首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Fetal alcohol syndrome produces defects that parallel abnormalities associated with early iron deficiency. Hence, we examined the effects of prenatal exposure to ethanol on iron, transferrin, and ferritin concentrations. The subjects were the offspring of pregnant rats fed an ethanol-containing diet (Et), pair-fed an isocaloric control diet (Ct), or fed chow and water. The amounts of iron, transferrin, and ferritin were assessed in three CNS regions (cerebral cortex, subcortical forebrain, and brain-stem). In all three segments of the control rats, iron, transferrin, and ferritin levels decreased during the first 2 postnatal weeks, reached a minimum during week 3, and then rose to adult levels. This pattern was delayed by ethanol treatment, e.g., the minimal concentrations in iron, transferrin, and ferritin in the Et-treated rats were achieved later (3 days, 7 days, and 2 weeks, respectively) than they were in the Ct-treated rats. Ethanol-induced alterations in iron homeostasis persisted into adulthood; iron concentration was reduced, transferrin concentration was unaffected, and ferritin concentration was increased. The net result was that the timely delivery and bioavailability of iron were compromised by ethanol exposure. The defects in iron regulation are permanent and may underlie ethanol-induced abnormalities in iron-dependent growth processes such as myelination.  相似文献   

2.
Intermittent hypobaric hypoxia can produce a protective effect on both the nervous system and non-nervous system tissues. Intermittent hypobaric hypoxia preconditioning has been shown to protect rats from cardiac ischemia-reperfusion injury by decreasing cardiac iron levels and reactive oxygen species (ROS) production, thereby decreasing oxidative stress to achieve protection. However, the specific mechanism underlying the protective effect of hypobaric hypoxia is unclear. To shed light on this phenomenon, we subjected Sprague-Dawley rats to hypobaric hypoxic preconditioning (8 hours/day). The treatment was continued for 4 weeks. We then measured the iron content in the heart, liver, spleen, and kidney. The iron levels in all of the assessed tissues decreased significantly after hypobaric hypoxia treatment, corroborating previous results that hypobaric hypoxia may produce its protective effect by decreasing ROS production by limiting the levels of catalytic iron in the tissue. We next assessed the expression levels of several proteins involved in iron metabolism (transferrin receptor, L-ferritin, and ferroportin1 [FPN1]). The increased transferrin receptor and decreased L-ferritin levels after hypobaric hypoxia were indicative of a low-iron phenotype, while FPN1 levels remained unchanged. We also examined hepcidin, transmembrane serine proteases 6 (TMPRSS6), erythroferrone (ERFE), and erythropoietin (EPO) levels, all of which play a role in the regulation of systemic iron metabolism. The expression of hepcidin decreased significantly after hypobaric hypoxia treatment, whereas the expression of TMPRSS6 and ERFE and EPO increased sharply. Finally, we measured serum iron and total iron binding capacity in the serum, as well as red blood cell count, mean corpuscular volume, hematocrit, red blood cell distribution width SD, and red blood cell distribution width CV. As expected, all of these values increased after the hypobaric hypoxia treatment. Taken together, our results show that hypobaric hypoxia can stimulate erythropoiesis, which systemically draws iron away from nonhematopoietic tissue through decreased hepcidin levels.  相似文献   

3.
Both maternal glucocorticoid administration and maternal dietary protein or food restriction in pregnancy cause fewer nephrons and hypertension in the adult offspring. The purpose of these studies was to determine the extent to which nutritional factors contribute to programming of offspring hypertension by maternal glucocorticoids. Pregnant rats were treated with dexamethasone (100 microg x kg(-1) x d(-1) sc) on days 1-10 (ED) or days 15-20 (LD) of pregnancy. Additional groups of pregnant animals were pair fed to the early (EDPF) and late (LDPF) dexamethasone-treated groups, and another group was untreated or given vehicle (C). The dams treated with dexamethasone reduced their food intake and lost or failed to gain a normal amount of weight during treatment; body weights of ED dams caught up to normal after the treatment period, whereas those of LD dams did not. In adulthood ( approximately 21 wks), chronically instrumented male offspring of ED had normal blood pressures (125 +/- 2 mmHg vs. 126 +/- 1 mmHg in C), whereas LD offspring were hypertensive (136 +/- 3 mmHg). However, LDPF offspring were equally hypertensive (134 +/- 2 mmHg). Glomerular filtration rates normalized to body weight were not significantly different among groups. Qualitatively similar results were found in female offspring. Thus the long-term effects of maternal glucocorticoid administration at this dose on offspring's blood pressure may, in large part, be accounted for by the reduction in maternal food intake. These data suggest that maternal glucocorticoids and maternal food or protein restriction may, at least in part, share a common mechanism in programming offspring for hypertension. The window of sensitivity of future offspring blood pressure to either maternal insult coincides with nephrogenesis in the rat, suggesting that impaired renal development could play an important role in this programming.  相似文献   

4.
Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life. In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge. Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization. We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth. However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age. This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy. The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.  相似文献   

5.
We have previously reported that resistance exercise improved the iron status in iron-deficient rats. The current study investigated the mechanisms underlying this exercise-related effect. Male 4-week-old rats were divided into a group sacrificed at the start (week 0) (n?=?7), a group maintained sedentary for 6 weeks (S) or a group that performed exercise for 6 weeks (E), and all rats in the latter groups were fed an iron-deficient diet (12 mg iron/kg) for 6 weeks. The rats in the E group performed climbing exercise (5 min?×?6 sets/day, 3 days/week). Compared to the week 0 rats, the rats in the S and E groups showed lower tissue iron content, and the hematocrit, hemoglobin, plasma iron, and transferrin saturation values were all low. However, the tissue iron content and blood iron status parameters, and the whole body iron content measured using the whole body homogenates of the rats, did not differ between the S group and the E group. The messenger RNA (mRNA) expression levels of hepcidin, duodenal cytochrome b, divalent metal transporter 1, and ferroportin 1 did not differ between the S group and the E group. The apparent absorption of iron was significantly lower in the E group than in the S group. Therefore, it was concluded that resistance exercise decreases iron absorption, whereas the whole body iron content is not affected, and an increase in iron recycling in the body seems to be responsible for this effect.  相似文献   

6.
Summary Iron is essential for tumor cell growth. Previous studies have demonstrated that apart from transferrin-bound iron uptake, mammalian cells also possess a transport system capable of efficiently obtaining iron from small molecular weight iron chelates (Sturrock et al., 1990). In the present study, we have examined the ability of tumor cells to grow in the presence of low molecular weight iron chelates of citrate. In chemically defined serum-free medium, most human tumor cell lines required either transferrin (5 μg/ml) or a higher concentration of ferric citrate (500 μM) as an iron source. However, we have also found that from 13 human cell lines tested, 4 were capable of long-term growth in transferrin-free medium with a substantially lower concentration of ferric citrate (5 μM). When grown in medium containing transferrin, both regular and low-iron dependent cell lines use transferrin-bound iron. Growth of both cell types in transferrin medium was inhibited to a certain degree by monoclonal antibody 42/6, which specifically blocks the binding of transferrin to the transferrin receptor. On the contrary, growth of low-iron dependent cell lines in transferrin-free, low-iron medium (5 μM ferric citrate) could not be inhibited by monoclonal antibody 42/6. Furthermore, no autocrine production of transferrin was observed. Low-iron dependent cell lines still remain sensitive to iron depletion as the iron(III) chelator, desferrioxamine, inhibited their growth. We conclude that low-iron dependent tumor cells in transferrin-free, low-iron medium may employ a previously unknown mechanism for uptake of non-transferrin-bound iron that allows them to efficiently use low concentrations of ferric citrate as an iron source. The results are discussed in the context of alternative iron uptake mechanisms to the well-characterized receptor-mediated endocytosis process.  相似文献   

7.

Background

Prenatal malnutrition can affect the phenotype of offspring by changing epigenetic regulation of specific genes. Several lines of evidence demonstrate that calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. We hypothesized that pregnant female rats fed a Ca-deficient diet would have offspring with altered hepatic glucocorticoid-related gene expression and that lactation would modify these alterations.

Methodology

We determined the effects of Ca deficiency during pregnancy and/or lactation on hepatic 11β-hydroxysteroid dehydrogenase-1 (Hsd11b1) expression in offspring. Female Wistar rats consumed either a Ca-deficient (D: 0.008% Ca) or control (C: 0.90% Ca) diet ad libitum from 3 weeks preconception to 21 days postparturition. On postnatal day 1, pups were cross-fostered to the same or opposite dams and divided into the following four groups: CC, DD, CD, and DC (first letter: original mother''s diet; second letter: nursing mother''s diet). All offspring were fed a control diet beginning at weaning (day 21) and were killed on day 200±7. Serum insulin and adipokines in offspring were measured using ELISA kits.

Principal Findings

In males, mean levels of insulin, glucose, and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) were higher in the DD and DC groups than in the CC group. We found no difference in HOMA-IR between the CC and CD groups in either males or females. Expression of Hsd11b1 was lower in male DD rats than in CC rats. Hsd11b1 expression in male offspring nursed by cross-fostered dams was higher than that in those nursed by dams fed the same diet; CC vs. CD and DD vs. DC. In females, Hsd11b1 expression in DC rats was higher than that in CC rats.

Conclusions

These findings indicated that maternal Ca restriction during pregnancy and/or lactation alters postnatal growth, Hsd11b1 expression, and insulin resistance in a sex-specific manner.  相似文献   

8.
Iron stores at birth are essential to meet iron needs during the first 4–6 months of life. The present study aimed to investigate iron stores in normal birth weight, healthy, term neonates. Umbilical cord blood samples were collected from apparently normal singleton vaginal deliveries (n=854). Subjects were screened and excluded if C-reactive protein (CRP) > 5 mg/l or α1-acid glycoprotein (AGP) > 1 g/l, preterm (<37 complete weeks), term < 2500g or term > 4000g. In total, 762 samples were included in the study. Serum ferritin, soluble transferrin receptor (sTfR), hepcidin, and erythropoietin (EPO) were measured in umbilical cord blood samples; total body iron (TBI) (mg/kg) was calculated using sTfR and ferritin concentrations. A total of 19.8% newborns were iron deficient (ferritin 35 μg/l) and an additional 46.6% had insufficient iron stores (ferritin < 76 μg/l). There was a positive association between serum ferritin and sTfR, hepcidin, and EPO. Gestational age was positively associated with ferritin, sTfR, EPO, and hepcidin. In conclusion, we demonstrate a high prevalence of insufficient iron stores in a Chinese birth cohort. The value of cord sTfR and TBI in the assessment of iron status in the newborn is questionable, and reference ranges need to be established.  相似文献   

9.
The present study was designed to determine the effects of both Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) on oxidative stress and trace element levels in the kidney and testis of growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their 96 newborn offspring were equally divided into four different groups, namely, control, 2.45 GHz, 900 MHz, and 1800 MHz groups. The 2.45 GHz, 900 MHz, and 1,800 MHz groups were exposed to EMR for 60 min/day during pregnancy and growth. During the fourth, fifth, and sixth weeks of the experiment, kidney and testis samples were taken from decapitated rats. Results from the fourth week showed that the level of lipid peroxidation in the kidney and testis and the copper, zinc, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and total antioxidant status (TAS) values in the kidney decreased in the EMR groups, while iron concentrations in the kidney as well as vitamin A and vitamin E concentrations in the testis increased in the EMR groups. Results for fifth-week samples showed that iron, vitamin A, and β-carotene concentrations in the kidney increased in the EMR groups, while the GSH and TAS levels decreased. The sixth week results showed that iron concentrations in the kidney and the extent of lipid peroxidation in the kidney and testis increased in the EMR groups, while copper, TAS, and GSH concentrations decreased. There were no statistically significant differences in kidney chromium, magnesium, and manganese concentrations among the four groups. In conclusion, Wi-Fi- and mobile phone-induced EMR caused oxidative damage by increasing the extent of lipid peroxidation and the iron level, while decreasing total antioxidant status, copper, and GSH values. Wi-Fi- and mobile phone-induced EMR may cause precocious puberty and oxidative kidney and testis injury in growing rats.  相似文献   

10.
We investigated the effects of dietary fatty acids of different chain lengths during pregnancy in the rat on the susceptibility of offspring to later-life obesity and the underlying mechanisms. Pregnant rats were fed three different diets: standard (STD), high medium-chain fatty acids (MCFA); and high long-chain fatty acids (LCFA). The male offspring were assigned to three groups: STD control, MCFA and LCFA according to the maternal diets and suckled by dams fed with STD during pregnancy and lactation. After weaning, the offspring were fed with STD from 3 to 8 weeks of age. At the age of 8 weeks, rats in three groups: high-fat diet (HFD) control, MCFA and LCFA were fed with HFD until 14 weeks of age in an attempt to induce obesity, and rats in the HFD control group were selected randomly from the STD control group. Body weight and body fat content were decreased in the MCFA group accompanied by down-regulated mRNA expression of fatty acid synthase and acetyl-coA carboxylase 1, and increased mRNA and protein expression of adenosine monophosphate (AMP)-activated protein kinase (AMPK), carnitine palmitoyltransferase 1 and uncoupling protein 3 compared with the corresponding controls at 3, 8 and 14 weeks of age. The results suggested that the MCFA diet during pregnancy prevented later-life obesity in the offspring when they were exposed to HFD in later life, which might be related to programming of the expression of genes involved in fatty acid metabolism.  相似文献   

11.
The long-term effects of low dietary copper (Cu) intake during pregnancy and lactation on cardiac mitochondria in first-generation adult rats was examined. Rat dams were fed diets containing either low (1 mg/kg Cu) or adequate (6 mg/kg Cu) levels of dietary Cu beginning 3 weeks before conception and ending 3 weeks after birth. Cytochrome c oxidase (CCO) activity was 51% lower in isolated cardiac mitochondria from 21-day-old offspring of Cu-deficient dams than in the offspring of Cu-adequate dams. CCO activities in the cardiac mitochondria of 63- and 290-day-old offspring were 22% lower and 14% lower, respectively, in the offspring of Cu-deficient dams after they had been repleted with adequate dietary Cu from the time they were 21 days old. Electron micrographs showed that the size of residual bodies and the cellular volume they occupied in cardiomyocytes rose significantly between 63 and 290 days in the Cu-repleted offspring of Cu-deficient dams, but not in the offspring of Cu-adequate dams. The rate of hydrogen peroxide generation by cardiac mitochondria also was 24% higher in the 290-day-old repleted offspring of Cu-deficient dams than in the offspring of Cu-adequate dams. The increase in hydrogen peroxide production by cardiac mitochondria and in the relative volume and size of dense deposits in cardiomyocytes is consistent with increased oxidative stress and damage resulting from prolonged reduction of CCO activity in the offspring of Cu-deficient dams.  相似文献   

12.
Studies have shown that men and women exhibit significant differences regarding iron status. However, the effects of sex on iron accumulation and distribution are not well established. In this study, female and male Sprague-Dawley rats were killed at 4 months of age. Blood samples were analyzed to determine the red blood cell (RBC) count, hemoglobin (Hb) concentration, hematocrit (Hct), and mean red blood cell volume (MCV). The serum samples were analyzed to determine the concentrations of serum iron (SI), transferrin saturation (TS), ferritin, soluble transferrin receptor (sTfR), and erythropoietin (EPO). The tissue nonheme iron concentrations were measured in the liver, spleen, bone marrow, kidney, heart, gastrocnemius, duodenal epithelium, lung, pallium, cerebellum, hippocampus, and striatum. Hepatic hepcidin expression was detected by real-time PCR analysis. The synthesis of ferroportin 1 (FPN1) in the liver, spleen, kidney, and bone marrow was determined by Western blot analysis. The synthesis of duodenal cytochrome B561 (DcytB), divalent metal transporter 1 (DMT1), FPN1, hephaestin (HP) in the duodenal epithelium was also measured by Western blot analysis. The results showed that the RBC, Hb, and Hct in male rats were higher than those in female rats. The SI and plasma TS levels were lower in male rats than in female rats. The levels of serum ferritin and sTfR were higher in male rats than in female rats. The EPO levels in male rats were lower than that in female rats. The nonheme iron contents in the liver, spleen, bone marrow, and kidney in male rats were also lower (56.7, 73.2, 60.6, and 61.4 % of female rats, respectively). Nonheme iron concentrations in the heart, gastrocnemius, duodenal epithelium, lung, and brain were similar in rats of both sexes. A moderate decrease in hepatic hepcidin mRNA content was also observed in male rats (to 56.0 % of female rats). The levels of FPN1 protein in the liver, spleen, and kidney were higher in male rats than in female rats. There was no significant change in FPN1 expression in bone marrow. Significant difference was also not found in DcytB, DMT1, FPN1, and HP protein levels in the duodenal epithelium between male and female rats. These data suggest that iron is distributed differently in male and female rats. This difference in iron distribution may be associated with the difference in the hepcidin level.  相似文献   

13.
Transferrin and Iron Uptake by the Brain: Effects of Altered Iron Status   总被引:7,自引:3,他引:4  
Transferrin (Tf) and iron uptake by the brain were measured in rats using 59Fe-125I-Tf and 131I-albumin (to correct for the plasma content of 59Fe and 125I-Tf in the organs). The rats were aged from 15 to 63 days and were fed (a) a low-iron diet (iron-deficient) or, as control, the same diet supplemented with iron, or (b) a chow diet with added carbonyl iron (iron overload), the chow diet alone acting as its control. Iron deficiency was associated with a significant decrease and iron overload with a significant increase in brain nonheme iron concentration relative to the controls. In each dietary treatment group, the uptake of Tf and iron by the brain decreased as the rats aged from 15 to 63 days. Both Tf and iron uptake were significantly greater in the iron-deficient rats than in their controls and lower in the iron-loaded rats than in the corresponding controls. Overall, iron deficiency produced about a doubling and iron overload a halving of the uptake values compared with the controls. In contrast to that in the brain, iron uptake by the femurs did not decrease with age and there was relatively little difference between the different dietary groups. 125I-Tf uptake by the brains of the iron-deficient rats increased very rapidly after injection of the labelled proteins, within 15 min reaching a plateau level which was maintained for at least 6 h. The uptake of 59Fe, however, increased rapidly for 1 h and then more slowly, and in terms of percentage of injected dose reached much higher values than did 125I-Tf uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring.  相似文献   

15.
Type 2 diabetes (T2D) is directly related to alterations in iron status, oxidative stress and decreased mitochondrial activity, but the possible interaction of these parameters among T2D patients and their offspring is unclear. The whole study included 301 subjects: 77 T2D patients and one of their offspring and 51 control subjects with one of their offspring. The offspring were older than 20?years old. We measured parameters of iron status (serum iron, ferritin and transferrin receptor), diabetes (pre and post-prandial glucose, insulin, lipids), oxidative stress (Heme oxygenase activity, TBARS, SOD, GSH, Vitamin E), as well as the expression of genes in blood leukocytes related to mitochondrial apopotosis (mitofusin and Bcl/Bax ratios). The offspring of T2D patients had increased levels of serum ferritin (P?相似文献   

16.
We have recently reported that exposure of pregnant rats to 60 Hz at field strengths up to 0.5 mT during the entire period of pregnancy did not induce any biologically significant effects on both pregnant dams and embryo-fetal development. The present study was carried out to investigate the potential effects of gestational and lactational MF exposure on pregnancy, delivery, and lactation of dams and growth, behavior, and mating performance of their offspring in rats. Timed-pregnant female Sprague-Dawley (SD) rats (24/group) received continuous exposure to 60 Hz magnetic field (MF) at field strengths of 0 (sham control), 5 microT, 83.3 microT, or 0.5 mT. Dams received MF or sham exposures for 21 h/day from gestational day 6 through lactational day 21. Experimentally generated MF was monitored continuously throughout the study. No exposure-related changes in clinical signs, body weight, food consumption, pregnancy length, and necropsy findings were observed in dams. Parameters of growth, behavior, and reproductive performance of offspring showed no changes related to MF exposure. There were no adverse effects on embryo-fetal development of F2 offspring from dams exposed to MF. In conclusion, exposure of pregnant SD rats to 60 Hz at field strengths up to 0.5 mT from gestational day 6 to lactational day 21 did not produce biologically significant effects in dams, F1 offspring, or F2 fetuses.  相似文献   

17.
In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.  相似文献   

18.
目的:探讨生血宁片联合琥珀酸亚铁片治疗妊娠期缺铁性贫血患者的疗效及对铁代谢的影响。方法:选取2015年2月-2017年2月我院收治的妊娠期缺铁性贫血患者200例为研究对象。将其以随机数字表法分成对照组(n=100)和研究组(n=100)。对照组予以口服琥珀酸亚铁片治疗,研究组则予以生血宁片联合琥珀酸亚铁片治疗,两组均连续治疗4周。分别比较两组临床疗效、治疗前后血液学指标、治疗前后铁代谢指标以及不良妊娠结局情况。结果:研究组治疗总有效率明显较对照组升高(P0.05)。治疗后两组患者血红蛋白(Hb)、红细胞(RBC)、平均红细胞体积(MCV)以及平均红细胞血红蛋白浓度(MCHC)水平均明显高于治疗前,且研究组高于对照组(P0.05)。治疗后两组患者血清铁、转铁蛋白饱和度(TSAT)水平均明显高于治疗前,且研究组又明显高于对照组(P0.05)。与对照组比较,研究组不良妊娠结局发生率降低(P0.05)。结论:生血宁片联合琥珀酸亚铁片治疗妊娠期缺铁性贫血患者的临床疗效显著,改善患者血液学指标以及铁代谢水平,降低不良妊娠结局发生风险,值得临床推广应用。  相似文献   

19.
Oxidative stress was induced in 12-week-old offspring of protein-restricted (9% protein) and control (20% protein) protein-restricted stroke-prone spontaneously hypertensive rats (SHRSP) by administering phorbol 12-myristate 13-acetate (PMA) for 4 weeks to determine the effects of oxidative stress on the vascular function of the SHRSP offspring. There was no significant difference in the blood pressure of offspring of the protein-restricted dams and control dams. The plasma diacron-reactive oxygen metabolite (dROM) level at 16 weeks of age was significantly higher in offspring of the protein-restricted dams, whereas the anti-oxidative enzyme activity was similar in both groups. Acetylcholine (Ach)-induced relaxation was significantly reduced in offspring of the protein-restricted dams. The expression of endothelial nitric oxide synthase (eNOS) was lower and the expression of soluble guanylic acid cyclase (sGC) was higher in offspring of the protein-restricted dams. These results indicate that SHRSP offspring of the protein-restricted dams were sensitive to oxidative stress, and displayed the vascular dysfunction.  相似文献   

20.
Iodine deficiency disorders affect reproductive performance in the afflicted populations. Environmental iodine deficiency (ID) and goitrogens are important in their aetiology. We observed earlier that chronic maternal dietary ID but not goitrogen feeding altered the blood-brain barrier nutrient transport in adult rats. Whether similar differences exist in their effects on reproduction of dams and postnatal performance of the offspring has been assessed. Inbred, female, weaning WNIN rats were rendered hypothyroid by feeding for 8-12 weeks, a low iodine test diet or a control diet with added potassium thiocyanate (KSCN) (@ 25 mg/rat/day). Following mating with control males, they continued on their respective diets till their pups were weaned. Indices of reproductive performance such as percentage of conception, mortality of dams during pregnancy and parturition, litter size, and survival of pups till weaning were affected markedly by ID but not thiocyanate feeding. Neither ID nor thiocyanate feeding from conception or parturition affected their reproductive performance. Nevertheless, postnatal weight gain of pups was less in all the three ID groups but not thiocyanate fed dams. Rehabilitation of chronically ID pregnant dams from conception or parturition did not improve their pregnancy weight gain, litter size or birth weight of pups but decreased abortion and mortality of mothers during pregnancy and parturition. Rehabilitation improved the pups' postnatal weight gain but the effect was only moderate. Based on the results of the present study it may be suggested that maternal ID but not thiocyanate feeding affects reproductive performance and postnatal performance of their offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号