首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Genetic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned in pYe(MET14)2. This plasmid is maintained stably in budding S. cerevisiae cultures and segregates predominantly 2+:20- through meiosis. The CEN11 element has been subcloned in vector YRp7' on an S. cerevisiae DNA fragment 900 base pairs in length [pYe(CEN11)10]. The mitotic and meiotic behavior of plasmids containing CEN11 plus a DNA replicator (ars) indicates that the centromere DNA sequences enable these plasmids to function as true minichromosomes in S. cerevisiae.  相似文献   

2.
A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.  相似文献   

3.
Centromere DNA from 11 of the 16 chromosomes of the yeast Saccharomyces cerevisiae have been analyzed and reveal three sequence elements common to each centromere, referred to as conserved centromere DNA elements (CDE). The adenine-plus-thymine (A + T)-rich central core element, CDE II, is flanked by two short conserved sequences, CDE I (8 base pairs [bp]) and CDE III (25 bp). Although no consensus sequence exists among the different CDE II regions, they do have three common features of sequence organization. First, the CDE II regions are similar in length, ranging from 78 to 86 bp measured from CDE I to the left boundary of CDE III. Second, the base composition is always greater than 90% A + T. Finally, the A and T residues in these segments are often arranged in runs of A and runs of T residues, sometimes with six or seven bases in a stretch. We constructed insertion, deletion, and replacement mutations in the CDE II region of the centromere from chromosome III, CEN3, designed to investigate the length and sequence requirements for function of the CDE II region of the centromere. We analyzed the effect of these altered centromeres on plasmid and chromosome segregation in S. cerevisiae. Our results show that increasing the length of CDE II from 84 to 154 bp causes a 100-fold increase in chromosome nondisjunction. Deletion mutations removing segments of the A + T-rich CDE II DNA also cause aberrant segregation. In some cases partial function could be restored by replacing the deleted DNA with fragments whose primary sequence or base composition is very different from that of the wild-type CDE II DNA. In addition, we found that identical mutations introduced into different positions in CDE II have very similar effects.  相似文献   

4.
We have determined the structural organization and functional roles of centromere-specific DNA sequence repeats in cen1, the centromere region from chromosome I of the fission yeast Schizosaccharomyces pombe. cen1 is composed of various classes of repeated sequences designated K', K"(dgl), L, and B', arranged in a 34-kb inverted repeat surrounding a 4- to 5-kb nonhomologous central core. Artificial chromosomes containing various portions of the cen1 region were constructed and assayed for mitotic and meiotic centromere function in S. pombe. Deleting K' and L from the distal portion of one arm of the inverted repeat had no effect on mitotic centromere function but resulted in greatly increased precocious sister chromatid separation in the first meiotic division. A centromere completely lacking K' and L, but containing the central core, one copy of B' and K" in one arm, and approximately 2.5 kb of the core-proximal portion of B' in the other arm, was also fully functional mitotically but again did not maintain sister chromatid attachment in meiosis I. However, deletion of K" from this minichromosome resulted in complete loss of centromere function. Thus, one copy of at least a portion of the K" (dgl) repeat is absolutely required but is not sufficient for S. pombe centromere function. The long centromeric inverted-repeat region must be relatively intact to maintain sister chromatid attachment in meiosis I.  相似文献   

5.
6.
We have cloned a functional centromeric DNA sequence from Saccharomyces cerevisiae. Using the 2 mu chromosome-loss mapping technique and meiotic tetrad analysis, we have identified this DNA sequence as the centromere of chromosome V (CEN5). The CEN5 sequence has been localized on an 1,100-base-pair BamHI-BglII restriction fragment. Plasmids containing CEN5 and an autonomously replicating sequence are mitotically stable in S. cerevisiae and segregate in a Mendelian fashion during meiosis.  相似文献   

7.
We showed by immunofluorescence that the procaryotic DNA-binding protein LexA and a chimeric protein that contains the DNA-binding portion of LexA (amino acids 1 to 87) and a large portion (amino acids 74 to 881) of the Saccharomyces cerevisiae positive regulatory GAL4 protein (GAL4 gene product) are not preferentially localized in the nucleus in S. cerevisiae.  相似文献   

8.
Soustelle C  Vedel M  Kolodner R  Nicolas A 《Genetics》2002,161(2):535-547
In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis.  相似文献   

9.
Pinto I  Winston F 《The EMBO journal》2000,19(7):1598-1612
Histones are structural and functional components of the eukaryotic chromosome, and their function is essential for normal cell cycle progression. In this work, we describe the characterization of two Saccharomyces cerevisiae cold-sensitive histone H2A mutants. Both mutants contain single amino acid replacements of residues predicted to be on the surface of the nucleosome and in close contact with DNA. We show that these H2A mutations cause an increase-in-ploidy phenotype, an increased rate of chromosome loss, and a defect in traversing the G(2)-M phase of the cell cycle. Moreover, these H2A mutations show genetic interactions with mutations in genes encoding kinetochore components. Finally, chromatin analysis of these H2A mutants has revealed an altered centromeric chromatin structure. Taken together, these results strongly suggest that histone H2A is required for proper centromere-kinetochore function during chromosome segregation.  相似文献   

10.
11.
Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.  相似文献   

12.
Crossing over is regulated to occur at least once per each pair of homologous chromosomes during meiotic prophase to ensure proper segregation of chromosomes at the first meiotic division. In a mer3 deletion mutant of Saccharomyces cerevisiae, crossing over is decreased, and the distribution of the crossovers that occur is random. The predicted Mer3 protein contains seven motifs characteristic of the DExH box type of DNA/RNA helicases. The mer3G166D and the mer3K167A mutation, amino acid substitutions of conserved residues in a putative nucleotide-binding domain of the helicase motifs caused a defect in the transition of meiosis-specific double-strand breaks to later intermediates, decreased crossing over, and reduced crossover interference. The purified Mer3 protein was found to have DNA helicase activity. This helicase activity was reduced by the mer3GD mutation to <1% of the wild-type activity, even though binding of the mutant protein to single- and double-strand DNA was unaffected. The mer3KA mutation eliminated the ATPase activity of the wild-type protein. These results demonstrate that Mer3 is a DNA helicase that functions in meiotic crossing over.  相似文献   

13.
The ribosomal DNA (rDNA) genes of Saccharomyces cerevisiae are located in a tandem array of about 150 repeats. Using a diploid with markers flanking and within the rDNA array, we showed that low levels of DNA polymerase alpha elevate recombination between both homologues and sister chromatids, about five-fold in mitotic cells and 30-fold in meiotic cells. This stimulation is independent of Fob1p, a protein required for the programmed replication fork block (RFB) in the rDNA. We observed that the fob1 mutation alone significantly increased meiotic, but not mitotic, rDNA recombination, suggesting a meiosis-specific role for this protein. We found that meiotic cells with low polymerase alpha had decreased Sir2p binding and increased Spo11p-catalyzed double-strand DNA breaks in the rDNA. Furthermore, meiotic crossover interference in the rDNA is absent. These results suggest that the hyper-Rec phenotypes resulting from low levels of DNA polymerase alpha in mitosis and meiosis reflect two fundamentally different mechanisms: the increased mitotic recombination is likely due to increased double-strand DNA breaks (DSBs) resulting from Fob1p-independent stalled replication forks, whereas the hyper-Rec meiotic phenotype results from increased levels of Spo11-catalyzed DSBs in the rDNA.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.  相似文献   

15.
H L Klein 《Genetics》2001,159(4):1501-1509
Genomic instability is one of the hallmarks of cancer cells and is often the causative factor in revealing recessive gene mutations that progress cells along the pathway to unregulated growth. Genomic instability can take many forms, including aneuploidy and changes in chromosome structure. Chromosome loss, loss and reduplication, and deletions are the majority events that result in loss of heterozygosity (LOH). Defective DNA replication, repair, and recombination can significantly increase the frequency of spontaneous genomic instability. Recently, DNA damage checkpoint functions that operate during the S-phase checkpoint have been shown to suppress spontaneous chromosome rearrangements in haploid yeast strains. To further study the role of DNA damage checkpoint functions in genomic stability, we have determined chromosome loss in DNA damage checkpoint-deficient yeast strains. We have found that the DNA damage checkpoints are essential for preserving the normal chromosome number and act synergistically with homologous recombination functions to ensure that chromosomes are segregated correctly to daughter cells. Failure of either of these processes increases LOH events. However, loss of the G2/M checkpoint does not result in an increase in chromosome loss, suggesting that it is the various S-phase DNA damage checkpoints that suppress chromosome loss. The mec1 checkpoint function mutant, defective in the yeast ATR homolog, results in increased recombination through a process that is distinct from that operative in wild-type cells.  相似文献   

16.
We previously described a 5'-3' exonuclease required for recombination in vitro between linear DNA molecules with overlapping homologous ends. This exonuclease, referred to as exonuclease I (Exo I), has been purified more than 300-fold from vegetatively grown cells and copurifies with a 42-kDa polypeptide. The activity is nonprocessive and acts preferentially on double-stranded DNA. The biochemical properties are quite similar to those of Schizosaccharomyces pombe Exo I. Extracts prepared from cells containing a mutation of the Saccharomyces cerevisiae EXO1 gene, a homolog of S. pombe exo1, had decreased in vitro recombination activity and when fractionated were found to lack the peak of activity corresponding to the 5'-3' exonuclease. The role of EXO1 on recombination in vivo was determined by measuring the rate of recombination in an exo1 strain containing a direct duplication of mutant ade2 genes and was reduced sixfold. These results indicate that EXO1 is required for recombination in vivo and in vitro in addition to its previously identified role in mismatch repair.  相似文献   

17.
Checkpoints prevent inaccurate chromosome segregation by inhibiting cell division when errors in mitotic processes are encountered. We used a temperature-sensitive mutation, dbf4, to examine the requirement for DNA replication in establishing mitotic checkpoint arrest. We used gamma-irradiation to induce DNA damage and hydroxyurea to limit deoxyribonucleotides in cells deprived of DBF4 function to investigate the requirement for DNA replication in DNA-responsive checkpoints. In the absence of DNA replication, mitosis was not inhibited by these treatments, which normally activate the DNA damage and DNA replication checkpoints. Our results support a model that indicates that the assembly of replication structures is critical for cells to respond to defects in DNA metabolism. We show that activating the spindle checkpoint with nocodazole does not require prior progression through S phase but does require a stable kinetochore.  相似文献   

18.
The Saccharomyces cerevisiae Spo11 protein is thought to catalyze formation of the DNA double-strand breaks that initiate meiotic recombination. We have cloned cDNA and genomic DNA for a mouse gene encoding a protein with significant sequence similarity to conserved domains found in proteins of the Spo11p family. This putative mouse Spo11 gene maps to the distal region of chromosome 2 (homologous to human chromosome 20q13.2-q13.3) and comprises at least 12 exons, spanning approximately 15-18 kb. Strong expression of the Spo11 message is seen in juvenile and adult testis by RNA in situ hybridization, RT-PCR, and Northern blot, with much weaker expression in thymus and brain. In situ hybridization detects expression in oocytes of embryonic ovary, but not of adult ovary. RT-PCR and in situ hybridization analyses of a time course of juvenile testis development indicate that Spo11 expression begins in early meiotic Prophase I, prior to the pachytene stage, with increasing accumulation of mRNA through the pachytene stage. Taken together, these results strongly suggest that this gene encodes the functional homolog of yeast Spo11p, which in turn suggests that the mechanism of meiotic recombination initiation is conserved between yeast and mammals.  相似文献   

19.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

20.
Previous studies have demonstrated that bent DNA is a conserved property of Saccharomyces cerevisiae autonomously replicating sequences (ARSs). Here we showed that bending elements are contained within ARS subdomains identified by others as replication enhancers. To provide a direct test for the function of this unusual structure, we analyzed the ARS activity of plasmids that contained synthetic bent DNA substituted for the natural bending element in yeast ARS1. The results demonstrated that deletion of the natural bending locus impaired ARS activity which was restored to a near wild-type level with synthetic bent DNA. Since the only obvious common features of the natural and synthetic bending elements are the sequence patterns that give rise to DNA bending, the results suggest that the bent structure per se is crucial for ARS function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号