首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two peptidases hydrolyzing the Pz-peptide substrate were identified in bovine semen. Each Pz-peptidase was strongly inhibited by chelating agents, suggesting both were metallopeptidases. However, these peptidases could be distinguished by other properties and were designated Pz-peptidases A and B. Pz-peptidase A hydrolyzed the Pz-peptide at the Leu-Gly bond, was inhibited by tosylphenylethylchloromethylketone (TPCK) but not by phosphoramidon and had a pH optimum near 6, whereas Pz-peptidase B cleaved the Pro-Leu bond, was inhibited by phosphoramidon but not by TPCK and had a pH optimum near 7. Seminal plasma, light particulates and cytoplasmic droplets contained almost exclusively Pz-peptidase A, and Pz-peptidase A predominated in sperm extracts. Pz-peptidase B was found primarily in sperm extracts, but Pz-peptidase B activity was also present in ultralight particulates. Pz-peptidase A of spermatozoa required Triton X-100 for complete extraction, but Pz-peptidase B was solubilized from spermatozoa by nitrogen decompression without detergents. Pz-peptidase B was inhibited by several detergents. In particular, addition of 0.1% Hyamine 2389 to sperm extracts inhibited 99% of the Pz-peptidase B activity. Thus, Pz-peptidase B may have been overlooked in previous studies employing extraction of spermatozoa with Hyamine 2389. The properties of both seminal PZ-peptidases were different from those of purified bovine testicular PZ-peptidase, suggesting that PZ-peptidases from these sources were not identical.  相似文献   

2.
Pz-peptidase is an endopeptidase that cleaves the synthetic substrate, 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-Arg (Pz-peptide), which was originally developed for the assay of Clostridium histolyticum collagenase (Wünsch and Heidrich, Hoppe-Seyler's Z. Physiol. Chem., 333, 149–151, 1963; Morales and Woessner, J. Biol. Chem., 252, 4855–4860, 1977). Pz-peptidase was purified from the culture filtrate of Bacillus licheniformis N22. The purified Pz-peptidase showed a molecular weight of 70,000 in SDS-polyacryl-amide gel electrophoresis and 150,000 in gel filtration. Optimal pH for cleavage of Pz-peptide was 7.8. The Pz-peptidase activity was strongly inhibited by metal chelators such as EDTA and O-phenanthroline. Substrate specificity studies indicated that Pz-peptidase cleaved oligopeptides at the Xaa-Gly site in Xaa-Gly-Pro. However, Pz-peptidase failed to hydrolyze native collage, denatured collagen, hemoglobin and casein.  相似文献   

3.
Bovine epididymal or ejaculated semen was fractionated by density gradient centrifugation in Percoll, and seminal components recovered from the gradients were subjected to additional separation and washing steps. This procedure resulted in isolation of four major seminal constituents: particle-free extracellular fluid, washed light particulates, washed cytoplasmic droplets, and washed spermatozoa. When assayed using the Pz-peptide substrate, all the isolated seminal fractions contained substantial Pz-peptidase activity. The extracellular fluid Pz-peptidase was present in soluble form, but Triton X-100 was required for complete extraction of the Pz-peptidase activity from the spermatozoa, cytoplasmic droplets, and light particulates. The greatest Pz-peptidase activities were observed in the cytoplasmic droplet and epididymal sperm extracts, whereas the activities in extracellular fluid, extracts of light particulates, and extracts of ejaculated spermatozoa were relatively low. Most of the Pz-peptidase activity in extracts of epididymal spermatozoa was attributable to cytoplasmic droplets. The specific Pz-peptidase activities found by regression analysis were 6.1 mU/billion attached cytoplasmic droplets and 1.1 mU/billion spermatozoa. These results established that in the bovine, cytoplasmic droplets were the major source of Pz-peptidase activity in semen and that Pz-peptidase was not primarily a spermatozoal enzyme.  相似文献   

4.
1. A proteolytic enzyme with some features of a carboxypeptidase has been purified some 1180-fold from the sap of French beans (Phaseolus vulgaris var. Prince). A bright blue protein, plastocyanin, was separated from the enzyme by DEAE-cellulose chromatography. 2. Unlike carboxypeptidase A or B of animal origin, there is no evidence that the enzyme is a metalloprotein. There was no stimulation of activity by a number of metal ions, reducing agents or 2-mercapto-ethanol. Neither EDTA nor 1,10-o-phenanthroline inhibited the enzyme. 3. The proteolytic enzyme from beans, readily soluble at neutral or slightly acidic pH values, has a pH optimum of pH5.6 for the hydrolysis of leucine from benzyloxy-carbonylglycyl-l-leucine. Solutions of the enzyme in 0.1m-sodium acetate, pH5.5, lose about 2% of their activity/week at 4 degrees . Virtually no loss of activity results after prolonged storage at -15 degrees . 4. Incubation of the bean enzyme with peptides indicates that the enzyme will release acidic, neutral and basic amino acid residues as well as proline, although adjacent acidic residues in a peptide appear to inhibit the enzyme. The possibility of endopeptidase activity in the purified preparation requires further examination.  相似文献   

5.
The first metallocarboxypeptidase (CP) was identified in pancreatic extracts more than 80 years ago and named carboxypeptidase A (CPA; now known as CPA1). Since that time, seven additional mammalian members of the CPA subfamily have been described, all of which are initially produced as proenzymes, are activated by endoproteases, and remove either C-terminal hydrophobic or basic amino acids from peptides. Here we describe the enzymatic and structural properties of carboxypeptidase O (CPO), a previously uncharacterized and unique member of the CPA subfamily. Whereas all other members of the CPA subfamily contain an N-terminal prodomain necessary for folding, bioinformatics and expression of both human and zebrafish CPO orthologs revealed that CPO does not require a prodomain. CPO was purified by affinity chromatography, and the purified enzyme was able to cleave proteins and synthetic peptides with greatest activity toward acidic C-terminal amino acids unlike other CPA-like enzymes. CPO displayed a neutral pH optimum and was inhibited by common metallocarboxypeptidase inhibitors as well as citrate. CPO was modified by attachment of a glycosylphosphatidylinositol membrane anchor to the C terminus of the protein. Immunocytochemistry of Madin-Darby canine kidney cells stably expressing CPO showed localization to vesicular membranes in subconfluent cells and to the plasma membrane in differentiated cells. CPO is highly expressed in intestinal epithelial cells in both zebrafish and human. These results suggest that CPO cleaves acidic amino acids from dietary proteins and peptides, thus complementing the actions of well known digestive carboxypeptidases CPA and CPB.  相似文献   

6.
A neutral protease from Bacillus subtilis var. amylosacchariticus was modified with tetranitromethane (TNM) at pH 8.0 for 1 h at 25 degrees C, by which treatment the proteolytic activity toward casein was markedly reduced, whereas activity changes toward N-blocked peptide substrates were variable depending upon the substrate used. The modified enzyme was digested with a Staphylococcus aureus V8 protease at pH 7.9 and the resultant peptides were separated by HPLC. Two peptides which contain nitrotyrosyl residue(s) were purified. One of the peptides was found to have an amino acid sequence of Thr-Ala-Asn-Leu-Ile-Tyr-Glu, which corresponds to residue Nos. 153-159 of the neutral protease, and Tyr-158 was identified as PTH-nitrotyrosine. The other one was the amino-terminal peptide of residue Nos. 1-22, and Tyr-21 was shown to be nitrated. From a comparison with the active site structure of thermolysin, which is a zinc metalloprotease with a high sequence homology to B. subtilis neutral proteases, nitration of Tyr-158 was inferred to be closely related to the activity changes of the neutral protease from B. subtilis var. amylosacchariticus.  相似文献   

7.
The substrate specificity of carboxypeptidase (F-II) purified from watermelon for various synthetic peptides and esters was examined kinetically. The enzyme showed a broad substrate specificity against various carbobenzoxy- and benzyl-dipeptides. Peptides containing glycine or proline were hydrolyzed slowly by the enzyme. Peptides containing hydrophobic amino acids were hydrolyzed rapidly. The presence of hydrophobic amino acid residues, not only at the C-terminal position but also at the second position and probably the third position from the C-terminal resulted in an increase in the rate of hydrolysis. Inhibition studies with diisopropyl flurophosphate and diastereomers of carbobenzoxy-Phe-Ala demonstrated that the peptidase and esterase activities of the enzyme are both catalyzed by the same site of the enzyme molecule, but the binding sites for peptides and esters seem not to be the same. The enzyme also had amidase activity, which was optimal at pH 7.0.  相似文献   

8.
Pz-peptidase was purified from rat testis and rabbit muscle. Zinc was detectable in the rat enzyme. The activity of the enzyme from both species was slowly but completely abolished by EDTA and restored by Zn2+. Free thiol groups were also important for the catalytic activity of rat Pz-peptidase, as previously reported for the rabbit enzyme. We conclude that in both species Pz-peptidase has the characteristics of a thiol-dependent metallo-endopeptidase.  相似文献   

9.
Endopeptidase 24.15, a metalloendopeptidase (EC 3.4.24.15) with an Mr of about 70,000, was purified to homogeneity from rat testes. The enzyme cleaves preferentially bonds on the carboxyl side of hydrophobic amino acids. Secondary enzyme-substrate interactions at sites removed from the scissile bond are indicated by the finding that a hydrophobic or bulky residue in the P3' position greatly contributes to substrate binding and catalytic efficiency. The isolated enzyme is inhibited by metal chelators and by thiols. Loss of enzymic activity after dialysis against EDTA can be restored by low concentrations of Zn2+ and Co2+ ions. The rate of reaction of the Co2+ enzyme with a synthetic substrate was higher than that of the Zn2+ enzyme. These results are consistent with the classification of the enzyme as a metalloendopeptidase. N-Carboxymethyl peptides that fulfil the binding requirements of the substrate recognition site of the enzyme act as potent competitive inhibitors. Biologically active peptides such as luteinizing hormone-releasing hormone, bradykinin and neurotensin are cleaved at sites consistent with the specificity of the enzyme deduced from studies with synthetic peptides. Dynorphin A (1-8)-peptide, beta-neoendorphin, metorphamide, and Metenkephalin-Arg6-Gly7-Leu8 are rapidly converted to the corresponding enkephalins. The testis enzyme is catalytically and immunologically closely related to the previously identified brain enzyme.  相似文献   

10.
J C Monboisse  J Labadie  P Gouet 《Biochimie》1979,61(10):1169-1175
The Acinetobacter spec collagenase has been almost completely purified. This enzyme is a true collagenase the activity of which is high on collagen. The enzyme is active on insoluble collagen, gelatin and the synthetic Pz-peptide, but has no proteolytic activity on casein or bovine serum-albumin. The collagenase was obtained on a simple medium with gelatin and yeast extract. The enzyme was purified by (NH4)2SO4 precipitation. DEAE cellulose column chromatography, Sephadex G 200 gel-filtration. The molecular weight of the enzyme was found to be 102 000 daltons, and its isoelectric point was found to be 7,7 +/- 0,2. The optimum pH and temperature for insoluble collagen hydrolysis were 7.6 and 37 degrees C, respectively; so, this collagenase corresponds to true collagenase. Hydrolysis of Pz-peptide is activated by Ca2+ and inhibited by metal ions (Cu2+, Fe3+, Zn2+, Pb2+, Hg2+). EDTA and o-phenanthroline induced a very significant reduction in enzyme activity. Iodoacetate and p-CMB induced a slight reduction in enzyme activity only at high concentrations (10-2M). The collagenase is most stable for temperatures less than or equal to 50 degrees C.  相似文献   

11.
A highly purified preparation of a cation-sensitive neutral endopeptidase was obtained from bovine pituitaries. The enzyme constitutes almost 0.1% of the protein in bovine pituitary homogenates. Polyacrylamide gel electrophoresis of the enzyme showed a single protein band, and in gel filtration experiments on calibrated Sepharose 6B columns the enzyme eluted slightly ahead of thyroglobulin, suggesting an apparent molecular weight of about 700,000. Polyacrylamide gel electrophoresis in SDS-containing buffers indicated the presence of three major components with molecular weights ranging from about 24,000 to 28,000. The enzyme hydrolyzes bonds between hydrophobic and small neutral amino acids in both model synthetic substrates and biologically active peptides such as substance P, LH-RH, and bradykinin. Peptide bonds in which the carbonyl group is contributed by a glutamyl or arginyl residue are also hydrolyzed, especially if they are preceded in the sequence by hydrophobic amino acids. Leupeptin exclusively inhibited enzymatic activity toward the arginine-containing substrates. This observation, together with the high molecular weight and broad specificity of the enzyme, raised the possibility that the isolated enzyme represents a proteolytic complex composed of units with distinctly different activities. Preliminary attempts to dissociate the enzyme into catalytic units of lower molecular weight were not successful and led to loss of activity.  相似文献   

12.
The developmental pattern in experimental rat granuloma tissue and the distribution in the tissues of a few animals (monkey, rabbit, guinea pig anrat) of a peptidase acting on a synthetic collagenase substrate, 4-phenylazobenzyloxycarbonyl-L-Pro-L-Leu-Gly-L-Pro-D-Arg (Pz-peptide) has been studied. Maximum enzyme activity was found in 4-month-old rats and on the fourth day of implantation of the cotton wick. Pz-peptidase appears to have a ubiquitous distribution in animal tissues; the highest enzyme activity was generally found in liver, intestine and kidney of the animals. The total activity in other organs (spleen, heart, lungs and brain) was much less compared to that of liver, intestine or kidney.  相似文献   

13.
A metallocarboxypeptidase produced by Streptomyces bikiniensis 27 strain (VKPM Ac-1783) (CPSb) was purified and characterized. The enzyme cleaves both basic and hydrophobic C-terminal amino acid residues from synthetic peptides, that is, it possesses specificity of mammalian carboxypeptidases A and B. The enzyme also hydrolyzes peptides bearing glutamic acid at the C-end. CPSb exhibits its maximal activity at pH 7.0–7.6 and 55°C. The nucleotide sequence encoding the mature CPSb in S. bikiniensis 27 (VKPM Ac-1783) genome (Accession No. GU362077) was determined. It is shown that the primary structure of the mature enzyme has a moderate degree of identity with orthologs from Streptomyces griseus (79% identity) and Streptomyces avermitilis (85% identity).  相似文献   

14.
A fibrinolytic metalloprotease has been purified from the fruiting bodies of the edible honey mushroom (Armillariella mellea). The enzyme has a molecular weight of 18538.1508, as measured by MALDI-TOF mass spectrometry and includes Zn2+ ion as found by ICP/MS. The N-terminal amino acid sequence, XXYNGXTXSRQTTLV, do not match any known protein or open reading frame. It hydrolyzes fibrinogen as well as fibrin, but does not show any proteolytic activity for other blood proteins such as thrombin, human albumin, bovine albumin, human IgG, hemoglobin, or urokinase. This protease hydrolyzes both A alpha and B beta subunits of human fibrinogen with equal efficiency. The enzyme activity was strongly inhibited by EDTA and 1,10-phenanthroline, indicating that the enzyme is a metalloprotease. No inhibition was found with PMSF, E-64, pepstatin, and 2-mercaptoethanol. The activity of the purified enzyme was slightly increased by Mg2+, Zn2+, and Co2+, but the enzyme was totally inhibited by Hg2+. It has broad substrate specificity for synthetic peptides, and a pH optimum at 7, suggested that the purified enzyme was a neutral protease. It was thermally stable up to 60 degrees C and the maximum fibrinolytic activity was at 55 degrees C.  相似文献   

15.
Locust adipokinetic hormone (AKH, pGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2) was used as the substrate to measure neuropeptide-degrading endopeptidase activity in neutral membranes from ganglia of the locust Schistocerca gregaria. Initial hydrolysis of AKH at neural pH by peptidases of washed neural membranes generated pGlu-Leu-Asn and Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2 as primary metabolites, demonstrating that degradation was initiated by cleavage of the Asn-Phe bond. Amastatin protected the C-terminal fragment from further metabolism by aminopeptidase activity without inhibiting AKH degradation. The same fragments were generated on incubation of AKH with purified pig kidney endopeptidase 24.11, and enzyme known to cleave peptide bonds that involve the amino group of hydrophobic amino acids. Phosphoramidon (10 microM), a selective inhibitor of mammalian endopeptidase 24.11, partially inhibited the endopeptidase activity of locust neural membranes. This phosphoramidon-sensitive activity was shown to enriched in a synaptic membrane preparation with around 80% of the activity being inhibited by 10 microM-phosphoramidon (IC50 = 0.2 microM). The synaptic endopeptidase was also inhibited by 1 mM-EDTA, 1 mM-1,10-phenanthroline and 1 microM-thiorphan, and the activity was maximal between pH 7.3 and 8.0. Localization of the phosphoramidon-sensitive enzyme in synaptic membranes is consistent with a physiological role for this endopeptidase in the metabolism of insect peptides at the synapse.  相似文献   

16.
Cathepsin E (CatE) is a major intracellular aspartic protease reported to be involved in cellular protein degradation and several pathological processes. Distinct cleavage specificities of CatE at neutral and acidic pH have been reported previously in studies using CatE purified from human gastric mucosa. Here, in contrast, we have analyzed the proteolytic activity of recombinant CatE at acidic and neutral pH using two separate approaches, RP-HPLC and FRET-based proteinase assays. Our data clearly indicate that recombinant CatE does not possess any proteolytic activity at all at neutral pH and was unable to cleave the peptides glucagon, neurotensin, and dynorphin A that were previously reported to be cleaved by CatE at neutral pH. Even in the presence of ATP, which is known to stabilize CatE, no proteolytic activity was observed. These discrepant results might be due to some contaminating factor present in the enzyme preparations used in previous studies or may reflect differences between recombinant CatE and the native enzyme.  相似文献   

17.
A metallo-endopeptidase, which appears to be an integral membrane protein of rat kidney, was purified to homogeneity by a series of standard chromatographic procedures. This enzyme significantly hydrolyzed human parathyroid hormone [hPTH(1-84)] and a synthetic substrate Suc-Leu-Leu-Val-Tyr-Mec (Suc = succinyl, Mec = 4-methyl-coumarinyl-7-amide). The purified enzyme had apparent molecular masses of 250 kDa on gel filtration, and 88 kDa and 245 kDa on sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing and non-reducing conditions, respectively. Its pH optimum for activity was 8.0-8.5 and its isoelectric point was pH 4.9. Its activity was inhibited by EDTA, EGTA and o-phenanthroline, but not by phosphoramidon. The metal-depleted enzyme was reactivated by the addition of metal ions. The enzyme was also inhibited by chymostatin and eglin C, and by thiol compounds. Of the synthetic substrates examined, the enzyme hydrolyzed only Suc-Leu-Leu-Val-Tyr-Mec, one of the synthetic substrates for alpha-chymotrypsin. It did not hydrolyze synthetic substrates with less than four amino acid residues with tyrosine in the P1 position. The enzyme hydrolyzed hPTH and reduced hen egg lysozyme but did not hydrolyze azocasein or [3H]methyl-casein. NH2-terminal amino acid sequence analyses of the degradation products of hPTH(1-84) and reduced hen egg lysozyme by the purified enzyme revealed that the enzyme preferentially cleaved these peptides at peptide bonds flanked by hydrophilic amino acid residues. Amino acid analyses showed that the main degradation products of PTH were hPTH(17-29), hPTH(30-38) and hPTH(74-84). The ability of the enzyme to hydrolyze peptide bonds flanked by hydrophilic amino acid residues and its inability to degrade azocasein distinguish it from several other kidney endopeptidases reported, such as endopeptidase 24.11 and meprin.  相似文献   

18.
The present investigation shows the ability of peptides to induce capture organ formation in Arthrobotrys oligospora when applied in a synthetic low nutrient medium. Under certain conditions casitone was shown to induce capture organ formation. The active principle in casitone was concentrated and purified by alternating procedures of ion exchange chromatography and gel chromatography in pyridine-acetic acid buffers. Crude casitone solutions were applied to columns of Dowex 50 W-X2 and eluted stepwise with 0.1–1.0 M pyridine-acetic acid pH 3.2–5.1. Active portions, free from most acid and neutral amino acids, were further purified on columns of Sephadex G-10 in 0.1 M pyridine-acetic acid pH 4.6. Aromatic amino acids and large molecules in the void volume could be separated from an active peptide mixture which was subjected to renewed ion exchange chromatography on Bio-Rad AG 50 W-X2. By stepwise and/or gradient elution in 0.1–0.5 M pyridine-acetic acid pH 3.2 fairly purified peptides were obtained. The composition of the test medium is an important factor in spontaneous capture organ formation. The peptides isolated from casitone induced capture organ formation, when given to the fungus in a synthetic mineral salt medium supplied with thiamin and biotin. Similar effects were obtained with small synthetic peptides in the same concentration (0.1 mg/ml). A large variety of peptides seem to be active when applied in a suitable medium. This was especially true for peptides with Rf > Rfleu on thin layers of cellulose developed with butanol-acetic acid-water (4: 1: 1). Of the peptides investigated valyl-peptides exerted the most drastic effect.  相似文献   

19.
A blood group A+ mucin-glycoprotein was purified from aqueous extracts of rat submandibular glands by sequential chromatography on columns of Sepharose CL-6B and Sephacryl S-300 in urea-containing buffers. Final purification was facilitated by reductive methylation which appeared to release contaminating (hydrophobic) peptides. Homogeneity of the purified mucin was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis at varying concentrations of acrylamide, lectin affinity chromatography, and Western blot analysis. In contrast to previously described preparations, the purified mucin contained only trace amounts of N-acetylglucosamine and aromatic amino acids. In addition, only low levels of basic amino acids were present.  相似文献   

20.
An enzyme hydrolyzing succinyl trialanine-4-nitroanilide was extracted from human kidney homogenate and purified by means of gel filtration on Sepharose CL-4B, anion-exchange chromatography on DEAE-Sepharose CL-6B and affinity chromatography on carbobenzoxy-L-Ala-L-Ala-D-Ala-polylysine-agarose. The purified enzyme consists of a single peptide, and its molecular weight was estimated to be about 125 000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme cleaved the substrate at the bond between succinyl dialanine and alanine-4-nitroanilide and showed a Km value of 2.1 mM at the optimal pH of 8.0. The activity was increased by Ca2+ and Mg2+, but was inhibited by phosphoramidon and ethylenediaminetetraacetic acid. The enzyme cleaved the oxydized insulin B chain, angiotensinogen tetradecapeptide, angiotensin I, angiotensin II, angiotensin III, [Sar1,Ala8]-angiotensin II, bradykinin, des-Pro2-bradykinin, Leu5-enkephalin, Met 5-enkephalin, [D-Ala2,Met5]-enkephalinamide and [D-Ala2-Met5]-enkephalin, but did not cleave [D-Ala2,D-Leu5]-enkephalin. The bonds on the amino side of the hydrophobic amino acids of the peptides were cleaved by the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号