首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fish gene mapping studies have identified several syntenic groups showing conservation over more than 400 million years of vertebrate evolution. In particular, Xiphophorus linkage group IV has been identified as a homolog of human chromosomes 15 and 19. During mammalian evolution, loci coding for glucosephosphate isomerase, peptidase D, muscle creatine kinase, and several DNA repair genes (ERCC1, ERCC2, and XRCC1) appear as a conserved syntenic group on human chromosome 19. When X. clemenciae and X. milleri PstI endonuclease-digested genomic DNA was used in Southern analysis with a human ERCC2 DNA repair gene probe, a strongly cross-hybridizing restriction fragment length polymorphism was observed. Backcrosses to X. clemenciae from X. milleri x X. clemenciae F1 hybrids allowed tests for linkage of the ERCC2-like polymorphism to markers covering a large proportion of the genome. Statistically significant evidence for linkage was found only for ERCC2L1 and CKM (muscle creatine kinase), with a total of 41 parents and 2 recombinants (4.7% recombination, chi 2 = 35.37, P less than 0.001); no evidence for linkage to GPI and PEPD in linkage group IV was detected. The human chromosome 19 synteny of ERCC2 and CKM thus appears to be conserved in Xiphophorus, while other genes located nearby on human chromosome 19 are in a separate linkage group in this fish. If Xiphophorus gene arrangements prove to be primitive, human chromosome 19 may have arisen from chromosome fusion or translocation events at some point since divergence of mammals and fishes from a common ancestor.  相似文献   

2.
Twelve loci have been assigned to rat chromosome 5: aldolase B (ALDOB), atrial natriuretic factor (ANF = pronatriodilatin, PND), D4RP1, DSI1, galactosyltransferase (GGTB2), glucose transporter (GLUT1), interferon alpha 1 and related interferon alpha (INFA), interferon beta (INFB), lymphocyte-specific protein-tyrosine kinase (LCK), oncogene MOS, alpha 2U-globulin (major urinary protein, MUP), and orosomucoid (ORM, also called alpha 1-acid glycoprotein, AGP). Among these, the interferon alpha and beta genes map in the q22-23 region, which also contains a transformation suppressor gene (SAI1). The other loci reside outside this region. This study also indicated that the rat genome contains 2 LCK genes, unlike the human and murine genomes. These new assignments on rat chromosome 5 demonstrate that this chromosome is highly homologous to mouse chromosome 4 and carries synteny groups conserved on human chromosome 9 (interferon alpha and beta, galactosyltransferase, orosomucoid, and aldolase B genes) and on the short arm of human chromosome 1 (MYCL, glucose transporter, protein kinase LCK, and atrial natriuretic factor genes).  相似文献   

3.
The chromosomal locations of the genes in common wheat that encode the five histones and five members of the HBP (histone gene-binding protein)-1 family were determined by hybridizing their cloned DNAs to genomic DNAs of nullitetrasomic and telosomic lines of common wheat, Triticum aestivum cv. Chinese Spring. The H1 and H2a genes are located on different sets of homoeologous chromosomes or chromosome arms, namely, 5A, 5B and 5D, and 2AS, 2BS and 2DS, respectively. Genes for the other histones, H2b, H3 and H4, are found in high copy number and are dispersed among a large number of chromosomes. The genes for all members of the HBP-1 family are present in small copy numbers. Those for HBP-1a(1) are located on six chromosome arms, 3BL, 5AL, 5DL, 6AL, 6BS and 7DL, whereas those for each HBP-1a(c14), 1a(17), 1b(c1), and 1b(c38) are on a single set of homoeologous chromosome arms; 4AS, 4BL, 4DL; 6AS, 6BS, 6DS; 3AL, 3BL, 3DL; and 3AS, 3BS, 3DS, respectively. The genes for histones H1 and H2a, and for all members of the HBP-1 family except HBP-1a(1) are assumed to have different phylogenetic origins. The genes for histone 2a and HBP-1a(17) are located in the RFLP maps of chromosomes 2B and 6A, respectively. Gene symbols are proposed for all genes whose chromosomal locations have been determined.  相似文献   

4.
Activation of the ERK mitogen-activated protein (MAP) kinase pathway has been implicated in the regulation of cell growth, differentiation and senescence. In this pathway, the MAP kinases ERK1/ERK2 are phosphorylated and activated by the dual-specificity kinases MEK1 and MEK2, which in turn are activated by serine phosphorylation by a number of MAP kinase kinase kinases. We report here the chromosomal localization of the human genes encoding the MAP kinase kinase isoforms MEK1 and MEK2. Using a combination of fluorescence in situ hybridization, somatic cell hybrid analysis, DNA sequencing and yeast artificial chromosome (YAC) clone analysis, we have mapped the MEK1 gene (MAP2K1) to chromosome 15q21. We also present evidence for the presence of a MEK1 pseudogene on chromosome 8p21. The MEK2 gene (MAP2K2) was mapped to chromosome 7q32 by fluorescence in situ hybridization and YAC clone analysis.  相似文献   

5.
Several genes involved in biosynthesis, transport or metabolism of cholesterol have been localized on rat chromosomes by using a radiation hybrid (RH) panel. The genes, coding for squalene epoxidase (Sqle), mevalonate kinase (Mvk), and farnesyl diphosphate farnesyl transferase 1 (Fdft1) which are involved in cholesterol biosynthesis, have been mapped on chromosome 7, 12, and 15, respectively. The genes coding for phospholipid transfer protein (Pltp), sterol carrier protein-2 (Scp2), ATP binding cassette reporter A7 (Abca7), scavenger receptor class B, type 1 (Cd36l1), steroidogenic acute regulatory protein (Star), and lecithin:cholesterol acyl transferase (Lcat), which are involved in the transfer and/or metabolism of cholesterol, have been mapped on chromosome 3, 5, 7, 12, 16, and 19, respectively. Each of the genes Scp2, Sqle and Fdft1 maps close to a QTL for serum total cholesterol in rat, suggesting that these three genes might represent candidate genes for the previously mapped QTLs.  相似文献   

6.
We have utilized rat-mouse somatic cell hybrids to make chromosomal assignments for the glucocorticoid receptor (GR), myelin basic protein (MBP), leukocyte common antigen (LCA), and testosterone-repressed prostate message-2 (TRPM2) genes in the rat. The genes for GR and MBP both map on chromosome 18 of the rat, which corresponds to the mapping of both genes on chromosome 18 of the mouse. The gene for LCA maps on chromosome 13, which is where C4b-binding protein -chain (C4BPB), coagulation factor V (F5), and renin have previously been assigned. This linkage group appears to be homologous to a substantial portion of mouse chromosome 1 and human chromosome 1q. Finally, the TRPM2 gene has been assigned to rat chromosome 15.This project was supported by Grants RG 1877-A-1 from the National Multiple Sclerosis Society and P50 DE09164 from the NIH, by grants from the Swedish Cancer Society, the Erik Philip-Sörensen Foundation, the Trygger Foundation, the IngaBritt and Arne Lundberg Research Foundation, CANCIRCO, and BioVast (Gothenbrug), by the Belgian program on Interuniversity Attraction Poles initiated by the Belgian State-Prime Minister's Office-Science Policy Programming, and by a grant from the CGER-ASLK (Brussels). C.S. is a Senior Research Associate of the National Fund for Scientific Research (FNRS, Belgium).  相似文献   

7.
Q Gao  L Li  & J E Womack 《Animal genetics》1997,28(2):146-149
Theileriosis, or East Coast fever, a parasitic disease in cattle, is associated with overexpression of casein kinase II. Casein kinase II is composed of two catalytic subunits (α or α') and two regulatory β subunits. The genes encoding these subunits of casein kinase II were mapped to bovine chromosomes by polymerase chain reaction analysis of a well-characterized bovine × rodent somatic hybrid cell panel. The α-subunit (CSNK2A1) was mapped to bovine chromosome 13, the α'-subunit (CSNK2A2) to chromosome 5 and the β-subunit (CSNK2B) to chromosome 23. Both CSNK2A1 and CSNK2B mapped to known regions of conserved synteny between human and cattle, while CSNK2A2 defined a new homology segment between the human and bovine genomes.  相似文献   

8.
Prevous work, using human-mouse somatic cell hybrids, has localized the structural gene for human skin type I procollagen (COL 1) to chromosome 17. One of these hybrids contained only the long arm of human chromosome 17, translocated onto a mouse chromosome, as human chromosomal material. This hybrid was treated with adenovirus 12, and various clones were picked which contained different-sized fragments of human chromosome 17 that were still translocated onto a mouse chromosome. Measurements of these fragments, combined with assays for human COL 1 production and galactose kinase (GAK) activity (also localized on the long arm of human chromosome 17), has allowed us to regionally map the structural gene for human COL 1 to an area just distal to the thymidine kinase (TK) and GAK genes within bands q21 and q22 on human chromosome 17.  相似文献   

9.
Glycine receptors mediating synaptic inhibition are heteromeric proteins constituted of alpha and beta subunits. The mammalian GlyR subunits constitute a subgroup in the superfamily of ligand-gated ionic channels. To compare the evolutionary events in the mammalian and teleostean lineages for the receptor family, we first undertook systematic cloning of the constitutive subunits of the zebrafish glycine receptor. The isolation of two alpha subunits (alphaZ1 and alphaZ2) and one beta subunit (betaZ) has been reported previously and we report here the characterization of two novel alpha subunits, alphaZ3 and alphaZ4, increasing the known zebrafish subunits number to four alpha and one beta. Establishment of phylogenetic relationships reveals that alphaZ1, alphaZ3 and betaZeta are orthologous to mammalian alpha1, alpha3 and beta subunits. However, two zebrafish GlyRalpha subunit genes are orthologous to the unique avian and mammalian alpha4 subunit revealing a duplication of the alpha4 gene in zebrafish. Whole-mount in situ hybridization in 24-hours post fertilization (hpf) and 52-hpf embryos of the daughter gene products display very different expression patterns indicating distinct functions of the duplicated genes. Gene mapping reveals that the two duplicated genes are localized on two different linkage groups (LG5 and LG22) as would be daughter genes resulting from a large-scale duplication of the ancestral genome. Finally, we report that a linked pair of genes on human chromosome 4 (alpha3 and beta) is also linked on linkage group 1 in zebrafish (alphaZ3 and betaZ) as a consequence of a mosaic conserved syntheny.  相似文献   

10.
Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21 and characterized by somatic anomalies and mental retardation. The phenotype of DS is thought to result from overexpression of genes encoded on chromosome 21. Although several studies reported mRNA levels of genes localized on chromosome 21, mRNA data cannot be simply extrapolated to protein levels. Furthermore, most protein data have been generated using immunochemical methods. In this study we investigated expression of three proteins (cystathionine beta-synthase (CBS), pyridoxal kinase (PDXK), ES1 protein homolog, mitochondrial precursor (ES1)) whose genes are encoded on chromosome 21 in fetal DS (n = 8; mean gestational age of 19.8 +/- 2.0 weeks) and controls (n = 7; mean gestational age of 18.8 +/- 2.2 weeks) brains (cortex) using proteomic technologies. Two-dimensional electrophoresis (2-DE) with subsequent in-gel digestion of spots and matrix-assisted laser desorption ionization (MALDI) spectroscopic identification followed by quantification of spots with specific software was applied. Subsequent quantitative analysis of CBS and PDXK revealed levels comparable between DS and controls. By contrast, ES1 was two-fold elevated (P < 0.01) in fetal DS brain. This protein shows significant homology with the E. coli SCRP-27A/ELBB and zebrafish ES1 protein and contains a potential targeting sequence to mitochondria in its N-terminal region. Based on the assumption that structural similarities reflect functional relationship, it may be speculated that ES1 is serving a basic function in mitochondria. Although no function of the human ES1 protein is known yet, ES1 may be a candidate protein involved in the pathogenesis of the brain deficit in DS.  相似文献   

11.
Using direct R-banding fluorescence in situ hybridization, we assigned five functional genes-growth hormone receptor (GHR), prolactin receptor (PRLR), spleen tyrosine kinase (SYK), aldolase B (ALDOB), and muscle skeletal receptor tyrosine kinase (MUSK)-to the chicken Z chromosome. SYK and MUSK were newly localized to the chicken Z chromosome in this study. GHR and PRLR were situated close to each other on the short arm of the chicken Z chromosome, as are their counterparts on human chromosome 5. SYK, MUSK, and ALDOB, which have been mapped to human chromosome 9, were localized to the long arm of the chicken Z chromosome. Thus, the present results indicate the presence of conserved synteny between the chicken Z chromosome and human chromosomes 5 and 9. Using the same method, four of the genes (GHR, PRLR, ALDOB, and MUSK) were assigned to the Japanese quail Z chromosome. The locations of these four Z-linked genes were conserved between chicken and Japanese quail. The results support the notion that the avian Z chromosome and the mammalian X chromosome did not evolve from a common ancestral linkage group.  相似文献   

12.
The human chromosomal assignments of genes of the creatine kinase (CK) family--loci for brain (CKBB), muscle (CKMM), and mitochondrial (CKMT) forms--were studied by Southern filter hybridization analysis of DNAs isolated from a human x rodent somatic cell hybrid clone panel. Probes for the 3'-noncoding sequences of human CKBB and CKMM hybridized concordantly only to DNAs from somatic cell hybrids containing chromosomes 14 and 19, respectively. Thus the earlier assignment of the gene coding for the CKBB isozyme to chromosome 14 was confirmed by molecular means, as was the provisional assignment of CKMM to the long arm of chromosome 19. A probe containing canine sequences for CKMM cross-hybridized with human sequences on chromosomes 14 and 19, a result consistent with the assignments of CKBB and CKMM. A probe containing human sequences for CKMT enabled the provisional assignment of CKMT to human chromosome 15. Independent hybrids with portions of the long arm of chromosome 19 missing indicated the order of genes on the long arm of chromosome 19 as being cen-GPI-(TGFB, CYP1)-[CKMM, (APOC2-ERCC1)]-(CGB, FTL). The unexpectedly more distal location of APOC2 among the genes on the long arm--and APOC2's close association with CKMM--is discussed with respect to the close linkage relationship of APOC2 to myotonic muscular dystrophy.  相似文献   

13.
Five genes on human chromosome 7 (HSA 7) were assigned to bovine chromosome 21 (BTA 21) and 4 (BTA 4) using a bovine-rodent somatic hybrid cell panel. These five genes were alpha-I subunit of adenylate cyclase-inhibiting G-protein (GNAI1), alpha/beta preprotachykinin (TAC1), reelin (RELN), c-AMP dependant protein kinase type II beta regulatory chain (PRKAR2B) and apolipoprotein A1 regulatory protein 1 (TFCOUP2). Four genes mapped to BTA 4 (GNAI1, TAC1, RELN, PRKAR2B) while one gene mapped to BTA 21 (TFCOUP2). This study confirms the synteny conservation between HSA 7 and BTA 4, finely maps the breakpoints of conserved synteny on HSA 7 and defines a new synteny conservation between HSA 7 and BTA 21.  相似文献   

14.
Fish gene mapping studies have identified several syntenic groups showing conservation over more than 400 million years of vertebrate evolution. In particular, Xiphophorus linkage group IV has been identified as a homolog of human chromosomes 15 and 19. During mammalian evolution, loci coding for glucosephosphate isomerase, peptidase D, muscle creatine kinase, and several DNA repair genes (ERCC1, ERCC2, and XRCC1) appear as a conserved syntenic group on human chromosome 19. When X. clemenciae and X. milleri PstI endonuclease-digested genomic DNA was used in Southern analysis with a human ERCC2 DNA repair gene probe, a strongly cross-hybridizing restriction fragment length polymorphism was observed. Backcrosses to X. clemenciae from X. milleri × X. clemenciae F1 hybrids allowed tests for linkage of the ERCC2-like polymorphism to markers covering a large proportion of the genome. Statistically significant evidence for linkage was found only for ERCC2L1 and CKM (muscle creatine kinase), with a total of 41 parents and 2 recombinants (4.7% recombination, χ2 = 35.37, P < 0.001); no evidence for linkage to GPI and PEPD in linkage group IV was detected. The human chromosome 19 synteny of ERCC2 and CKM thus appears to be conserved in Xiphophorus, while other genes located nearby on human chromosome 19 are in a separate linkage group in this fish. If Xiphophorus gene arrangements prove to be primitive, human chromosome 19 may have arisen from chromosome fusion or translocation events at some point since divergence of mammals and fishes from a common ancestor.  相似文献   

15.

Key message

This study provides a foundation for further research on root genetic regulation and molecular breeding with emphasis on correlations among root traits to ensure robust root growth and well-developed root systems.

Abstract

A set of 447 recombinant inbred lines (RILs) derived from a cross between Jingdou23 (cultivar, female parent) and ZDD2315 (semi-wild, male parent) were used to analyze inheritance and detect QTLs related to root traits at the seedling stage using major gene plus polygene mixed inheritance analysis and composite interval mapping. The results showed that maximum root length (MRL) was controlled by three equivalent major genes, lateral root number (LRN) was controlled by two overlapping major genes, root weight (RW) and volume (RV) were controlled by four equivalent major genes. Hypocotyl length (HL) was controlled by four additive main genes, and hypocotyl weight (HW) was controlled by four additive and additive × additive epistatic, major genes; however, polygene effects were not detected in these traits. Shoot weight (SW) was controlled by multi-gene effects, but major gene effects were not detected. Twenty-four QTLs for MRL, LRN, RW, RV, SW, HL, HW were mapped on LG A1 (chromosome 5), LG A2 (chromosome 8), LG B1 (chromosome 11), LG B2 (chromosome 14), LG C2 (chromosome 6), LG D1b (chromosome 2), LG F_1 (chromosome 13), LG G (chromosome 18), LG H_1 (chromosome 12), LG H_2 (chromosome 12), LG I (chromosome 20), LG K_2 (chromosome 9), LG L (chromosome 19), LG M (chromosome 7), LG N (chromosome 3), LG O (chromosome 10), separately. Root traits were shown to have complex genetic mechanisms at the seedling stage, SW was controlled by multi-gene effects, and the other six traits were controlled by major gene effects. It is concluded that correlations among root traits must be considered to improve the development of beneficial root traits.  相似文献   

16.
Mapping and association studies of diabetes related genes in the pig   总被引:3,自引:0,他引:3  
The mitogen-activated protein kinase 8 (MAPK8), resistin (RETN), 11 beta hydroxysteroid dehydrogenase isoform 1 (HSD11B1) and protein kinase B Akt2 (AKT2) genes are all genes known to affect insulin signalling and have been implicated in the progression of obesity and type 2 diabetes in humans. In this study, polymorphisms in the porcine diabetes related MAPK8, RETN, HSD11B1 and AKT2 genes were identified, mapped and their associations with phenotypic measurements in swine were analysed. Polymorphisms detected in the MAPK8, RETN and HSD11B1 loci were used to genotype a Berkshire-Yorkshire pig breed reference family. Using linkage analysis, RETN, HSD11B1 and MAPK8 genes were mapped to pig chromosomes 2, 9 and 14, respectively, while the AKT2 gene was physically mapped to pig chromosome 6q21. Results presented here suggest associations between the polymorphisms in the MAPK8, RETN and HSD11B1 genes with several phenotypic measurements, including fat deposition traits in the pig. Because these genes have been implicated in obesity and diabetes in humans, and this study suggests associations with fat related traits, further research on these genes in swine may provide useful information on genetic factors underlying lean pork production.  相似文献   

17.
18.
We have investigated the frequency of methylation of several tumour suppressor genes in uveal melanoma. As the loss of one copy of chromosome 3 (monosomy 3), which is found in about half of these tumours, is tightly associated with metastatic disease, a special emphasis was laid on genes located on this chromosome, including the fragile histidine triad (FHIT), von Hippel-Lindau (VHL), beta-catenin (CTNNB1), activated leukocyte cell adhesion molecule (ALCAM) and retinoic acid receptor-beta2 (RARB) genes. In addition, the methylation patterns of the CpG-rich regions 5' of the E-cadherin (CDH1), p16/cyclin-dependent kinase inhibitor 2 A (CDKN2A) and retinoblastoma (RB1) genes were analysed by bisulphite genomic sequencing or methylation-specific PCR (MSP). Furthermore, the SNRPN and D15S63 loci, which are located in the imprinted region of chromosome 15, were included in the study. Aberrant methylation was detected in nine of 40 tumours analysed: The imprinted SNRPN and D15S63 loci were hypermethylated in three tumours, all of which retained both copies of chromosome 3. Methylated RARB alleles were detected in three tumours, whereas in three other tumours CDKN2A was found to be methylated. As we did not find RARB and CDKN2A preferentially methylated in tumours with monosomy 3, which is a significant predictor of metastatic disease, we suggest that these genes may play a causative role in the formation of uveal melanoma but not in the development of metastases.  相似文献   

19.
Phosphorylation by protein kinase is a ubiquitous key mechanism in translating external stimuli such as drought stress. NPK1 is a mitogen-activated protein kinase kinase kinase identified in Nicotiana tabacum and plays important roles in cytokinesis and auxin signaling transduction and responses to multiple stresses. Here we report the evolution, structure, and comprehensive expression profile of 21 NPK1-like genes in rice (Oryza sativa L.). Phylogenetic analysis of NPK1-like sequences in rice (OsNPKL), Arabidopsis, and other plants reveals that NPK1-like genes could be classified into three subgroups. Three OsNPKL gene clusters, located on chromosome 1 (OsNPKL1, 2, 3, and 4), 5 (OsNPKL14 and 15), and 10 (OsNPKL19 and 20), respectively, were identified in the rice genome. These clustered genes, which most likely evolved by tandem gene duplication, belong to the same phylogenetic subgroup, with similar genomic structures and conserved motifs in the kinase domain, which is unique to this subgroup. Expression analysis of OsNPKL genes under abiotic stresses suggests that the stress-responsive genes are mainly from the same subgroup. Especially interesting is that all the clustered genes are induced by drought, salt, or cold stress, and a few members are very strongly induced by drought. Some of the clustered genes are also induced by abscisic acid. The gene cluster on chromosome 1 is co-located with a quantitative trait locus (QTL) related to drought resistance. Although the drought-induced expression levels of the four genes in the cluster show no difference between the two parents used for QTL mapping, sequence variation in coding regions of the genes between the parents has provided some clues for further functional characterization of this gene cluster in abiotic stress tolerance in rice.  相似文献   

20.
We analyzed RNA gene expression in neurons from 16 cases in four categories, HIV associated dementia with HIV encephalitis (HAD/HIVE), HAD alone, HIVE alone, and HIV-1-positive (HIV+)with neither HAD nor HIVE. We produced the neurons by laser capture microdissection (LCM) from cryopreserved globus pallidus. Of 55,000 gene fragments analyzed, expression of 197 genes was identified with significance (p = 0.005).We examined each gene for its position in the human genome and found a non-stochastic occurrence for only seven genes, on chromosome 22. Six of the seven genes were identified, CSNK1E (casein kinase 1 epsilon), DGCR8 (Di George syndrome critical region 8), GGA1 (Golgi associated gamma adaptin ear containing ARF binding protein 1), MAPK11 (mitogen activated protein kinase 11), SMCR7L (Smith-Magenis syndrome chromosome region candidate 7-like), andTBC1D22A (TBC1 domain family member 22A). Six genes (CSNK1E, DGCR8, GGA1, MAPK11, SMCR7L, and one unidentified gene) had similar expression profiles across HAD/HIVE, HAD, and HIVE vs. HIV+ whereas one gene (TBC1D22A) had a differing gene expression profile across these patient categories. There are several mental disease-related genes including miRNAs on chromosome 22 and two of the genes (DGCR8 and SMCR7L) identified here are mental disease-related. We speculate that dysregulation of gene expression may occur through mechanisms involving chromatin damage and remodeling. We conclude that the pathogenesis of NeuroAIDS involves dysregulation of expression of mental disease-related genes on chromosome 22 as well as additional genes on other chromosomes. The involvement of these genes as well as miRNA requires additional investigation since numerous genes appear to be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号