首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To further characterize the gene structure of the proto-oncogene c-src and the mechanism for the genesis of the v-src sequence in Rous sarcoma virus, we have analyzed genomic and cDNA copies of the chicken c-src gene. From a cDNA library of chicken embryo fibroblasts, we isolated and sequenced several overlapping cDNA clones covering the full length of the 4-kb c-src mRNA. The cDNA sequence contains a 1.84-kb sequence downstream from the 1.6-kb pp60c-src coding region. An open reading frame of 217 amino acids, called sdr (src downstream region), was found 105 nucleotides from the termination codon for pp60c-src. Within the 3' noncoding region, a 39-bp sequence corresponding to the 3' end of the RSV v-src was detected 660 bases downstream of the pp60c-src termination codon. The presence of this sequence in the c-src mRNA exon supports a model involving an RNA intermediate during transduction of the c-src sequence. The 5' region of the c-src cDNA was determined by analyzing several cDNA clones generated by conventional cloning methods and by polymerase chain reaction. Sequences of these chicken embryo fibroblast clones plus two c-src cDNA clones isolated from a brain cDNA library show that there is considerable heterogeneity in sequences upstream from the c-src coding sequence. Within this region, which contains at least 300 nucleotides upstream of the translational initiation site in exon 2, there exist at least two exons in each cDNA which fall into five cDNA classes. Four unique 5' exon sequences, designated exons UE1, UE2, UEX, and UEY, were observed. All of them are spliced to the previously characterized c-src exons 1 and 2 with the exception of type 2 cDNA. In type 2, the exon 1 is spliced to a novel downstream exon, designated exon 1a, which maps in the region of the c-src DNA defined previously as intron 1. Exon UE1 is rich in G+C content and is mapped at 7.8 kb upstream from exon 1. This exon is also present in the two cDNA clones from the brain cDNA library. Exon UE2 is located at 8.5 kb upstream from exon 1. The precise locations of exons UEX and UEY have not been determined, but both are more than 12 kb upstream from exon 1. The existence and exon arrangements of these 5' cDNAs were further confirmed by RNase protection assays and polymerase chain reactions using specific primers. Our findings indicate that the heterogeneity in the 5' sequences of the c-src mRNAs results from differential splicing and perhaps use of distinct initiation sites. All of these RNAs have the potential of coding for pp60c-src, since their 5' exons are all eventually joined to exon 2.  相似文献   

2.
The nucleotide sequence and the tissue-specific expression of Drosophila c-src   总被引:30,自引:0,他引:30  
M A Simon  B Drees  T Kornberg  J M Bishop 《Cell》1985,42(3):831-840
We have examined the coding capability and expression of the Drosophila homolog of the vertebrate proto-oncogene c-src. Sequence analysis of a cDNA clone representing the Drosophila c-src locus suggests that the gene encodes a 62 kd protein that is remarkably similar to the protein product of chicken c-src. The Drosophila c-src locus is transcribed into three mRNAs that are each regulated independently during development. Drosophila c-src RNA is abundant in embryos and pupae but rare in larvae and adults. In situ hybridization reveals that after the first 8 hr of development, c-src RNA accumulates almost exclusively in neural tissues such as the brain, ventral nerve chord, and eye-antennal discs, and in differentiating smooth muscle. We conclude that c-src may not be a mitotic signal but instead may play a role in the development of neural tissue and smooth muscle.  相似文献   

3.
The nucleotide sequence of the 3' two-thirds of a highly conserved, molecularly cloned human cellular src gene (c-src) has been determined. This region of the c-src gene encodes the tyrosine kinase domain of the cellular src protein (pp60c-src) and corresponds to exons 6 through 12 of the chicken c-src gene, as well as nucleotides 545 to 1542 of the Rous sarcoma virus src gene (v-src). The human c-src sequence is very strongly conserved with respect to both the chicken c-src and the Rous sarcoma virus v-src genes, with nearly 90% nucleotide homology observed in this region. Amino acid sequence conservation in this region is even greater; 98% of the amino acids are conserved between human and chicken c-src. Furthermore, the exon sizes and the locations of the exon-intron boundaries are identical in the human and chicken c-src genes. However, sequences within the introns have not been conserved, and the introns within the human c-src gene are significantly larger than the corresponding introns within the chicken c-src gene. The strong amino acid conservation between the carboxy-terminal two-thirds of pp60c-src of species as divergent as humans and chickens suggests that this portion of the pp60c-src protein specifies one or more functional domains that are of great importance to some aspect of normal cellular growth or differentiation.  相似文献   

4.
We studied the expression of a molecularly cloned human c-src gene, c-src-1, localized on chromosome 20, whose coding region consists of 11 exons and spans a 19.5-kilobase (kb) distance. Using a replication-competent retroviral vector derived from molecularly cloned Rous sarcoma virus DNA (pSRA-2), we obtained two constructs: one (pSR-CS) carrying the unmodified human c-src coding sequence and another (pSR-CVS) with a chimeric gene formed between the human c-src gene and the carboxy-terminal 12-amino acid v-src-specific coding sequence. From chicken embryo fibroblasts transfected with these DNA constructs, infectious viruses designated as WO CS and WO CVS, respectively, were recovered. WO CS virus did not cause cell transformation, whereas WO CVS induced cell transformation. Analyses of the proviral DNAs indicated that all introns were spliced out such that the 19-kb inserts were converted to 1.7-kb cDNA forms. Analyses of src proteins in infected cells, using monoclonal antibody MAb327 against v-src protein, showed the following results. The CVS and CS src proteins were about 60 and 61 kilodaltons in size, respectively; the specific protein kinase activity assayed in vitro of the CVS src protein was about 20-fold higher than that of the CS src protein and comparable to that of the v-src protein; the transforming CVS src protein reacted to an antibody against a v-src-specific peptide, whereas the CS src protein did not. These results indicate that the human c-src gene has a potential transforming ability and suggest that the v-src-specific sequence played an important role in the generation of Rous sarcoma virus.  相似文献   

5.
A protein tyrosine kinase involved in regulation of pp60c-src function   总被引:22,自引:0,他引:22  
We recently identified a novel protein tyrosine kinase that specifically phosphorylates truncated pp60c-src (Mr = 53,000) at a tyrosine residue(s) distinct from its autophosphorylation site. In this study, we examined whether this enzyme phosphorylates intact pp60c-src (Mr = 60,000) and determined its phosphorylation site. Non-neuronal and neuronal forms of intact pp60c-src were separately purified from the membrane fraction of neonatal rat brain by sequential column chromatographies. The novel kinase phosphorylated tyrosine residues of both forms of intact pp60c-src. The phosphorylation occurred in parallel with autophosphorylation of pp60c-src, and in both forms the final stoichiometry estimated was quite similar to that of autophosphorylation (about 5%). The enzyme also phosphorylated pp60c-src in which the kinase activity had been destroyed by an ATP analogue, p-fluorosulfonylbenzoyl 5'-adenosine. The phosphorylation site of the non-neuronal form was analyzed by sequential peptide mapping with tosylphenylalanyl chloromethyl ketone-treated trypsin and alpha-chymotrypsin. Tryptic digestion of the phosphorylated pp60c-src yielded a unique phosphopeptide that cross-reacted with an antibody specific for the carboxyl-terminal sequence of chicken pp60c-src. Digestion of the phosphopeptide with chymotrypsin yielded a product that comigrated with a synthetic phosphopeptide corresponding to the carboxyl-terminal 15 residues of chicken pp60c-src. These results clearly indicate that the carboxyl-terminal sequence of rat pp60c-src is identical to that of chicken pp60c-src, and a tyrosine residue corresponding to chicken Tyr527 is the phosphorylation site. This phosphorylation resulted in a decrease in the enolase phosphorylating activity of pp60c-src. Kinetic experiments indicated that this decrease in activity was due to a decrease in the Vmax value of pp60c-src. These findings support our previous proposal that the novel tyrosine kinase acts as a specific regulator of pp60c-src in cells.  相似文献   

6.
Isolation of duplicated human c-src genes located on chromosomes 1 and 20.   总被引:23,自引:11,他引:12  
The oncogene (v-src) of Rous sarcoma virus apparently arose by transduction of the chicken gene known as c-src(chicken). We isolated DNA fragments representative of two src-related loci from recombinant DNA bacteriophage libraries of the human genome. One of these loci, c-src1(human), appeared to direct the synthesis of a 5-kilobase polyadenylated RNA that presumably encodes pp60c-src(human). Probes specific for the other locus, c-src2(human), did not hybridize to polyadenylated RNA prepared from a variety of human cell lines. Partial nucleotide sequence determinations of the loci demonstrated that c-src1(human) is highly related to chicken c-src and that c-src2(human) is slightly more divergent. The sequences imply that the final two coding exons of each human locus are identical in length to those of chicken c-src and that the location of an amber stop codon is unchanged in all three loci. c-src1(human) has been mapped to chromosome 20, and the second locus is located on chromosome 1. We conclude that c-src1(human) is the analog of c-src(chicken) and that the duplicated locus, c-src2(human), may also be expressed.  相似文献   

7.
We used a murine retroviral expression vector, containing a genomic clone of the chicken c-src gene, a bacterial origin of replication, and a selectable marker, to remove 10 introns from the c-src gene. All 10 introns were removed accurately, and no mutations were introduced. The processed gene encoded a functional pp60c-src protein tyrosine kinase.  相似文献   

8.
Both cDNA clones and a genomic DNA clone encoding a 509-amino-acid protein that is 64% similar to chicken pp60c-src were isolated from the simple metazoan Hydra attenuata. We have designated this gene STK, for src-type kinase. Features of the amino acid sequence of the protein encoded by the STK gene suggest that it is likely to be myristoylated and regulated by phosphorylation in a manner similar to that found for pp60c-src. The genomic sequence encoding the protein was found to be interrupted by at least two introns, one of which was located in a position identical to that of one of the introns in the chicken src gene. The STK gene was expressed during early development of H. attenuata and at high levels in the epithelial cells of adult polyps. Probing of Hydra proteins with an antibody to phosphotyrosine indicated that the major phosphotyrosine-containing protein in H. attenuata may be the STK protein itself. H. attenuata is the simplest organism from which a protein-tyrosine kinase gene has been isolated. The presence of such a gene in the evolutionarily ancient phylum Cnidaria suggests that protein-tyrosine kinase genes arose concomitantly with or shortly after the appearance of multicellular organisms.  相似文献   

9.
R C Parker  H E Varmus  J M Bishop 《Cell》1984,37(1):131-139
The retroviral oncogene v-src arose by transduction of the cellular gene c-src. The similarity between these genes raised the possibility that c-src might be able to elicit neoplastic growth. We explored this by constructing a chimeric plasmid that allows the expression of chicken c-src. A rat cell line containing ten times the normal intracellular level of pp60c -src was isolated after transfecting rat-2 cells with the chimeric DNA. These cells produce the protein encoded by c-src ( pp60c -src) in quantities at least three times greater than required to achieve transformation by the product of v-src ( pp60v -src). The cells remain phenotypically normal, contain actin cables, and do not grow in soft agar. However, transfection of the cell line containing elevated cells of pp60c -src or Rat-2 cells with a molecular clone of v-src produces cells that exhibit properties of biologically transformed cells: round morphology, disrupted actin cables, and ability to grow in soft agar.  相似文献   

10.
In previous studies examining the potential role of pp60c-src in cellular proliferation, we demonstrated that C3H10T1/2 murine embryo fibroblasts overexpressing transfected chicken genomic c-src displayed an epidermal growth factor (EGF)-induced mitogenic response which was 200 to 500% of the response exhibited by parental control cells (Luttrell et al., Mol. Cell. Biol. 8:497-501, 1988). In order to examine specific structural and functional requirements for pp60c-src in this event, 10T1/2 cells were transfected with chicken c-src genes encoding pp60c-src deficient in tyrosine kinase activity (pm430), myristylation, (pm2A), or a domain hypothesized to modulate the interaction with substrates or regulatory components (dl155). Neomycin-resistant clonal cell lines overexpressing each of the mutated c-src genes were assayed for EGF mitogenic responsiveness by measuring [3H]thymidine incorporation into acid-precipitable material or into labeled nuclei. The results were compared with those obtained with lines overexpressing the cDNA form of wild-type (wt) c-src or control cells transfected with the neomycin resistance gene only. As previously described for cells overexpressing wt genomic c-src (Luttrell et al., 1988), clones overexpressing wt cDNA c-src also exhibited enhanced EGF mitogenic responses ranging from approximately 300 to 400% of the control cell response. In contrast, clones overexpressing unmyristylated, modulation-defective, or kinase-deficient c-src not only failed to support an augmented response to EGF but also exhibited EGF responses lower than that of the control cells. Furthermore, there were no significant differences in the mitogenic responses to 10% fetal calf serum among any of the cells tested. These results indicate that pp60(c-scr) can potentiate mitogenic signaling generated by EGF but not all growth factors. This potentiation requires the utilization of pp60(c-scr) myristylation, and modulatory and tyrosine kinase domains and can me mediated by cDNA-encoded as well as by genome-encoded wt pp60(c-scr).  相似文献   

11.
The src gene of Rous sarcoma virus (v-src) and its cellular homolog, the c-src gene, share extensive sequence homology. The most notable differences between these genes reside in the region encoding the carboxy terminus of the src proteins. We constructed mutations within the 3' end of the v-src gene to determine the significance of this region to the transforming potential of the v-src protein, pp60v-src. The mutants CHdl300 and CHis1511 contain mutations that alter the last 23 amino acids of pp60v-src, whereas the mutant CHis1545-C contains a linker insertion that alters the last 11 amino acids of pp60v-src, and the mutant CHis1545-H contains a linker insertion that results in a 9-amino-acid insertion at position 415. Plasmids bearing each of these mutations were unable to transform chicken cells when introduced into these cells by DNA transfection. In addition, the structurally altered src proteins encoded by the mutants had much-reduced levels of tyrosine protein kinase activity in vivo, as measured by autophosphorylation and phosphorylation of the 34,000-Mr cellular protein, and in vitro, as determined by measuring the level of pp60src autophosphorylation. These data indicate that the carboxy-terminal amino acid sequences play an important role in maintaining the structure of the catalytic domain of pp60v-src. In contrast, the transfection of chicken cells with plasmid DNA containing a chimeric v-c-src gene resulted in morphological cell transformation and the synthesis of an enzymatically active hybrid protein. Therefore, the carboxy-terminal sequence alterations observed in the c-src protein do not alone serve to alter the functional activity of a hybrid v-c-src protein appreciably.  相似文献   

12.
While the c-src locus is expressed as a 4.0-kilobase (kb) mRNA coding for pp60c-src in various chicken tissues, including embryonic muscle, it is expressed as a novel 3.0-kb mRNA in adult skeletal muscle. We have analyzed the primary structure of this alternatively transcribed and spliced c-src mRNA. The sequence revealed three open reading frames, with the previously defined c-src exons 1 through 5 or 6 comprising the third, on the 3' untranslated region of this 3-kb mRNA. The exons coding for the tyrosine kinase domain of pp60c-src were excluded. On the 5' side, 2 kb of sequence upstream from the previously defined exon 1 of the c-src gene was included in this mRNA. The start site for the 3-kb mRNA probably lies downstream of that for the 4-kb mRNA. The first reading frame of the 3.0-kb mRNA, called sur (for src upstream region), encoded a 24-kilodalton (kDa) protein product rich in cysteine and proline residues. In vitro analysis indicated that the 24-kDa sur protein was membrane associated. Antibodies to sur protein detected in vivo a 24-kDa muscle-specific protein which was developmentally regulated and corresponded to the switch from the 4-kb to the 3-kb c-src mRNA. A striking kinetic pattern of appearance of sur protein and disappearance of pp60c-src suggests that the expression of these two proteins is inversely related.  相似文献   

13.
We have previously shown that Rous sarcoma virus variants that carry the cellular homolog (c-src) of the viral src gene (v-src) do not transform chicken embryo fibroblasts. We also have shown that replacement of sequences upstream or downstream from the BglI site of the cellular src gene with the corresponding regions of v-src restored transforming activity to the hybrid genes. Since there are only six amino acid changes between p60c-src and p60v-src within the sequences upstream from BglI, we constructed chimeric molecules involving v-src and c-src to determine the effect of each amino acid substitution on the biological activities of the gene product. We found that the change from Thr to Ile at position 338 or the replacement of a fragment of c-src containing Gly-63, Arg-95, and Thr-96 with a corresponding fragment of v-src containing Asp-63, Trp-95, and Ile-96 converted p60c-src into a transforming protein by the criteria of focus formation, anchorage-independent growth, and tumor formation in newborn chickens. These mutations also resulted in elevation of the protein kinase activity of p60c-src.  相似文献   

14.
R Jove  S Kornbluth  H Hanafusa 《Cell》1987,50(6):937-943
Cellular src protein, p60c-src, is phosphorylated on tyrosine 527 in chicken embryo fibroblasts, and this phosphorylation is implicated in suppressing the protein-tyrosine kinase activity and transforming potential of p60c-src. To determine whether tyrosine 527 phosphorylation is dependent on p60c-src kinase activity, the ATP-binding site of chicken p60c-src was destroyed by substitution of lysine 295 with methionine. The resultant protein, p60c-src(M295), expressed either in chicken cells or in yeast, lacked detectable kinase activity. Nevertheless, tyrosine and serine phosphorylation of p60c-src(M295) overproduced in chicken cells were indistinguishable from that of authentic p60c-src. By contrast, p60c-src(M295) was not phosphorylated on tyrosine in yeast. These results suggest that a protein kinase present in chicken cells but not in yeast phosphorylates tyrosine 527 in trans, and are consistent with the possibility that this kinase is distinct from p60c-src.  相似文献   

15.
The chicken cellular proto-oncogene c-src was cotransfected into normal Rat-1 cells with the mouse dhfr gene. Selection for amplification of dhfr sequences resulted in co-amplification of the chicken c-src gene. Cell clones expressing varying levels of c-src associated kinase activity were isolated, none of these had a transformed morphology. In contrast, expression of v-src in Rat-1 cells resulted in morphological transformation and the ability to grow in soft agar in an anchorage independent way.  相似文献   

16.
We have utilized a lambda Charon 4A human genomic library to isolate recombinant clones harboring a highly conserved c-src locus containing nucleotide sequences homologous to the transforming gene of Rous sarcoma virus (v-src). Four overlapping clones spanning 24 kilobases of cellular DNA were analyzed by restriction endonuclease mapping. Human c-src sequences homologous to the entire v-src region are present in a 20-kilobase region that contains 11 exons as determined by restriction mapping studies utilizing hybridization to labeled DNA probes representing various subregions of the v-src gene and by preliminary DNA sequencing analyses. A considerable degree of similarity exists between the organization of the human c-src gene and that of the corresponding chicken c-src gene with respect to exon size and number. However, the human c-src locus is larger than the corresponding chicken c-src locus, because many human c-src introns are larger than those of chicken c-src. alu family repetitive sequences are present within several human c-src introns. This locus represents a highly conserved human c-src locus that is detectable in human cellular DNAs from various sources including placenta, HeLa cells, and WI-38 cells.  相似文献   

17.
A cDNA clone, designated NC7, has been isolated from human foetal kidney that partially codes for the 140 kDa isoform of human NCAM. This clone contains a 6 bp insert that is not present in the human muscle cDNA clone lambda 4.4. This same sequence has also been found in both a cDNA clone obtained from a human Small Cell Lung Carcinoma (SCLC) line and in human genomic DNA. Furthermore, an equivalent sequence to the 6 bp region identified in the above samples is present in mouse, rat and chicken NCAM. The 6 bp insertion does not lie at a predicted intron/exon boundary as extrapolated by homology studies with the chicken and, therefore, the mechanism by which the sequence is deleted from the human muscle clone lambda 4.4 remains unclear.  相似文献   

18.
We describe the isolation and cDNA sequence of a novel human gene, which is distinct from all known members of the human src family of proto-oncogenes. In contrast to these, an autophosphorylation site corresponding to Tyr416, as well as the equivalent of Tyr527 in p60c-src, are missing in the amino acid (aa) sequence deduced from this gene. Furthermore, no N-terminal myristylation site is found. Our human clone is 98% identical at the aa level to a gene which was isolated independently from neonatal rat brain and was termed csk for c-src kinase. We, therefore, propose to designate the present human gene CSK. In Northern blot experiments, CSK was found to be expressed in human lung and macrophages. Due to its extreme conservation across species barriers, the CSK product is likely to exert important regulatory functions. On the basis of its expression in tissues, not typically expressing high c-src levels, it can be assumed that its regulatory role is more general and may also involve other tyrosine kinases.  相似文献   

19.
The mechanism of transduction of proto-oncogene c-src by avian retroviruses   总被引:1,自引:0,他引:1  
L H Wang 《Mutation research》1987,186(2):135-147
Chicken c-src sequences have been transduced by avian leukosis viruses (ALV) and by partial src-deletion (td) mutants of Rous sarcoma virus in several independent events. Analyses of the recombination junctions in the genomes of src-containing viruses and the c-src DNA have shed light on the mechanism of transduction, which involves at least two steps of recombination. The initial recombination between a viral genome and the 5' region of c-src appears to occur at the DNA level. This step does not require extensive homology and can be mediated by stretches of sequences with only partial homology. The 5' recombination junction can also be formed by splicing between viral and c-src sequences. The second recombination is presumed to occur between the transducing ALV or td viral RNA and the viral-c-src hybrid RNA molecule generated from the initial recombination. This step involving recombination at the 3' ends of those molecules restores the 3' viral sequences essential for replication to the viral-c-src hybrid molecule. High frequency of c-src transduction by partial td mutants suggests that the second recombination is greatly enhanced when there is sequence homology between the transducing virus and the 3' region of c-src. Incorporation of the c-src sequences into an ALV genome results in greatly elevated expression of the gene. However, increased expression of c-src alone is insufficient to activate its transforming potential. Structural changes in c-src are necessary to convert it into a transforming gene. The changes can be as small as single nucleotide changes resulting in single amino aid substitutions at certain positions. Mutations can occur rapidly during viral replication after c-src is incorporated into the viral genome. Therefore, it is most likely that transduction of c-src by ALV is followed by subsequent mutation and selection for the sarcomagenic virus. In the case of transduction by td viruses that retain certain src sequences, joining of these sequences with the transduced c-src apparently is sufficient to activate its transforming potential.  相似文献   

20.
In vivo effect of sodium orthovanadate on pp60c-src kinase.   总被引:7,自引:4,他引:3  
We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号