首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
N J Gay  J E Walker 《The EMBO journal》1985,4(13A):3519-3524
Two cDNAs encoding different precursor proteins of the same mature proteolipid subunit of mitochondrial ATP synthase have been cloned from a bovine cDNA library. The hybridisation probe was a mixture of 17-mer oligonucleotides containing 256 discrete sequences. The coding sequences of the two cDNAs differ in 25 silent positions of codons and the 3' non-coding sequences are only weakly related. The precursor sequences, which direct the import of the proteolipid into the mitochondrion, are 61 and 68 amino acids long. They are related to each other in regions which probably are recognition signals for the processing protease. The corresponding genes are expressed differently in various tissues in a way that reflects their embryonic origin.  相似文献   

3.
4.
A full length cDNA clone of the alpha subunit of mitochondrial ATP synthase (EC 3.6.1.34) has been isolated from a cDNA library prepared from LX-1 human tumor cells in the lambda-Zap vector. The clone is 1883 base pairs (bp) in length and contains a 1659 bp open reading frame encoding a polypeptide of 553 residues. The deduced amino acid sequence is highly homologous to ATP synthase from several other species.  相似文献   

5.
A Viebrock  A Perz    W Sebald 《The EMBO journal》1982,1(5):565-571
The proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa is an extremely hydrophobic protein of 81 amino acid residues, which is imported into mitochondria as a precursor of mol. wt. 15 000. The primary structure of the imported form has now been determined by isolating and analyzing cDNA clones of the preproteolipid mRNA. An initial cDNA clone was identified by hybridizing total polyadenylated RNA to pooled cDNA recombinant plasmids from an ordered clone bank and subsequent cell-free translation of hybridization-selected mRNA. Further preproteolipid clones were identified at a frequency of 0.2% by colony filter hybridization. One isolated cDNA represented the major part of the preproteolipid mRNA. The nucleotide sequence showed 243 bases corresponding to the mature proteolipid and, in addition, 178 bases coding for an amino-terminal presequence . Non-coding sequences of 48 bases at the 5' end and of 358 bases at the 3' end plus a poly(A) tail were determined. The long presequence of 66 amino acids is very polar, in contrast to the lipophilic mature proteolipid, and includes 12 basic and no acidic side chains. It is suggested that the presequence is specifically designed to solubilize the proteolipid for post-translational import into the mitochondria.  相似文献   

6.
Two hydrophobic proteins have been purified to homogeneity from a mixture of about 13 proteins that are extracted from bovine mitochondria with a chloroform:methanol mixture. Sequence analysis shows that the smaller is a protein of 66 amino acids and is the product of a mitochondrial gene, A6L. The larger, a protein of 226 amino acids, is ATPase-6, a membrane component of ATP synthase, also encoded in mitochondrial DNA. The protein sequences determined establish that the genes for the two proteins overlap by 40 bases and indicate that translation of the second gene, ATPase-6, is initiated within the coding region of A6L. The A6L and the ATPase-6 proteins have also been isolated from the ATP synthase complex and so appear to be bona fide components of the enzyme. The function of A6L is unknown. However, weak structural homology suggests a functional similarity to the yeast mitochondrial protein, aapI, which is required for assembly of the fungal ATP synthase complex. Homologies between ATPase-6 and subunit a of the Escherichia coli ATP synthase complex indicate that the ATPase-6 protein has a similar role in the mitochondrial complex to its bacterial counterpart, being essential for the formation of an active proton channel.  相似文献   

7.
M Boutry  N H Chua 《The EMBO journal》1985,4(9):2159-2165
The beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia is encoded by two nuclear genes, atp2-1 and atp2-2, which are both expressed. The complete nucleotide sequence of atp2-1 has been determined. It contains eight introns ranging from 88 to 1453 bp. The last intron contains a putative insertion element (Inp), of 812 bp bordered by 35-bp inverted repeats which share an 11-bp homology with Agrobacterium tumefaciens T-DNA borders. Sequences homologous to Inp are present in multiple copies in the N. plumbaginifolia and the N. tabacum genome but not in more distant species. The atp2-1 encoded polypeptide is highly homologous to beta subunits from other ATP synthases but it contains an extension at the N terminus which is probably involved in mitochondrial targeting. A sequence homology between exon 4 of atp2-1 and exon 1 of the human ras genes suggests a common ancestral origin for these exons.  相似文献   

8.
The mitochondrially translated product called subunit 6 was extracted from the yeast Candida parapsilosis mitochondria using an organic solvent mixture and purified by reverse-phase HPLC. The partial N-terminal sequence of subunit 6 reveals a post-translational cleavage site as in Saccharomyces cerevisiae. The structural mitochondrial gene ATP6 was isolated form a mitochondrial DNA library using the oligonucleotide probe procedure. The gene and the surrounding regions were cloned into M13tg130 and M13tg131 phage vectors. The insert contained an open reading frame 738-bp encoding a 246-amino-acid polypeptide. Mature subunit 6 contains 243 amino acid residues and the predicted molecular mass is 26,511 Da. The subunit shows 52% similarity with ATP synthase subunit 6 of the yeast S. cerevisiae. Comparison between protein and DNA sequences shows that the CUN codon family codes for a leucine in C. parapsilosis mitochondria.  相似文献   

9.
We investigated the biochemical phenotype of the mtDNA T8993G point mutation in the ATPase 6 gene, associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in three patients from two unrelated families. All three carried >80% mutant genome in platelets and were manifesting clinically various degrees of the NARP phenotype. Coupled submitochondrial particles prepared from platelets capable of succinate-sustained ATP synthesis were studied using very sensitive and rapid luminometric and fluorescence methods. A sharp decrease (>95%) in the succinate-sustained ATP synthesis rate of the particles was found, but both the ATP hydrolysis rate and ATP-driven proton translocation (when the protons flow from the matrix to the cytosol) were minimally affected. The T8993G mutation changes the highly conserved residue Leu(156) to Arg in the ATPase 6 subunit (subunit a). This subunit, together with subunit c, is thought to cooperatively catalyze proton translocation and rotate, one with respect to the other, during the catalytic cycle of the F(1)F(0) complex. Our results suggest that the T8993G mutation induces a structural defect in human F(1)F(0)-ATPase that causes a severe impairment of ATP synthesis. This is possibly due to a defect in either the vectorial proton transport from the cytosol to the mitochondrial matrix or the coupling of proton flow through F(0) to ATP synthesis in F(1). Whatever mechanism is involved, this leads to impaired ATP synthesis. On the other hand, ATP hydrolysis that involves proton flow from the matrix to the cytosol is essentially unaffected.  相似文献   

10.
11.
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F(1)-ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.  相似文献   

12.
The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis.  相似文献   

13.
14.
Chemical synthesis of highly hydrophobic peptides and proteins remains a challenging problem. Strong interchain associations within the peptide–resin matrix have to be overcome. A synthetic strategy for solid phase peptide synthesis is proposed, mainly based on prolonged coupling time using aprotic polar solvent mixtures. A tailored chromatographic purification was required to obtain a sample sufficiently pure for structural analysis. In this work, the total chemical synthesis of the membrane‐embedded yeast mitochondrial ATP synthase subunit 8 is described. The quality of the synthetic protein was checked by electrospray mass spectrometry, its tendency to adopt α‐helical secondary structure is evidenced by circular dichroism spectroscopy. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Batten Disease is a lysosomal storage disease in which the major component that accumulates is subunit 9 of mitochondrial ATP synthase. Whether or not fibroblasts in culture exhibit this phenotype is controversial. We show that fibroblasts from a human Batten Disease patient and from a mouse model of this disease exhibit autofluorescent inclusion bodies. We also demonstrate that levels of ATP synthase subunit 9 are elevated in these diseased fibroblasts when compared to control cells. However, the exact growth state of the human fibroblasts was critical, and this factor probably accounts for discrepencies in the literature.  相似文献   

16.
Atp6p is an essential subunit of the ATP synthase proton translocating domain, which is encoded by the mitochondrial DNA (mtDNA) in yeast. We have replaced the coding sequence of Atp6p gene with the non-respiratory genetic marker ARG8m. Due to the presence of ARG8m, accumulation of rho-/rho0 petites issued from large deletions in mtDNA could be restricted to 20-30% by growing the atp6 mutant in media lacking arginine. This moderate mtDNA instability created favorable conditions to investigate the consequences of a specific lack in Atp6p. Interestingly, in addition to the expected loss of ATP synthase activity, the cytochrome c oxidase respiratory enzyme steady-state level was found to be extremely low (<5%) in the atp6 mutant. We show that the cytochrome c oxidase-poor accumulation was caused by a failure in the synthesis of one of its mtDNA-encoded subunits, Cox1p, indicating that, in yeast mitochondria, Cox1p synthesis is a key target for cytochrome c oxidase abundance regulation in relation to the ATP synthase activity. We provide direct evidence showing that in the absence of Atp6p the remaining subunits of the ATP synthase can still assemble. Mitochondrial cristae were detected in the atp6 mutant, showing that neither Atp6p nor the ATP synthase activity is critical for their formation. However, the atp6 mutant exhibited unusual mitochondrial structure and distribution anomalies, presumably caused by a strong delay in inner membrane fusion.  相似文献   

17.
Unlike most organisms, the mitochondrial DNA (mtDNA) of Chlamydomonas reinhardtii, a green alga, does not encode subunit 6 of F(0)F(1)-ATP synthase. We hypothesized that C. reinhardtii ATPase 6 is nucleus encoded and identified cDNAs and a single-copy nuclear gene specifying this subunit (CrATP6, with eight exons, four of which encode a mitochondrial targeting signal). Although the algal and human ATP6 genes are in different subcellular compartments and the encoded polypeptides are highly diverged, their secondary structures are remarkably similar. When CrATP6 was expressed in human cells, a significant amount of the precursor polypeptide was targeted to mitochondria, the mitochondrial targeting signal was cleaved within the organelle, and the mature polypeptide was assembled into human ATP synthase. In spite of the evolutionary distance between algae and mammals, C. reinhardtii ATPase 6 functioned in human cells, because deficiencies in both cell viability and ATP synthesis in transmitochondrial cell lines harboring a pathogenic mutation in the human mtDNA-encoded ATP6 gene were overcome by expression of CrATP6. The ability to express a nucleus-encoded version of a mammalian mtDNA-encoded protein may provide a way to import other highly hydrophobic proteins into mitochondria and could serve as the basis for a gene therapy approach to treat human mitochondrial diseases.  相似文献   

18.
We have amplified and characterized partial regions of exons 2 and 3 of the bovine BCL2L1 gene, one of the anti-apoptotic members of the B-cell lymphoma 2 gene family. Cloning and sequencing of the amplified products revealed the existence of several BCL2L1-related sequences, including the bovine BCL2L1 gene and various processed pseudogenes. The bovine BCL2L1 gene revealed two polymorphic nucleotide sequences that resulted in two protein variants, with amino acid replacements at positions 60 and 69. In addition, we report three bovine BCL2L1-related sequences (BCL2L1psi) that probably correspond to intronless processed pseudogenes. These BCL2L1psi pseudogene sequences have accumulated multiple substitutions, deletions and insertions that translated into stop codons or changed the open reading frame of the functional gene. We provide evidence suggesting that the retro-transposition event that originated these processed pseudogenes took place before the divergence of the Cervidae and Bovidae families.  相似文献   

19.
A yeast genomic library in the bacteriophage expression vector lambda gt11 was screened with a polyclonal anti-holo-ATPase antiserum resulting in the isolation of 54 immunoreactive clones. Four of these phage clones express in bacteria a polypeptide antigenically related to an 18 kDa subunit (P18) of the yeast mitochondrial ATPase complex. Molecular analysis of the yeast DNA inserts in these phage clones revealed two classes of yeast DNA that share little homology at the nucleotide sequence level and therefore may represent distinct separate genes. The polypeptides potentially encoded by these yeast DNA segments do show scattered short blocks of strong amino acid sequence homology, which may underlie the observed immunochemical relatedness between the proteins expressed in bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号