首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the past, bile acids were considered to be just detergent molecules derived from cholesterol in the liver. They were known to be important for the solubilization of cholesterol in the gallbladder and for stimulating the absorption of cholesterol, fat-soluble vitamins, and lipids from the intestines. However, during the last two decades, it has been discovered that bile acids are regulatory molecules. Bile acids have been discovered to activate specific nuclear receptors (farnesoid X receptor, preganane X receptor, and vitamin D receptor), G protein coupled receptor TGR5 (TGR5), and cell signaling pathways (c-jun N-terminal kinase 1/2, AKT, and ERK 1/2) in cells in the liver and gastrointestinal tract. Activation of nuclear receptors and cell signaling pathways alter the expression of numerous genes encoding enzyme/proteins involved in the regulation of bile acid, glucose, fatty acid, lipoprotein synthesis, metabolism, transport, and energy metabolism. They also play a role in the regulation of serum triglyceride levels in humans and rodents. Bile acids appear to function as nutrient signaling molecules primarily during the feed/fast cycle as there is a flux of these molecules returning from the intestines to the liver following a meal. In this review, we will summarize the current knowledge of how bile acids regulate hepatic lipid and glucose metabolism through the activation of specific nuclear receptors and cell signaling pathways.  相似文献   

3.
4.
胆汁酸受体FXR 的研究进展   总被引:14,自引:0,他引:14  
Li S  Zhang ZW  Guan YF 《生理科学进展》2003,34(4):314-318
法尼酯衍生物X受体(FXR)是一种胆汁酸受体,在胆汁酸代谢和胆固醇代谢中发挥重要作用,并有望成为降低胆固醇,治疗某些心血管病及肝脏疾病的治疗靶点。本文介绍了FXR的发现、FXR在调控胆汁酸和脂质代谢中的作用,以及FXR在心血管疾病治疗中的应用前景。  相似文献   

5.
6.
7.
8.
Estrogens are known to cause hepatotoxicity such as intrahepatic cholestasis in susceptible women during pregnancy, after administration of oral contraceptives, or during postmenopausal replacement therapy. Enterohepatic nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive active/androstane receptor (CAR) are important in maintaining bile acid homeostasis and protecting the liver from bile acid toxicity. However, no nuclear receptor has been implicated in the mechanism for estrogen-induced hepatotoxicity. Here Era(-/-), Erb(-/-), Fxr(-/-), Pxr(-/-), and Car(-/-) mice were employed to show that Era(-/-) mice were resistant to synthetic estrogen 17alpha-ethynylestradiol (EE2)-induced hepatotoxicity as indicated by the fact that the EE2-treated Era(-/-) mice developed none of the hepatotoxic phenotypes such as hepatomegaly, elevation in serum bile acids, increase of alkaline phosphatase activity, liver degeneration, and inflammation. Upon EE2 treatment, estrogen receptor alpha (ERalpha) repressed the expression of bile acid and cholesterol transporters (bile salt export pump (BSEP), Na(+)/taurocholate cotransporting polypeptide (NTCP), OATP1, OATP2, ABCG5, and ABCG8) in the liver. Consistently, biliary secretions of both bile acids and cholesterol were markedly decreased in EE2-treated wild-type mice but not in the EE2-treated Era(-/-) mice. In addition, ERalpha up-regulated the expression of CYP7B1 and down-regulated the CYP7A1 and CYP8B1, shifting bile acid synthesis toward the acidic pathway to increase the serum level of beta-muricholic acid. ERbeta, FXR, PXR, and CAR were not involved in regulating the expression of bile acid transporter and biosynthesis enzyme genes following EE2 exposure. Taken together, these results suggest that ERalpha-mediated repression of hepatic transporters and alterations of bile acid biosynthesis may contribute to development of the EE2-induced hepatotoxicity.  相似文献   

9.
10.
Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.   总被引:12,自引:0,他引:12  
The major metabolic pathway for elimination of cholesterol is via conversion to bile acids. In addition to this metabolic function, bile acids also act as signaling molecules that negatively regulate their own biosynthesis. However, the precise nature of this signaling pathway has been elusive. We have isolated an endogenous biliary component (chenodeoxycholic acid) that selectively activates the orphan nuclear receptor, FXR. Structure-activity analysis defined a subset of related bile acid ligands that activate FXR and promote coactivator recruitment. Finally, we show that ligand-occupied FXR inhibits transactivation from the oxysterol receptor LXR alpha, a positive regulator of cholesterol degradation. We suggest that FXR (BAR) is the endogenous bile acid sensor and thus an important regulator of cholesterol homeostasis.  相似文献   

11.
Cafestol, a diterpene present in unfiltered coffee brews such as Scandinavian boiled, Turkish, and cafetière coffee, is the most potent cholesterol-elevating compound known in the human diet. Several genes involved in cholesterol homeostasis have previously been shown to be targets of cafestol, including cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid biosynthesis. We have examined the mechanism by which cafestol elevates serum lipid levels. Changes in several lipid parameters were observed in cafestol-treated APOE3Leiden mice, including a significant increase in serum triglyceride levels. Microarray analysis of these mice identified alterations in hepatic expression of genes involved in lipid metabolism and detoxification, many of which are regulated by the nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor (PXR). Further studies demonstrate that cafestol is an agonist ligand for FXR and PXR, and that cafestol down-regulates expression of the bile acid homeostatic genes CYP7A1, sterol 12alpha-hydroxylase, and Na(+)-taurocholate cotransporting polypeptide in the liver of wild-type but not FXR null mice. Cafestol did not affect genes known to be up-regulated by FXR in the liver of wild-type mice, but did increase expression of the positive FXR-target genes intestinal bile acid-binding protein and fibroblast growth factor 15 (FGF15) in the intestine. Because FGF15 has recently been shown to function in an enterohepatic regulatory pathway to repress liver expression of bile acid homeostatic genes, its direct induction in the gut may account for indirect effects of cafestol on liver gene expression. PXR-dependent gene regulation of cytochrome P450 3A11 and other targets by cafestol was also only seen in the intestine. Using a double FXR/PXR knockout mouse model, we found that both receptors contribute to the cafestol-dependent induction of intestinal FGF15 gene expression. In conclusion, cafestol acts as an agonist ligand for both FXR and PXR, and this may contribute to its impact on cholesterol homeostasis.  相似文献   

12.
孤儿受体与胆固醇及胆汁酸的代谢调节   总被引:1,自引:0,他引:1  
30多年前,已经发现体内胆固醇及胆汁酸在转录水平受反馈激活或反馈抑制的调节,其机理不清楚。最近,随着孤儿受体LXR基因的克隆及其功能的研究,逐步认识到包括LXR在内的几种孤儿受体作为体内胆固醇及胆汁酸的感受器,在转录水平调节体内胆固醇及胆汁酸的代谢平衡。这4类孤儿受体在胆固醇及其代谢产物与自身代谢平衡之间建立了直接的联系。综述了4类孤儿受体的研究进展,特别是它们和胆固醇及胆汁酸代谢平衡的关系。  相似文献   

13.
Cholesterol homeostasis in mammals involves pathways for biosynthesis, cellular uptake, and hepatic conversion to bile acids. Key genes for all three pathways are regulated by negative feedback control. Uptake and biosynthesis are directly regulated by cholesterol through its inhibition of the proteolytic activation of the sterol regulatory element binding proteins. The conversion of cholesterol into bile acids in the liver is regulated through the bile acid-dependent induction of the negatively acting small heterodimer partner nuclear receptor. In this report, we have shown that the small heterodimer partner also directly regulates cholesterol biosynthesis through inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase but has no effect on low density lipoprotein receptor expression. This has significant metabolic significance, as it provides both a mechanism to independently regulate cholesterol synthesis from uptake (an essential regulatory feature known to occur in vivo) and a pathway for direct regulation of cholesterol biosynthesis by bile acids. This latter feature ensures that the early phase of bile acid synthesis (pre-cholesterol) is in metabolic communication with the later stages of the pathway to properly regulate whole pathway flux. This highlights an important regulatory feature that is shared with other key branched, multienzyme pathways, such as glycolysis, where pathway outflow through pyruvate kinase is regulated by the concentration of a key early intermediate, fructose 1,6-bisphosphate.  相似文献   

14.
Bile acids are synthesized from cholesterol in the liver and are excreted into bile via the hepatocyte canalicular bile salt export pump. After their passage into the intestine, bile acids are reabsorbed in the ileum by sodium-dependent uptake across the apical membrane of enterocytes. At the basolateral domain of ileal enterocytes, bile acids are extruded into portal blood by the heterodimeric organic solute transporter OSTalpha/OSTbeta. Although the transport function of OSTalpha/OSTbeta has been characterized, little is known about the regulation of its expression. We show here that human OSTalpha/OSTbeta expression is induced by bile acids through ligand-dependent transactivation of both OST genes by the nuclear bile acid receptor/farnesoid X receptor (FXR). FXR agonists induced endogenous mRNA levels of OSTalpha and OSTbeta in cultured cells, an effect that was not discernible upon inhibition of FXR expression by small interfering RNAs. Furthermore, OST mRNAs were induced in human ileal biopsies exposed to the bile acid chenodeoxycholic acid. Reporter constructs containing OSTalpha or OSTbeta promoters were transactivated by FXR in the presence of its ligand. Two functional FXR binding motifs were identified in the OSTalpha gene and one in the OSTbeta gene. Targeted mutation of these elements led to reduced inducibility of both OST promoters by FXR. In conclusion, the genes encoding the human OSTalpha/OSTbeta complex are induced by bile acids and FXR. By coordinated control of OSTalpha/OSTbeta expression, bile acids may adjust the rate of their own efflux from enterocytes in response to changes in intracellular bile acid levels.  相似文献   

15.
To investigate changes in bile acid biosynthesis in chicken (Gallus gallus) during embryonic stages, we studied the contribution of hepatic and plasma total bile acid levels, mRNA expression of cholesterol 7 alpha-hydroxylase (CYP7A1), and the expression of its regulatory genes in two embryo models (i.e., broilers and layers) differing in lipid metabolism. Total bile acid levels in plasma and liver were low during embryonic stages, as well as expression of CYP7A1. At hatch (P0), hepatic and plasma total bile acid levels and CYP7A1 mRNA expression in liver were markedly increased in both models. The hepatic mRNA expression of liver X receptor (LXR)alpha, a regulator of CYP7A1 gene expression gradually decreased with developmental stages of both broilers and layers. The hepatic mRNA expression of farnesoid X receptor (FXR), a repressor of CYP7A1 gene expression, also decreased with embryonic development. The present results showed that the mRNA expression of CYP7A1 and synthesis of bile acids was low in embryonic stages, suggesting that FXR might be a key regulator of CYP7A1 gene expression in the chicken embryo.  相似文献   

16.
17.
18.
Hepatocyte nuclear factor 4alpha (HNF4alpha) has an important role in regulating the expression of liver-specific genes. Because bile acids are produced from cholesterol in liver and many enzymes involved in their biosynthesis are preferentially expressed in liver, the role of HNF4alpha in the regulation of bile acid production was examined. In mice, unconjugated bile acids are conjugated with taurine by the liver-specific enzymes, bile acid-CoA ligase and bile acid-CoA:amino acid N-acyltransferase (BAT). Mice lacking hepatic HNF4alpha expression exhibited markedly decreased expression of the very long chain acyl-CoA synthase-related gene (VLACSR), a mouse candidate for bile acid-CoA ligase, and BAT. This was associated with markedly elevated levels of unconjugated and glycine-conjugated bile acids in gallbladder. HNF4alpha was found to bind directly to the mouse VLACSR and BAT gene promoters, and the promoter activities were dependent on HNF4alpha-binding sites and HNF4alpha expression. In conclusion, HNF4alpha plays a central role in bile acid conjugation by direct regulation of VLACSR and BAT in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号