首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of active oxygen forms produced by zymosan-stimulated polymorphonuclear leukocytes (PMNL) on the initiation of liposome lipid peroxidation has been studied. It has been shown, by measuring the concentration of TBA-active products, that lipid peroxidation induced by PMNL stimulation occurs only in the presence of Fe-ADP. This fact demonstrates that OH'-radicals are responsible for the initiation of lipid peroxidation. Superoxide dismutase and catalase almost completely inhibited PMNL-stimulated peroxidation. The results obtained suggest that active oxygen forms that appear during PMNL stimulation can migrate at a considerable distance from the place of their origin, initiating peroxidation of cell membrane lipids and lipoproteins in the presence of Fe ions, which seems to underlie bacteriocidal and cytotoxic action of phagocytes.  相似文献   

2.
Stimulated human polymorphonuclear leukocytes (PMNL) have a marked increase in oxidative metabolism, producing reduced oxygen species (e.g., H2O2) that mediate bacterial killing. Previously, quantitation of metabolic responses of PMNL from patients with acute infections employed assays that measure mean activity of the entire PMNL population; such studies reported a modest and highly variable increase in oxidative metabolic responses of such "toxic" PMNL compared with normal cells. To assess metabolic capability of PMNL from 51 patients with acute bacterial infection, we employed a quantitative flow cytometric assay of H2O2-dependent oxidative product formation, the intracellular oxidation of 2',7'-dichlorofluorescin (DCFH). After stimulation by phorbol myristate acetate, the PMNL of patients demonstrated an increase in mean DCFH oxidation (315 +/- 14 and 180 +/- 4.5 amol/cell, patients and controls). Hexose monophosphate shunt activation was similarly increased in stimulated PMNL from bacteremic patients. These data are comparable with previous studies of mean metabolic activities of toxic PMNL. However, these mean values underestimate the quantitative responses of the hyperresponsive ("primed") PMNL within a mixture of normal and primed PMNL in the patients' blood. The flow cytometric assay demonstrated that the PMNL of the patients were composed of two populations. One population of PMNL had normal oxidative responses; the other "primed" population had up to 4.6 times the oxidative product formation of normal cells. Similar priming of circulating PMNL was caused by infection with gram-positive or gram-negative staining bacteria or by Candida species. The proportion and oxidative ability of the primed PMNL occurred independently of the number of juvenile neutrophil forms and independently of "toxic" morphologic changes of Wright's-stained PMNL. On the average, 40% of the PMNL of patients were primed, but the size of the primed PMNL population varied widely between patients (range 0 to 80%). This variable subpopulation may explain the variability of mean responsiveness of the PMNL of patients reported previously. Moreover, the marked increase in oxidative metabolic capability of the primed PMNL may be a significant component of the host response to acute infection. It could also contribute to the damage to host tissues such as pulmonary vascular endothelium during bacteremia.  相似文献   

3.
Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C((4)) (LTC(4)). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC(4) in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC(4) in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells.  相似文献   

4.
Abstract Trypan blue exclusion was used to estimate the viability of human polymorphonuclear leukocytes (PMNL) in the presence of Mycoplasma felis and two strains of M. fermentans (PG18 and incognitus). The competence of PMNL to mount a respiratory burst when challenged with the mycoplasmas was also monitored by luminol-dependent chemiluminescence (CL). Both un-opsonised and non-immune human serum opsonised M. felis cells had little effect on PMNL viability. In contrast, PMNL viability was reduced markedly by un-opsonised cells of M. fermentans strain incognitus and, to a lesser extent, strain PG18, and opsonisation of these mycoplasmas further enhanced killing. Death of PMNL in the presence of M. fermentans was not associated with the autonomous production of active oxygen species during the respiratory burst as M. felis induced a high CL response from PMNL, whereas that induced by M. fermentans strain incognitus was significantly lower. M. fermentans may invade mammalian cells and it is suggested that the mechanism of PMNL death could be related to the ability of M. fermentans to penetrate host cell membranes.  相似文献   

5.
Peripheral polymorphonuclear leukocytes (PMNL) in hemodialysis (HD) patients are primed, continually releasing and exposing the vascular endothelium to soluble factors such as reactive oxygen species and inflammatory mediators. To mimic the close proximity between PMNL and the endothelial monolayer and to monitor and characterize the influence of soluble mediators released from PMNL, we developed a novel cocultivation system using primary human umbilical vein endothelial cell (HUVEC) cultures and PMNL, with a sieve separating the two cell types to prevent direct adhesive effects. PMNL (10(6)) from HD patients or from healthy normal controls were cocultivated with HUVEC (10(5)) for 15 min, and endothelial cell injury was assessed by HUVEC morphology, cell detachment, and apoptosis. Proinflammatory changes were estimated by expression of HUVEC adhesion molecule P-selectin and by endothelial IL-8 and endothelial nitric oxide synthase mRNA. The levels of intracellular tissue factor reflected the procoagulant state, whereas NADPH oxidase activity served as an indicator for prooxidative changes in HUVEC. Mediators released from the primed PMNL triggered activation/dysfunction of endothelial cells, causing 1) an increase in endothelial cell detachment and apoptosis, 2) a proinflammatory state manifested by increased IL-8 mRNA expression and P-selectin on the endothelial surface, 3) activation of endothelial NADPH oxidase, 4) an increase in endothelial cell tissue factor that directly correlated with PMNL priming index, and 5) a decrease in endothelial nitric oxide synthase mRNA. Our data support a pathogenic link between PMNL priming and endothelial dysfunction, suggesting that PMNL priming is a potential new nontraditional risk factor for the development of atherosclerosis.  相似文献   

6.
Cytochalasin B (CB) is known to interfere reversibly with the cytoplasmic contractile filamental network of mammalian cells. The role of the microfilament system in the mechanism of the reactive oxygen intermediates release of polymorphonuclear leukocytes (PMNL) was studied for different kinds of stimuli. PMNL from fresh human blood were treated with CB and stimulated by adherence on plastic surfaces, by opsonized zymosan, by phorbol myristate acetate and by N-formylmethionyl-phenylalaline. The production of reactive oxygen species were monitored by simultaneous detection of native, luminol-independent, luminescence (NL) and luminol-dependent luminescence (LDL) using a method of spectral discrimination. Different influences of CB on NL with respect to LDL as well stimuli-dependent influences of CB on the luminescence response of PMNL were observed. Especially phagocytosis-associated activation of PMNL was strongly inhibited by CB, whereas LDL was reduced to a much greater extent in comparison with NL. A firm involvement of the microfilament system is indicated, but it depends on the kind of stimulus engaged.  相似文献   

7.
The generation of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMNL) and the role of Ca2+ in regulating their activity during Zajdela hepatoma growth in the animal peritoneal cavity were studied. We found a marked increase in the ROS-generating activity of PMNL in circulating blood, the result of increases in both the specific activity of leukocytes and total number of PMNL in circulating blood. The ROS-generating activity of PMNL was substantially activated by Ca2+ ions and a calcium ionophore (ionomycin), but this effect virtually completely disappeared during tumor growth. Perhaps the high ROS-generating activity of PMNL and the lack of the sensitivity to extracellular Ca2+ during tumor growth in the organism are due to an accumulation of intracellular Ca2+ ions.  相似文献   

8.
Activation of polymorphonuclear neutrophils (PMNL) leads to the release of arachidonate from cellular phospholipids via a phospholipase A2, and conversion of products of the 5-lipoxygenase pathway. Evidence to date indicates the dietary vitamin E ((R,R,R)-alpha-tocopherol) can influence both cyclooxygenase and phospholipase A2 activities and that the effect of this vitamin is cell/tissue specific. The present study was undertaken in order to examine the effects of varying dietary tocopherol on PMNL tocopherol content and 5-lipoxygenase product profile using the ionophore A23187 as stimulant in the presence and absence of exogenous arachidonate. Feeding semi-purified diets containing 0, 30 or 3000 ppm of (R,R,R)-alpha-tocopherol acetate to weanling rats for 17 weeks resulted in a dose-related enrichment of PMNL tocopherol. Stimulation of PMNL elicited a significant and rapid loss of tocopherol. When PMNL were stimulated with A23187 alone, the synthesis of 5-HETE, LTB4 and 19-hydroxy-LTB4 was decreased in proportion to increasing dietary tocopherol concentrations. However, when exogenous arachidonate was provided with A23187, intermediate amounts of dietary tocopherol (30 ppm) still suppressed the formation of 5-lipoxygenase products, but high doses (3000 ppm) did not have any additional inhibitory effect. This differential response to high concentrations of vitamin E in the presence and absence of exogenous arachidonate highly suggest that at these concentrations, tocopherol may act principally at the level of substrate release whereas at lower concentrations, 5-lipoxygenase is inhibited. Data from this study demonstrated that attenuation of the formation of 5-lipoxygenase products in PMNL can be achieved by dietary vitamin E enrichment.  相似文献   

9.
Superoxide anion (O2-) production stimulated by concanavalin A (Con A) in guinea pig polymorphonuclear leukocytes (PMNL) was suppressed by addition of methyl-alpha-mannoside, a Con A inhibitor, and resumed upon readdition of Con A. The reversible change in the O2- production was assumed to reflect the change in NADPH oxidase activity measured for the 30,000 X g particulate fraction. The stimulation by Con A of the phosphorylation of 46K protein(s), as observed previously with several membrane-perturbing agents in parallel with an activation of NADPH oxidase in intact guinea pig PMNL (Okamura, N., et al. (1984) Arch. Biochem. Biophys. 228, 270-277), was also suppressed by methyl-alpha-mannoside and resumed upon readdition of Con A. Similar parallelism between the phosphorylation and NADPH oxidase activity was also observed in the case of stimulation by N-formyl-methionyl-leucyl-phenylalanine (FMLP) and phorbol 12-myristate 13-acetate (PMA), though both processes were reversible after the stimulation by FMLP but not reversible after that by PMA. Thus, such a parallelism observed in both intact PMNL and 30,000 X g particulate fraction indicates possible involvement of the protein phosphorylation in the regulation of the production of active oxygen metabolites in PMNL.  相似文献   

10.
The major hydroxylated metabolite of leukotriene B4 in rat PMNL was found identical (UV spectrum and retention times in 3 different HPLC systems) to a synthetic compound of known stereochemistry, 19-hydroxy-LTB4. PMNL from various species exhibited 3 different types of behaviour for LTB4 hydroxylation. Human and monkey PMNL showed a high hydroxylating activity and a high regioselectivity with almost exclusive formation of products from 20-hydroxylation. Rat and mini-pig PMNL exhibited a very different regioselectivity with major formation of 19-OH-LTB4 (3:1 ratio). Finally, pig and beef PMNL were found almost devoid of any hydroxylating activity toward LTB4.  相似文献   

11.
A vast number of studies, including the authors' own research, support the important role polymorphonuclear leukocytes (PMNL) in the development of ascite tumors. The method of luminol-dependent chemiluminescence (CL) was used to show the presence of two functionally different PMNL pools in a tumor-bearing organism: 1) "primed" PMNL, which circulate in the blood stream, and 2) "activated" PMNL, which are accumulated in the tumor zone and are capable of spontaneous CL. The purpose of the present investigation was to compare cytotoxic effects of primed and activated PMNL on tumor cells (ascite Ehrlich carcinoma (AEC), ascite Zajdel hepatoma) upon co-cultivation, as well as on normal cells of the organism, erythrocytes in vitro and in vivo. Upon stimulation with phorbol myristate acetate (PMA), PMNL effectively damaged AEC cells within the first 24 h until PMNL apoptosis occurred. Upon further co-cultivation, the tumor cells grew in number, which suggest the participation of PMNL in tumor protection. When stimulated with PMNL, pools suppressed tumor growth in vitro, since in this case the cytotoxicity was due to both reactive oxygen species and proteolytic enzymes. As it has been shown earlier by the authors, the functional potential of PMNL increases many times during tumor growth, and we suggested that not only tumor but also normal cells could be damaged. In this connection, we have studied the cytotoxic effect of primed and activated PMNL on rat erythrocytes in vitro on their co-cultivation. On stimulation with PMA, the rate of lysis of erythrocytes by primed PMNL increase many times compared to the norm. The fMLP-stimulated cytotoxity was 1.5-2.0 times higher than in the norm. Activated PMNL without stimulation are capable of producing only a partial lysis of erythrocytes (5-7 %). In order to assess the cytotoxic action of PMNL on erythrocytes in vivo, the hemoglobin content in erythrocytes and blood plasm of rats was measured in the course of tumor growth. The hemoglobin content in erythocytes during growth tumor decreased from 135 +/- 10 to 85 +/- 5 g/l, whereas in the blood plasm the hemoglobin content gradually increased by almost two times. The results enable us to suggest that one of death causes of tumor-bearing organisms may be the cytotoxic action of PMNL on normal cells of the organism caused by hyperproduction of ROS.  相似文献   

12.
Previous studies have shown that leukotriene B4 is metabolized by polymorphonuclear leukocytes (PMNL) by a 20-hydroxylase, a 19-hydroxylase, and a reductase. We have now identified for the first time LTB4 metabolites formed by a combination of the reductase and omega-oxidation pathways. We have also discovered that rat PMNL metabolize LTB4 by a novel pathway to 18-hydroxy products. Dihydro metabolites of LTB4 have formerly been reported only after incubation of exogenous LTB4 with PMNL, but we have now shown that they are formed to the same extent from endogenous arachidonic acid after stimulation of PMNL with the ionophore, A23187. The following metabolites have been identified after incubation of either LTB4 or arachidonic acid with rat PMNL: 10,11-dihydro-LTB4, 10,11-dihydro-12-epi-LTB4, 10,11-dihydro-12-oxo-LTB4, 19-hydroxy-LTB4, 19-hydroxy-10,11-dihydro-LTB4, 19-oxo-10,11-dihydro-LTB4, 18-hydroxy-LTB4, 18-hydroxy-10,11-dihydro-LTB4, and 18-hydroxy-10,11-dihydro-12-oxo-LTB4. Negligible amounts of 20-hydroxylated products were formed. Incubation of PMNL with 10,11-dihydro-LTB4 resulted in the formation of all of the above dihydro metabolites. However, none of the omega-oxidized metabolites of LTB4 was further metabolized to a significant extent when incubated with PMNL, possibly at least partially because they were not substrates for a specific LTB4 uptake mechanism. We found that the biosynthesis and metabolism of LTB4 is considerably enhanced in PMNL from an inflammatory site (carrageenan-induced pleurisy) compared with peripheral PMNL. When arachidonic acid was the substrate, the greatest increase was observed for products formed by the reductase pathway, which were about eight times higher in pleural PMNL. The rates of formation of both LTA hydrolase and omega-hydroxylase products were about three times higher, whereas the total amounts of 5-lipoxygenase products were about twice as high in pleural PMNL. The amounts of products formed by the above enzymatic pathways reached maximal levels about 4-6 h after injection of carrageenan and then declined.  相似文献   

13.
The production of 5-lipoxygenase products from arachidonic acid was investigated in polymorphonuclear leukocytes (PMNL) isolated from non-diabetic and alloxan-induced diabetic rabbits: (i) production of 5-hydroxyeicosatetraenoic acid, leukotriene B4, and the two 6-trans-leukotriene B4 isomers were significantly decreased in the PMNL of diabetic rabbits when compared to non-diabetic rabbits; (ii) production of LTB4 and 5-HETE from diabetic PMNL required the addition of Ca2+ and A23187 to a greater degree than control incubations; and (iii) the availability of substrate in the PMNL of diabetics was not a limiting factor for 5-lipoxygenase product formation. Alternative pathways of arachidonic acid metabolism were also evaluated: the recovery of exogenous leukotriene B4 and 5-hydroxyeicosatetraenoic acid were identical using PMNL from control and diabetic rabbits and peptido-leukotrienes were not detected by radioimmunoassay. The data suggest that the activity of 5-lipoxygenase and the production of 5-hydroperoxyeicosatetraenoic acid in the diabetic PMNL may be limiting factors since the formation of leukotriene B4, leukotriene B4 isomers, and 5-hydroxyeicosatetraenoic acid are depressed in PMNL of diabetic rabbits. Alternative pathways do not account for the conversion of arachidonic acid to other products nor are the elimination pathways for LTB4 and 5-HETE different. Decreased formation of 5-hydroxyeicosatetraenoic acid and leukotriene B4 could predispose diabetic subjects to infection due to a decrease in mediators leading to the local accumulation of PMNL in the inflammatory response.  相似文献   

14.
The serum levels of resistin, a 12-kDa protein primarily expressed in inflammatory cells in humans, are increased in patients with chronic kidney disease and in those with diabetes mellitus. Both groups of patients have an increased risk of infections mainly as a result of disturbed polymorphonuclear leukocyte (PMNL) functions. Therefore, we investigated the influence of resistin on human PMNLs. Serum resistin concentrations were determined with a sandwich enzyme immunoassay. Using PMNLs from healthy subjects, chemotaxis was tested by the under-agarose method. Flow cytometric assays to measure oxidative burst and phagocytosis were conducted in whole blood. The uptake of deoxyglucose was determined as measure of the PMNL activation state. The activity of intracellular kinases was assessed by Western blotting and by in vitro kinase assays. Resistin inhibited PMNL chemotaxis and decreased the oxidative burst stimulated by Escherichia coli and by PMA, but did not influence PMNL phagocytosis of opsonized E. coli and PMNL glucose uptake. The inhibition of PMNLs by resistin was observed at concentrations found in serum samples of uremic patients, but not in concentrations measured in healthy subjects. Experiments with specific signal transduction inhibitors and measurements of intracellular kinases suggest that PI3K is a major target of resistin. In conclusion, resistin interferes with the chemotactic movement and the stimulation of the oxidative burst of PMNL, and therefore may contribute to the disturbed immune response in patients with increased resistin serum levels such as uremic and diabetic subjects.  相似文献   

15.
《Free radical research》2013,47(5):311-319
In the presence of peroxidase, myoglobin or hemoglobin, Tetrachlorodecaoxide (TCDO) forms an active oxygen species which is similar to the product of the polymorphonuclear leucocyte (PMNL) myeloperoxidase reaction and the “Klebanoff Model” of phagocytosis, but it is also produced under anaerobic conditions. Randomly destructive species such as the free OH- radical or singlet oxygen are not formed. The kinetics of the heme-dependent activation vary according to the heme type present. In comparison to myoglobin, blood shows a 2 h delay in the appearance of maximal activity. On the basis of known biochemical and clinical-physiological data, a hypothesis can be proposed to explain the reoxygenation observed in hypoxic tissue, induced by TCDO via this activated heme species. Under normal physiological conditions, vasodilation occurs via catalysis by xanthine oxidase or PMNL-dependent activation of fatty acids.  相似文献   

16.
This review of the literature synthesizes the data on physiological mechanisms of the influence of high doses of mineral nitrogen (nitrates and ammonium) on the formation and functioning of legume-rhizobium symbiosis. The participation of phytohormonal and phenolic metabolism and active forms of oxygen and nitrogen in the symbiosis is highlighted. A close connection between these metabolic processes in the formation and functioning of legume-rhizobium symbiosis under a redundant supply of plants by mineral nitrogen is underlined.  相似文献   

17.
The chemiluminescence (CL) technique with luminol and isoluminol was used to characterize the effect of stobadine on reactive oxygen metabolites (ROM) generation in human whole blood and in isolated polymorphonuclear leukocytes (PMNL) stimulated with N-formyl-methionyl-leucyl-phenyl-alanine (FMLP). In whole blood and in isolated PMNL, stobadine in the concentrations of 1, 10 and 100 micromol/L significantly inhibited the CL signal after FMLP, which activated predominantly extracellular generation of ROM. The same concentrations of stobadine were effective on CL in a cell-free system. On the other hand, myeloperoxidase (MPO) liberation was decreased by stobadine only in the concentration of 100 micromol/L. The results showed stobadine to act as a potent inhibitor/scavenger of extracellularly produced ROM in human PMNL and indicated interference of stobadine with ROM as well as with signalling events resulting in NADPH-oxidase activation and MPO liberation.  相似文献   

18.
The production of activated oxygen species (AOS) by neutrophils (PMNL) is thought to play a key role in the host defence against invading microorganisms. However, the oxygen metabolites are toxic not only to the invading bacteria but also to the surrounding tissue. The oxidative metabolites production can be evaluated by means of chemiluminescent methods. In this study, the possibility of a new analytical approach for quantitative assessment of chemiluminescent kinetics (AOS generation) of isolated PMNL was estimated.

Based on the assumption that the kinetics of luminol-amplified chemiluminescence (LCL) of stimulated PMNL possesses a time-probabilistic nature, this kinetics was described with three components. These components, obtained from different investigated systems, were analyzed and a conclusion was made that the first and the second component represent the processes resulting in extra-and intracellular myeloperoxidase (MPO)-dependent light emission (AOS generation), respectively. The second component was found to be completely dependent on the stimulus ingestion. The third component was not completely MPO-dependent and complicated for interpretation. This component was weakly dependent on the stimulus ingestion, and presents at least some intracellular processes different from those presented by the second component.

A conclusion is made that the examined approach for analysis of LCL kinetics allows an assessment of extra-and intracellularly generated quantities of AOS by stimulated PMNL. The assessment could be done for emitting systems in which no additional modificators are used.  相似文献   


19.
Infection of polymorphonuclear leukocytes (PMNL) with influenza virus causes depression of PMNL metabolic and bactericidal activities. The studies reported here were undertaken to determine whether the hemagglutinin (HA) glycoprotein of influenza virus mediates this depression. PMNL were incubated with purified HA and the oxidative responses to exogenous stimuli were measured. The results indicate that HA, in either liposomes or protein aggregates referred to as rosettes, depressed PMNL oxidative responses. Depression was observed within 2 min of initial interaction of HA with PMNL and lasted more than 2 h. The membrane fusion activity of HA requires proteolytic cleavage of the HA, whereas the receptor binding activity does not. There was no difference in the ability of virions with cleaved or uncleaved HA to depress PMNL responses suggesting that the fusion event is not required for PMNL dysfunction. Inasmuch as the HA glycoprotein binds to sialic acid-containing receptors on the surface of the PMNL, we tested whether other sialic acid-specific binding proteins can mediate the reduction of PMNL responses. Sialic acid-specific lectins from Limulus polyphemus or Limax flavus were incubated with PMNL before measuring their responses to secondary stimulus. Depression was observed upon incubation with the lectins similar to that seen upon incubation with the HA or influenza virus. These results suggest that attachment of influenza virus to sialic acid-containing receptors is responsible at least in part, for suppressing PMNL oxidative responses.  相似文献   

20.
Staphylococcal serine proteinase (SSP) can influence various functions of human polymorphonuclear leukocytes (PMNL) including chemotaxis and phagocytosis. Since the rise in intracellular free calcium concentration is an important step in signal transduction leading to phagocyte activation, we tested the ability of SSP to increase the intracellular free calcium concentration in human PMNL using the fluorescent calcium indicator Fura-2AM. PMNL isolated from healthy donors responded to SSP in the concentration range of 10 to 100 µg/ml. The highest Ca2+ rise (104 ± 47 nM) was observed for 10 µg/ml SSP. It was mainly dependent (81 ± 11%) on extracellular calcium influx, however, SSP mobilized 68 ± 7% of Ca2+ from intracellular calcium stores. Boiling of SSP or preincubation with phenylmethylsulphonylfluoride (an serine proteinase inhibitor) did not change its ability to increase intracellular free calcium concentration in PMNL. It suggests that active center of SSP is not responsible for Ca2+ mobilization. Finally, PMNL responded to each of three consecutive stimulations with SSP independently of the presence of high or low extracellular Ca2 concentration. This may be an additional mechanism responsible for activation of human PMNL and degradation of alveolar walls during the staphylococcal infection in the lower airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号