首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T4 RNA ligase 1 (Rnl1) exemplifies an ATP-dependent RNA ligase family that includes fungal tRNA ligase (Trl1) and a putative baculovirus RNA ligase. Rnl1 acts via a covalent enzyme-AMP intermediate generated by attack of Lys-99 N zeta on the alpha phosphorus of ATP. Mutation of Lys-99 abolishes ligase activity. Here we tested the effects of alanine mutations at 19 conserved positions in Rnl1 and thereby identified 9 new residues essential for ligase activity: Arg-54, Lys-75, Phe-77, Gly-102, Lys-119, Glu-227, Gly-228, Lys-240, and Lys-242. Seven of the essential residues are located within counterparts of conserved nucleotidyltransferase motifs I (99KEDG102), Ia (118SK119), IV (227EGYVA231), and V (238HFKIK242) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligase 2. Three other essential residues, Arg-54, Lys-75 and Phe-77, are located upstream of the AMP attachment site within a conserved domain unique to the Rnl1-like ligase family. We infer a shared evolutionary history and active site architecture in Rnl1 (a tRNA repair enzyme) and Trl1 (a tRNA splicing enzyme). We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of Rnl1 adenylylation (step 1) and phosphodiester bond formation (step 3). Lys-75, Lys-240, and Lys-242 were found to be essential for step 1 and overall ligation of 5'-phosphorylated RNA but not for phosphodiester bond formation. These results suggest that the composition of the Rnl1 active site is different during steps 1 and 3. Mutations at Arg-54 and Lys-119 abolished the overall RNA ligation reaction without affecting steps 1 and 3. Arg-54 and Lys-119 are thereby implicated as specific catalysts of the RNA adenylation reaction (step 2) of the ligation pathway.  相似文献   

2.
Coliphage T4 Pnkp is a bifunctional polynucleotide 5'-kinase/3'-phosphatase that catalyzes the end-healing steps of a RNA repair pathway. Here we show that mycobacteriophages Omega and Cjw1 and vibriophage KVP40 also encode bifunctional Pnkp enzymes consisting of a proximal 5'-kinase module with an essential P-loop motif, GXGK(S/T), and a distal 3'-phosphatase module with an essential acyl-phosphatase motif, DX- DGT. Biochemical characterization of the viral Pnkp proteins reveals several shared features, including an alkaline pH optimum for the kinase component, an intrinsic RNA kinase activity, and a homotetrameric or homodimeric quaternary structure, that distinguish them from the monomeric DNA-specific phosphatase/kinase enzymes found in mammals and fission yeast. Whereas the phage 5'-kinases differ from each other in their preferences for phosphorylation of 5' overhangs, blunt ends, or recessed ends, none of them displays the preference for recessed ends reported for mammalian DNA kinase. We hypothesize that Pnkp provides phages that have it with a means to evade an RNA-damaging antiviral host response. Genetic complementation of the essential end-healing steps of yeast tRNA splicing by the Omega and Cjw1 Pnkp enzymes establishes their capacity to perform RNA repair reactions in vivo. A supportive correlation is that Omega and Cjw1, which are distinguished from other mycobacteriophages by their possession of a Pnkp enzyme, are also unique among the mycobacteriophages in their specification of putative RNA ligases.  相似文献   

3.
T4 polynucleotide kinase (Pnk) is the founding member of a family of 5'-kinase/3'-phosphatase enzymes that heal broken termini in RNA or DNA by converting 3'-PO(4)/5'-OH ends into 3'-OH/5'-PO(4) ends, which are then suitable for sealing by RNA or DNA ligases. Here we employed site-directed mutagenesis and biochemical methods to dissect the domain structure of the homotetrameric T4 Pnk protein and to localize essential constituents of the apparently separate active sites for the 5'-kinase and 3'-phosphatase activities. We characterized deletion mutants Pnk(42-301) and Pnk(1-181), which correspond to domains defined by proteolysis with chymotrypsin. Pnk(1-181) is a monomer with no 3'-phosphatase and low residual 5'-kinase activity. Pnk(42-301) is a dimer with no 5'-kinase and low residual 3'-phosphatase activity. Four classes of missense mutational effects were observed. (i) Mutations K15A, S16A, and D35A inactivated the 5'-kinase but did not affect the 3'-phosphatase or the tetrameric quaternary structure of T4 Pnk. 5'-kinase activity was ablated by the conservative mutations K15R, K15Q, and D35N; however, kinase activity was restored by the S16T change. (ii) Mutation D167A inactivated the 3'-phosphatase without affecting the 5'-kinase or tetramerization. (iii) Mutation D85A caused a severe decrement in 5'-kinase activity and only a modest effect on the 3'-phosphatase; the nearby N87A mutation resulted in a significantly reduced 3'-phosphatase activity and slightly reduced 5'-kinase activity. D85A and N87A both affected the quaternary structure, resulting in a mixed population of tetramer and dimer species. (iv) Alanine mutations at 11 other conserved positions had no significant effect on either 5'-kinase or 3'-phosphatase activity.  相似文献   

4.
T4 RNA ligase 1 (Rnl1) is a tRNA repair enzyme that circumvents an RNA-damaging host antiviral response. Whereas the three-step reaction scheme of Rnl1 is well established, the structural basis for catalysis has only recently been appreciated as mutational and crystallographic approaches have converged. Here we performed a structure-guided alanine scan of nine conserved residues, including side chains that either contact the ATP substrate via adenine (Leu179, Val230), the 2'-OH (Glu159), or the gamma phosphate (Tyr37) or coordinate divalent metal ions at the ATP alpha phosphate (Glu159, Tyr246) or beta phosphate (Asp272, Asp273). We thereby identified Glu159 and Tyr246 as essential for RNA sealing activity in vitro and for tRNA repair in vivo. Structure-activity relationships at Glu159 and Tyr246 were clarified by conservative substitutions. Eliminating the phosphate-binding Tyr37, and the magnesium-binding Asp272 and Asp273 side chains had little impact on sealing activity in vitro or in vivo, signifying that not all atomic interactions in the active site are critical for function. Analysis of mutational effects on individual steps of the ligation pathway underscored how different functional groups come into play during the ligase-adenylylation reaction versus the subsequent steps of RNA-adenylylation and phosphodiester formation. Moreover, the requirements for sealing exogenous preformed RNA-adenylate are more stringent than are those for sealing the RNA-adenylate intermediate formed in situ during ligation of a 5'-PO4 RNA.  相似文献   

5.
T4 RNA ligase 2 (Rnl2) exemplifies an RNA ligase family that includes the RNA editing ligases (RELs) of Trypanosoma and Leishmania. The Rnl2/REL enzymes are defined by essential signature residues and a unique C-terminal domain, which we show is essential for sealing of 3'-OH and 5'-PO4 RNA ends by Rnl2, but not for ligase adenylation or phosphodiester bond formation at a preadenylated AppRNA end. The N-terminal segment Rnl2(1-249) of the 334 aa Rnl2 protein comprises an autonomous adenylyltransferase/AppRNA ligase domain. We report the 1.9 A crystal structure of the ligase domain with AMP bound at the active site, which reveals a shared fold, catalytic mechanism, and evolutionary history for RNA ligases, DNA ligases, and mRNA capping enzymes.  相似文献   

6.
T4 RNA ligase 1 (Rnl1) is a tRNA repair enzyme that thwarts a tRNA-damaging host response to virus infection. The 374-aa Rnl1 protein consists of an N-terminal nucleotidyltransferase domain fused to a unique C-terminal domain composed of 10 alpha helices. We exploited an in vitro tRNA splicing system to demonstrate that Rnl1 has an inherent specificity for sealing tRNA with a break in the anticodon loop. The tRNA specificity is imparted by the C domain, any deletion of which caused the broken tRNA to be sealed as poorly as the linear intron in vitro and also abolished Rnl1 tRNA splicing activity in vivo. Deletion analysis demarcated Rnl1-(1-254) as a minimal catalytic domain of Rnl1, capable of all chemical steps of the nonspecific RNA ligation reaction. Alanine scanning of the N domain identified Ser103, Leu104, Lys117, and Ser118 as important for pRNA ligation in vitro and tRNA repair in vivo.  相似文献   

7.
Here we report that bacteriophage T4 RNA ligase 2 (Rnl2) is an efficient catalyst of RNA ligation at a 3'-OH/5'-PO(4) nick in a double-stranded RNA or an RNA.DNA hybrid. The critical role of the template strand in approximating the reactive 3'-OH and 5'-PO(4) termini is underscored by the drastic reductions in the RNA-sealing activity of Rnl2 when the duplex substrates contain gaps or flaps instead of nicks. RNA nick joining requires ATP and a divalent cation cofactor (either Mg or Mn). Neither dATP, GTP, CTP, nor UTP can substitute for ATP. We identify by alanine scanning seven functionally important amino acids (Tyr-5, Arg-33, Lys-54, Gln-106, Asp-135, Arg-155, and Ser-170) within the N-terminal nucleotidyl-transferase domain of Rnl2 and impute specific roles for these residues based on the crystal structure of the AMP-bound enzyme. Mutational analysis of 14 conserved residues in the C-terminal domain of Rnl2 identifies 3 amino acids (Arg-266, Asp-292, and Glu-296) as essential for ligase activity. Our findings consolidate the evolutionary connections between bacteriophage Rnl2 and the RNA-editing ligases of kinetoplastid protozoa.  相似文献   

8.
T4 RNA ligase 2 (Rnl2) efficiently seals 3'-OH/5'-PO4 RNA nicks via three nucleotidyl transfer steps. Here we show that the terminal 3'-OH at the nick accelerates the second step of the ligase pathway (adenylylation of the 5'-PO4 strand) by a factor of 1000, even though the 3'-OH is not chemically transformed during the reaction. Also, the terminal 2'-OH at the nick accelerates the third step (attack of the 3'-OH on the 5'-adenylated strand to form a phosphodiester) by a factor of 25-35, even though the 2'-OH is not chemically reactive. His-37 of Rnl2 is uniquely required for step 3, providing a approximately 10(2) rate acceleration. Biochemical epistasis experiments show that His-37 and the RNA 2'-OH act independently. We conclude that the broken RNA end promotes catalysis of its own repair by Rnl2 via two mechanisms, one of which (enhancement of step 3 by the 2'-OH) is specific to RNA ligation. Substrate-assisted catalysis provides a potential biochemical checkpoint during nucleic acid repair.  相似文献   

9.
Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.  相似文献   

10.
Mammalian polynucleotide kinase (PNK) is a key component of both the base excision repair (BER) and nonhomologous end-joining (NHEJ) DNA repair pathways. PNK acts as a 5'-kinase/3'-phosphatase to create 5'-phosphate/3'-hydroxyl termini, which are a necessary prerequisite for ligation during repair. PNK is recruited to repair complexes through interactions between its N-terminal FHA domain and phosphorylated components of either pathway. Here, we describe the crystal structure of intact mammalian PNK and a structure of the PNK FHA bound to a cognate phosphopeptide. The kinase domain has a broad substrate binding pocket, which preferentially recognizes double-stranded substrates with recessed 5' termini. In contrast, the phosphatase domain efficiently dephosphorylates single-stranded 3'-phospho termini as well as double-stranded substrates. The FHA domain is linked to the kinase/phosphatase catalytic domain by a flexible tether, and it exhibits a mode of target selection based on electrostatic complementarity between the binding surface and the phosphothreonine peptide.  相似文献   

11.
DNA ligase D (LigD) catalyzes end-healing and end-sealing steps during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal 3'-phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at a duplex primer-template with a short 3'-ribonucleotide tract. The phosphodiesterase, which cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus, requires the vicinal 2'-OH of the penultimate ribose. The phosphomonoesterase converts the terminal ribonucleoside 3'-PO4 to a 3'-OH. Here we show that the PE domain has a 3'-phosphatase activity on an all-DNA primer-template, signifying that the phosphomonoesterase reaction does not depend on a 2'-OH. The distinctions between the phosphodiesterase and phosphomonoesterase activities are underscored by the results of alanine-scanning, limited proteolysis, and deletion analysis, which show that the two reactions depend on overlapping but nonidentical ensembles of protein functional groups, including: (i) side chains essential for both ribonuclease and phosphatase activity (His-42, His-48, Asp-50, Arg-52, His-84, and Tyr-88); (ii) side chains important for 3'-phosphatase activity but not for 3' ribonucleoside removal (Arg-14, Asp-15, Glu-21, Gln-40, and Glu-82); and (iii) side chains required selectively for the 3'-ribonuclease (Lys-66 and Arg-76). These constellations of critical residues are unique to LigD-like proteins, which we propose comprise a new bifunctional phosphoesterase family.  相似文献   

12.
RNA ligase type 1 from bacteriophage T4 (Rnl1) is involved in countering a host defense mechanism by repairing 5'-PO4 and 3'-OH groups in tRNA(Lys). Rnl1 is widely used as a reagent in molecular biology. Although many structures for DNA ligases are available, only fragments of RNA ligases such as Rnl2 are known. We report the first crystal structure of a complete RNA ligase, Rnl1, in complex with adenosine 5'-(alpha,beta-methylenetriphosphate) (AMPcPP). The N-terminal domain is related to the equivalent region of DNA ligases and Rnl2 and binds AMPcPP but with further interactions from the additional N-terminal 70 amino acids in Rnl1 (via Tyr37 and Arg54) and the C-terminal domain (Gly269 and Asp272). The active site contains two metal ions, consistent with the two-magnesium ion catalytic mechanism. The C-terminal domain represents a new all alpha-helical fold and has a charge distribution and architecture for helix-nucleic acid groove interaction compatible with tRNA binding.  相似文献   

13.
The genome of bacteriophage T4 encodes three polynucleotide ligases, which seal the backbone of nucleic acids during infection of host bacteria. The T4Dnl (T4 DNA ligase) and two RNA ligases [T4Rnl1 (T4 RNA ligase 1) and T4Rnl2] join a diverse array of substrates, including nicks that are present in double-stranded nucleic acids, albeit with different efficiencies. To unravel the biochemical and functional relationship between these proteins, a systematic analysis of their substrate specificity was performed using recombinant proteins. The ability of each protein to ligate 20 bp double-stranded oligonucleotides containing a single-strand break was determined. Between 4 and 37 degrees C, all proteins ligated substrates containing various combinations of DNA and RNA. The RNA ligases ligated a more diverse set of substrates than T4Dnl and, generally, T4Rnl1 had 50-1000-fold lower activity than T4Rnl2. In assays using identical conditions, optimal ligation of all substrates was at pH 8 for T4Dnl and T4Rnl1 and pH 7 for T4Rnl2, demonstrating that the protein dictates the pH optimum for ligation. All proteins ligated a substrate containing DNA as the unbroken strand, with the nucleotides at the nick of the broken strand being RNA at the 3'-hydroxy group and DNA at the 5'-phosphate. Since this RNA-DNA hybrid was joined at a similar maximal rate by T4Dnl and T4Rnl2 at 37 degrees C, we consider the possibility that this could be an unexpected physiological substrate used during some pathways of 'DNA repair'.  相似文献   

14.
Structure-function analysis of yeast tRNA ligase   总被引:2,自引:1,他引:1  
Trl 1 is an essential 827-amino-acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two catalytic domains--an N-terminal adenylyltransferase/ligase component (amino acids 1-388) and a C-terminal 5'-kinase/cyclic phosphodiesterase component (amino acids 389-827)--that can function in tRNA splicing in vivo when expressed as separate polypeptides. Sedimentation analysis indicates that the ligase and kinase/CPD domains are monomeric proteins that do not form a stable complex in trans. To understand the structural requirements for the RNA ligase component, we performed a mutational analysis of amino acids that are conserved in Trl1 homologs from other fungi. Alanine scanning identified 23 new residues as essential for Trl1-(1-388) activity in vivo. Structure-activity relationships at these positions, and four essential residues defined previously, were clarified by introducing 50 different conservative substitutions. Lethal mutations of Lys114, Glu184, Glu266, and Lys284 abolished Trl1 adenylyltransferase activity in vitro. The essential elements embrace (1) putative equivalents of nucleotidyltransferase motifs I, Ia, III, IV, and V found in DNA ligases, T4 RNA ligase 2, and mRNA capping enzymes; (2) an N-terminal segment shared with the T4 RNA ligase 1 subfamily only; and (3) a constellation of conserved residues specific to fungal tRNA splicing enzymes. We identify yeastlike tRNA ligases in the proteomes of Leishmania and Trypanosoma. These findings recommend tRNA ligase as a target for antifungal and antiprotozoal drug discovery.  相似文献   

15.
An ATP-dependent RNA ligase from Methanobacterium thermoautotrophicum (MthRnl) catalyzes intramolecular ligation of single-stranded RNA to form a closed circular RNA via covalent ligase-AMP and RNA-adenylylate intermediate. Here, we report the X-ray crystal structures of an MthRnl•ATP complex as well as the covalent MthRnl–AMP intermediate. We also performed structure-guided mutational analysis to survey the functions of 36 residues in three component steps of the ligation pathway including ligase-adenylylation (step 1), RNA adenylylation (step 2) and phosphodiester bond synthesis (step 3). Kinetic analysis underscored the importance of motif 1a loop structure in promoting phosphodiester bond synthesis. Alanine substitutions of Thr117 or Arg118 favor the reverse step 2 reaction to deadenylate the 5′-AMP from the RNA-adenylate, thereby inhibiting step 3 reaction. Tyr159, Phe281 and Glu285, which are conserved among archaeal ATP-dependent RNA ligases and are situated on the surface of the enzyme, are required for RNA binding. We propose an RNA binding interface of the MthRnl based on the mutational studies and two sulfate ions that co-crystallized at the active site cleft in the MthRnl–AMP complex.  相似文献   

16.
Wang LK  Lima CD  Shuman S 《The EMBO journal》2002,21(14):3873-3880
T4 polynucleotide kinase (Pnk), in addition to being an invaluable research tool, exemplifies a family of bifunctional enzymes with 5'-kinase and 3'-phosphatase activities that play key roles in RNA and DNA repair. T4 Pnk is a homotetramer composed of a C-terminal phosphatase domain and an N-terminal kinase domain. The 2.0 A crystal structure of the isolated kinase domain highlights a tunnel-like active site through the heart of the enzyme, with an entrance on the 5' OH acceptor side that can accommodate a single-stranded polynucleotide. The active site is composed of essential side chains that coordinate the beta phosphate of the NTP donor and the 3' phosphate of the 5' OH acceptor, plus a putative general acid that activates the 5' OH. The structure rationalizes the different specificities of T4 and eukaryotic Pnk and suggests a model for the assembly of the tetramer.  相似文献   

17.
Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a polynucleotide ligase family that includes the trypanosome RNA-editing ligases and putative RNA ligases encoded by eukaryotic viruses and archaea. Here we analyzed 12 individual amino acids of Rnl2 that were identified by alanine scanning as essential for strand joining. We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of ligase adenylylation and phosphodiester bond formation. The essential residues of Rnl2 are located within conserved motifs that define a superfamily of nucleotidyl transferases that act via enzyme-(lysyl-N)-NMP intermediates. Our mutagenesis results underscore a shared active site architecture in Rnl2-like ligases, DNA ligases, and mRNA capping enzymes. They also highlight two essential signature residues, Glu(34) and Asn(40), that flank the active site lysine nucleophile (Lys(35)) and are unique to the Rnl2-like ligase family.  相似文献   

18.
Yeast and plant tRNA splicing entails discrete healing and sealing steps catalyzed by a tRNA ligase that converts the 2',3' cyclic phosphate and 5'-OH termini of the broken tRNA exons to 3'-OH/2'-PO4 and 5'-PO4 ends, respectively, then joins the ends to yield a 2'-PO4, 3'-5' phosphodiester splice junction. The junction 2'-PO4 is removed by a tRNA phosphotransferase, Tpt1. Animal cells have two potential tRNA repair pathways: a yeast-like system plus a distinctive mechanism, also present in archaea, in which the 2',3' cyclic phosphate and 5'-OH termini are ligated directly. Here we report that a mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can perform the essential 3' end-healing steps of tRNA splicing in yeast and thereby complement growth of strains bearing lethal or temperature-sensitive mutations in the tRNA ligase 3' end-healing domain. Although this is the first evidence of an RNA processing function in vivo for the mammalian CNP protein, it seems unlikely that the yeast-like pathway is responsible for animal tRNA splicing, insofar as neither CNP nor Tpt1 is essential in mice.  相似文献   

19.
ATP- and NAD(+)-dependent DNA ligases, ATP-dependent RNA ligases and GTP-dependent mRNA capping enzymes comprise a superfamily of proteins that catalyze nucleotidyl transfer to polynucleotide 5' ends via covalent enzyme-(lysyl-N)-NMP intermediates. The superfamily is defined by five peptide motifs that line the nucleotide-binding pocket and contribute amino acid sidechains essential for catalysis. Early crystal structures revealed a shared core tertiary structure for DNA ligases and capping enzymes, which are composed minimally of a nucleotidyltransferase domain fused to a distal OB-fold domain. Recent structures of viral and bacterial DNA ligases, and a fungal mRNA capping enzyme underscore how the substrate-binding and chemical steps of the ligation and capping pathways are coordinated with large rearrangements of the component protein domains and with remodeling of the atomic contacts between the enzyme and the nucleotide at the active site. The first crystal structure of an RNA ligase suggests that contemporary DNA ligases, RNA ligases and RNA capping enzymes evolved by fusion of ancillary effector domains to an ancestral catalytic module involved in RNA repair.  相似文献   

20.
Mammalian polynucleotide kinase 3' phosphatase (PNK) plays a key role in the repair of DNA damage, functioning as part of both the nonhomologous end-joining (NHEJ) and base excision repair (BER) pathways. Through its two catalytic activities, PNK ensures that DNA termini are compatible with extension and ligation by either removing 3'-phosphates from, or by phosphorylating 5'-hydroxyl groups on, the ribose sugar of the DNA backbone. We have now determined crystal structures of murine PNK with DNA molecules bound to both of its active sites. The structure of ssDNA engaged with the 3'-phosphatase domain suggests a mechanism of substrate interaction that assists DNA end seeking. The structure of dsDNA bound to the 5'-kinase domain reveals a mechanism of DNA bending that facilitates recognition of DNA ends in the context of single-strand and double-strand breaks and suggests a close functional cooperation in substrate recognition between the kinase and phosphatase active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号