD expression, two other methods were utilized. In lung, which is the organ exposed to the highest oxygen tension during ambient hyperoxia, a sensitive, specific ELISA for MnSOD was used. Again, MnSOD protein was not different in transgenic relative to control mice during exposure to air or hyperoxia. In addition, lung MnSOD protein was not changed significantly by exposure to hyperoxia in either group. In kidney, a mitochondrion-rich organ, SOD assay, before and after inactivation of CuZnSOD with diethyldithiocarbamate, was used. MnSOD activity was not different in organs from air-exposed transgenic relative to control mice. The data indicated that expression of MnSOD in vivo was not affected by overexpression of the CuZnSOD and, therefore, the two enzymes are probably regulated independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号