首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have examined the initial phase of fibrin formation, thrombin-catalyzed fibrinopeptide cleavage, from adsorbed fibrinogen using surface plasmon resonance and liquid chromatography-mass spectrometry. Fibrinogen adsorption impaired thrombin-fibrinogen interactions compared to the interactions of thrombin with fibrinogen in solution. The properties of the underlying substrate significantly affected the extent and kinetics of fibrinopeptide cleavage, and the conversion of adsorbed fibrinogen to fibrin. Fibrinogen adsorbed on negatively charged surfaces (carboxyl-terminated self-assembled monolayers) released a smaller amount of fibrinopeptides, at a reduced rate relative to those of hydrophobic, hydrophilic, and positively charged surfaces (methyl-, hydroxyl-, and amine-terminated self-assembled monolayers, respectively). Additionally, the conversion of adsorbed fibrinogen to fibrin was comparatively inefficient at the negatively charged surface. These data correlated well with trends previously reported for fibrin proliferation as a function of surface properties. We conclude that thrombin interactions with adsorbed fibrinogen determine the extent of subsequent fibrin proliferation on surfaces.  相似文献   

2.
The irreversible adsorption of proteins on artificial surfaces plays an important role in a wide variety of practical problems. The simple analytical models based on definite concepts regarding the mechanisms of interfacial evolution can be used efficiently for characterization of protein-surface interactions by analyzing the intrinsic kinetics of the process. In this article, analytical expressions are derived for the adsorption kinetics that take into account the presence of more than one adsorbed state for proteins in biofilms. It is shown that the experimentally observed dependence of the adsorbed mass on the concentration of protein in solution can be reproduced with this model, and the approach provides a rapid method for obtaining quantitative parameters for the adsorption process. It is shown by analytical approximation of the kinetic curves for fibrinogen adsorption onto an unmodified gold surface studied by a surface plasmon resonance biosensor that this model is in good quantitative agreement with experiments. It is found that the rate of adsorption, controlled mainly by the mass flow from the solution, determines the contribution both to self-assembling and spreading, resulting in variations of adsorbed fibrinogen interfacial structures.  相似文献   

3.
A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution.  相似文献   

4.
The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved.  相似文献   

5.
It is shown that scanning force microscopy (SFM), operated in the attractive mode, can be used to obtain high resolution pictures of adsorbed fibrinogen molecules on solid surfaces, without the need for staining or special microscope grids. SFM also reveals the three-dimensional structure of the adsorbed molecules. Two forms of adsorbed fibrinogen are demonstrated on hydrophobic silicone dioxide surfaces; a trinodular about 60 nm long and a globular with about a 40 nm diameter. Polymeric networks formed after storage of the surface with adsorbed fibrinogen in PBS for 11 days are also shown. The SFM-results for the trinodular structure suggest the existence of loops or peptide chains extending outside the basic structure of the fibrinogen molecule.  相似文献   

6.
N. Ockman 《Biopolymers》1978,17(5):1273-1284
The determination of structural changes in antibodies due to their specific interaction with antigenic proteins is an important problem in understanding immunological responses. The method of polarized ATR infrared spectroscopy applied to protein films adsorbed on an appropriate solid surface can give information about the conformation of the polypeptide chains, as well as their orientation with respect to the surface. The adsorption of anti-rabbit serum albumin onto monomolecular films of rabbit serum albumin, bovine serum albumin, and ovalbumin, and of anti-ovalbumin onto films of rabbit serum albumin and ovalbumin at a Ge-aqueous interface have been studied by this technique. The intensity of the amide I absorption indicates that the strengths of binding of these three albumin proteins with anti-rabbit serum albumin is, under appropriate conditions, in the order rabbit > bovine ? ovalbumin; with anti-ovalbumin, it is ovalbumin ? rabbit. Since the frequencies of the amide I band appear near 1655 cm?1 for all the proteins and protein complexes studied, the major contributions to their conformation comes from α-helix and random-coil structures. The average orientation of the transition moments of the amide I and A bands has been shown to be about 75° with respect to the surface normal. This indicates that the polypeptides chains are on the average approximately parallel to the surface for all the systems studied. Consequently, the effect of the specific antibody-antigen interaction on the conformation and orientation of the former seems negligible in these films.  相似文献   

7.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was applied to investigate the interaction of bovine serum albumin (BSA) and fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics and adsorption-induced secondary structure changes of the proteins. Highly negative apparent Gibbs energy of adsorption values revealed a spontaneous adsorption of both proteins onto the surface, accompanied by significant changes in their secondary structure. It was determined that, at saturated surface coverages, lateral interactions between the adsorbed BSA molecules induced rather extensive secondary structure changes. Fibrinogen's two coiled coils appeared to undergo negligible secondary structure changes upon adsorption of the protein, while large structural rearrangements of the protein's globular domains occurred upon adsorption. The secondary structure of adsorbed fibrinogen was not influenced by lateral interactions between the adsorbed fibrinogen molecules. PM-IRRAS was deemed to be viable for investigating protein adsorption and for obtaining information on adsorption-induced changes in their secondary structures.  相似文献   

8.
One of the most versatile methods for monitoring the structure of proteins, either in solution or in the solid state, is Fourier transform infrared spectroscopy. Also known as mid-range infrared, which covers the frequency range from 4000 to 400 cm-1, this wavelength region includes bands that arise from three conformationally sensitive vibrations within the peptide backbone (amide I, II and III). Of these vibrations, amide I is the most widely used and can provide information on secondary structure composition and structural stability. One of the advantages of infrared spectroscopy is that it can be used with proteins that are either in solution or in the solid state. The use of infrared to monitor protein structure and stability is summarized herein. In addition, specialized infrared methods are presented, such as techniques for the study of membrane proteins and oriented samples. In addition, there is a growing body of literature on the use of infrared to follow reaction kinetics and ligand binding in proteins, as well as a number of infrared studies on protein dynamics. Finally, the potential for using near-infrared spectroscopy to study protein structure is introduced.  相似文献   

9.
Hydrophilic coatings were produced on flat hydrophobic substrates featuring n-octadecyltrichlorosilane (ODTS) and synthetic polypropylene (PP) nonwoven surfaces through the adsorption of denatured proteins. Specifically, physisorption from aqueous solutions of α-lactalbumin, lysozyme, fibrinogen, and two soy globulin proteins (glycinin and β-conglycinin) after chemical (urea) and thermal denaturation endowed the hydrophobic surfaces with amino and hydroxyl functionalities, yielding enhanced wettability. Proteins adsorbed strongly onto ODTS and PP through nonspecific interactions. The thickness of adsorbed heat-denatured proteins was adjusted by varying the pH, protein concentration in solution, and adsorption time. In addition, the stability of the immobilized protein layer was improved significantly after interfacial cross-linking with glutaraldehyde in the presence of sodium borohydride. The amino and hydroxyl groups present on the protein-modified surfaces served as reactive sites for the attachment of polymerization initiators from which polymer brushes were grown by surface-initiated atom-transfer radical polymerization of 2-hydroxyethyl methacrylate. Protein denaturation and adsorption as well as the grafting of polymeric brushes were characterized by circular dichroism, ellipsometry, contact angle, and Fourier transform infrared spectroscopy in the attenuated total reflection mode.  相似文献   

10.
One of the most versatile methods for monitoring the structure of proteins, either in solution or in the solid state, is Fourier transform infrared spectroscopy. Also known as mid-range infrared, which covers the frequency range from 4000 to 400 cm(-1), this wavelength region includes bands that arise from three conformationally sensitive vibrations within the peptide backbone (amide I, II and III). Of these vibrations, amide I is the most widely used and can provide information on secondary structure composition and structural stability. One of the advantages of infrared spectroscopy is that it can be used with proteins that are either in solution or in the solid state. The use of infrared to monitor protein structure and stability is summarized herein. In addition, specialized infrared methods are presented, such as techniques for the study of membrane proteins and oriented samples. In addition, there is a growing body of literature on the use of infrared to follow reaction kinetics and ligand binding in proteins, as well as a number of infrared studies on protein dynamics. Finally, the potential for using near-infrared spectroscopy to study protein structure is introduced.  相似文献   

11.
Biomineralization on porous polyester membranes was examined using an improved alternate soaking process (ASP). The effect of ion migration for the formation of hydroxyapatite (HAp) was shown to be crucial. Ion migration was improved by reducing the surface tension by mixing ethanol into an aqueous solution. The resulting hybrid materials were evaluated in terms of calcium content; structure using scanning electron microscopy (SEM), X-ray diffraction (XRD), and infrared spectroscopy (IR); and protein adsorption. The amount of formed HAp was controlled by the number of ASP cycles and also through the ethanol content of the mixed solvent. As the formation of HAp increased, the formed structure could be verified using SEM, IR, and XRD. Protein adsorption was investigated using albumin, gamma-globulin, and fibrinogen, and the amount of adsorbed protein was well-correlated with that of the formed HAp. This result shows that the total amount of the adsorbed proteins can be regulated by the HAp content. In summary, a tunable protein reservoir was formed on a porous polyester membrane.  相似文献   

12.
Changes in the amide bands in Fourier transform infrared spectra of proteins are generally attributed to alterations in protein secondary structure. In this study spectra of five different globular proteins were compared in the solid and solution states recorded with several sampling techniques. Spectral differences for each protein were observed between the various sampling techniques and physical states, which could not all be explained by a change in protein secondary structure. For example, lyophilization in the absence of lyoprotectants caused spectral changes that could (partially) have been caused by the removal of hydrating water molecules rather than secondary structural changes. Moreover, attenuated total reflectance spectra of proteins in H2O were not directly comparable to transmission spectra due to the anomalous dispersion effect. Our study also revealed that the amide I, II, and III bands differ in their sensitivities to changes in protein conformation: For example, strong bands in the region 1620-1630 and 1685-1695 cm(-1) were seen in the amide I region of aggregated protein spectra. Surprisingly, absorbance of such magnitudes was not observed in the amide II and III region. It appears, therefore, that only the amide I can be used to distinguish between intra- and intermolecular beta-sheet formation. Considering the differing sensitivity of the different amide modes to structural changes, it is advisable to utilize not only the amide I band, but also the amide II and III bands, to determine changes in protein secondary structure. Finally, it is important to realize that changes in these bands may not always correspond to secondary structural changes of the proteins.  相似文献   

13.
H Quiquampoix 《Biochimie》1987,69(6-7):753-763
The enzymatic activity of sweet almond beta-D-glucosidase adsorbed on various mineral surfaces was studied. Our aim was to elucidate the mechanism responsible for the observed changes in catalytic activity. The results of the investigation are discussed with reference to the hypotheses generally proposed to explain the well-documented shift in optimal pH of the activity of adsorbed enzymes. By separate determinations of enzymatic activity in a mineral suspension and of its supernatant solution, and comparison with a control without mineral added, we obtained accurate measurements of the catalytic activity of the adsorbed enzyme alone. Different pH profiles of activity profiles were found when the enzyme was adsorbed onto montmorillonite, kaolinite and goethite. The activity profiles, were also found to vary with ionic strength, the pH at which enzyme adsorbed onto the mineral surface, and in the case of goethite, on the nature of the anions in the buffer. Our observations cannot be adequately explained by assuming a more acidic microenvironment at the mineral surface. We postulate that on some mineral surfaces a conformational change is induced in the adsorbed protein, which reduces its catalytic activity. We contend that such conformational changes are due primarily to electrostatic forces.  相似文献   

14.
Using surface-enhanced infrared absorption (SEIRA) spectroscopy of dry films of colloidal gold (CG) bioconjugates with protein A, it is shown that certain characteristic bands of the protein (e.g., amide I, amide II and some other vibration modes) are essentially affected by the metal surface. Thus, the method may be used for controlling the quality of such bioconjugates. Moreover, it is demonstrated that the biospecific reaction of protein A attached to CG particles with human immunoglobulin G (IgG) results in further essential changes in SEIRA spectra, providing a means for an easy and rapid IR spectroscopic detection of biospecific immunochemical interactions (i.e., spectroimmunochemistry). The results obtained can form a basis for developing test systems for detecting various biospecific interactions.  相似文献   

15.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

16.
A new approach to optically transduce antigen-antibody association, needing no label, is described herein, taking advantage of the ability of reflection-absorption infrared (IR) spectroscopy to analyze organic thin films at the surface of reflective materials with high sensitivity. As a proof-of-principle, this new technique was applied to the immunodetection of the herbicide atrazine. Gold-coated chips were covered with a capture layer consisting of a protein derivative of the herbicide atrazine covalently bound to a self-assembled monolayer containing a carboxy-terminated thiolate. Successive binding of anti-atrazine antibody and secondary anti-rabbit immunoglobulin G antibody resulted in a change of the IR absorption properties of the organic film at the sensor surface. The two prominent amide I and II bands observed on the surface IR spectra were taken for semiquantitative analysis of the adsorbed protein amount. The presence of increasing amounts of atrazine resulted in the progressive inhibition of antibodies binding to the sensors, yielding a relative lower increase of the IR signals. The deduced standard curves displayed a sigmoidal shape typical of competitive inhibition assays. The test midpoint (IC(50)) and the limit of detection (IC(80)) were found to be in the nanomolar range and very close to those measured by an in-house enzyme-linked immunosorbent assay using the same antibody and the same antigen competitor.  相似文献   

17.
Competitive protein adsorption plays a key role in the surface hemocompatibility of biological implants. We describe a quantitative chromatography method to measure the coverage of multiple proteins physisorbed to surfaces. In this method adsorbed proteins are displaced by CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and then analyzed by high performance liquid chromatography to separate and quantify the individual proteins, in this case bovine serum albumin (BSA) and bovine fibrinogen (Fg). CHAPS displaced over 95% of the adsorbed proteins and was easily removed from solution by dialysis. This method was tested by measuring the coverage of BSA, 66 kDa, and Fg, 340 kDa, simultaneously adsorbed from solutions with concentration of 20 microg/ml, on bare and dextranized silicon. Relative to silicon, the dextranized surfaces were found to strongly inhibit protein adsorption, decreasing BSA and Fg coverages by 76 and 60%, respectively.  相似文献   

18.
The caseinate-induced competitive displacement of whey protein from planar air-water interfaces was investigated based on atomic force microscopy (AFM) imaging and that from the surfaces of oil droplets immersed in aqueous solution based on AFM force spectroscopy. After the addition of sodium caseinate to the sub-phase, the surface pressure of planar interfacial films of pre-adsorbed whey protein increased from 8 mN/m to up to 21 mN/m. The thicknesses of interfacial films were uniform and remained to be approximately 2 nm at relatively low surface pressures up to 18 mN/m, while they became uneven at higher surface pressures and increased to up to 7.1 nm, presumably due to the compression of interfacial whey protein networks by adsorbed caseinate. The rigidity of oil droplets coated with protein adsorbed to their surfaces was then evaluated based on the slope of approximately linear force-distance curves obtained by pressing an oil droplet against another. The adsorption of whey protein to oil droplet surfaces increased droplets’ rigidity. The subsequent addition of caseinate to the bulk solution surrounding oil droplets coated with pre-adsorbed whey protein further increased droplets’ rigidity. The present results suggest that caseinate adsorbed to an interface to which whey protein had adsorbed in advance did not completely expel pre-adsorbed whey protein molecules into the aqueous phase but caused a compaction of interfacial whey protein networks and thereby strengthened the interfacial film.  相似文献   

19.
Li G  Yang P  Liao Y  Huang N 《Biomacromolecules》2011,12(4):1155-1168
To improve the blood compatibility and endothelialization simultaneously and to ensure the long-term effectiveness of the cardiovascular implants, we developed a surface modification method, enabling the coimmobilization of biomolecules to metal surfaces. In the present study, a heparin and fibronectin mixture (Hep/Fn) covalently immobilized on a titanium (Ti) substrate for biocompatibility was investigated. Different systems [N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide, electrostatic] were used for the formation of Hep/Fn layers. Atomic force microscopy (AFM) showed that the roughness of the silanized Ti surface decreased after the immobilization of Hep/Fn. Fourier transform infrared spectroscopy (FTIR), Toluidine Blue O (TBO) test, and immunochemistry assay showed that Hep/Fn mixture was successfully immobilized on Ti surface. Blood compatibility tests (hemolysis rate, APTT, platelet adhesion, fibrinogen conformational change) showed that the coimmobilized films of Hep/Fn mixture reduced blood hemolysis rate, prolonged blood coagulation time, reduced platelets activation and aggregation, and induced less fibrinogen conformational change compared with a bare Ti surface. Endothelial cell (EC) seeding showed more EC with better morphology on pH 4 samples than on pH 7 and EDC/NHS samples, which showed rounded and aggregated cells. Systematic evaluation showed that the pH 4 samples also had much better blood compatibility. All results suggest that the coimmobilized films of Hep/Fn can confer excellent antithrombotic properties and with good endothelialization. We envisage that this method will provide a potential and effective solution for the surface modification of cardiovascular implant materials.  相似文献   

20.
The fixation in the bone of an artificial titanium tooth root is believed to be initiated by the rapid adsorption of the proteins present in the surgical cavity on the titanium surface. The study of this adsorption should make it possible to predict the osseointegration capacities of new implant surface treatments. We describe here a new method, based on matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), for quantifying proteins adsorbed on titanium surfaces fully identical to these designed for implantology. The key step of this method is a new MALDI-MS sample preparation allowing the adsorbed proteins to be removed from the surface and to be homogeneously dispersed in the matrix crystals. The adsorption of a model protein (lysozyme) on two titanium surfaces (polished and sandblasted) was studied in order to evaluate the method. The absolute MALDI-MS intensity was shown to vary linearly with the amount of adsorbed lysozyme. After dipping the titanium surfaces for different times in lysozyme solutions at different concentrations, the maximum amount of adsorbed lysozyme was measured by MALDI-MS and was shown to correspond to a lysozyme monolayer, which is consistent with results described in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号