首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldoxime dehydratase (OxdA), which is a novel heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. The combination of site-directed mutagenesis of OxdA (mutation of all conserved histidines in the aldoxime dehydratase superfamily), estimation of the heme contents and specific activities of the mutants, and CD and resonance Raman spectroscopic analyses led to the identification of the proximal and distal histidines in this unique enzyme. The heme contents and CD spectra in the far-UV region of all mutants except for the H299A one were almost identical to those of the wild-type OxdA, whereas the H299A mutant lost the ability of binding heme, demonstrating that His(299) is the proximal histidine. On the other hand, substitution of alanine for His(320) did not affect the overall structure of OxdA but caused loss of its ability of carbon-nitrogen triple bond synthesis and a lower shift of the Fe-C stretching band in the resonance Raman spectrum for the CO-bound form. Furthermore, the pH dependence of the wild-type OxdA closely followed the His protonation curves observed for other proteins. These findings suggest that His(320) is located in the distal heme pocket of OxdA and would donate a proton to the substrate in the aldoxime dehydration mechanism.  相似文献   

2.
On stopped-flow analysis of aliphatic aldoxime dehydratase (OxdA), a novel hemoprotein, a spectrum derived from a reaction intermediate was detected on mixing ferrous OxdA with butyraldoxime; it gradually changed into that of ferrous OxdA with an isosbestic point at 421 nm. The spectral change on the addition of butyraldoxime to the ferrous H320A mutant showed the formation of a substrate-coordinated mutant, the absorption spectrum of which closely resembled that of the above intermediate. These observations and the resonance Raman investigation revealed that the substrate actually binds to the heme in OxdA, forming a hexa-coordinate low-spin heme.  相似文献   

3.
Analysis of the nitrile hydratase gene cluster involved in nitrile metabolism of Pseudomonas chlororaphis B23 revealed that it contains one open reading frame encoding aldoxime dehydratase upstream of the amidase gene. The amino acid sequence deduced from this open reading frame shows similarity (32% identity) with that of Bacillus phenylacetaldoxime dehydratase (Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S. G., and Asano, Y. (2000) Biochemistry 39, 800-809). The gene product expressed in Escherichia coli catalyzed the dehydration of aldoxime into nitrile. The Pseudomonas aldoxime dehydratase (OxdA) was purified from the E. coli transformant and characterized. OxdA shows an absorption spectrum with a Soret peak that is characteristic of heme, demonstrating that it is a hemoprotein. For its activity, this enzyme required a reducing reagent, Na2S2O4, but did not require FMN, which is crucial for the Bacillus enzyme. The enzymatic reaction was found to be catalyzed when the heme iron of the enzyme was in the ferrous state. Calcium as well as iron was included in the enzyme. OxdA reduced by Na2S2O4 had a molecular mass of 76.2 kDa and consisted of two identical subunits. The kinetic parameters of OxdA indicated that aliphatic aldoximes are more effective substrates than aromatic aldoximes. A variety of spectral shifts in the absorption spectra of OxdA were observed upon the addition of each of various compounds (i.e. redox reagents and heme ligands). Moreover, the addition of the substrate to OxdA gave a peak that would be derived from the intermediate in the nitrile synthetic reaction. P. chlororaphis B23 grew and showed the OxdA activity when cultured in a medium containing aldoxime as the sole carbon and nitrogen source. Together with these findings, Western blotting analysis of the extracts using anti-OxdA antiserum revealed that OxdA is responsible for the metabolism of aldoxime in vivo in this strain.  相似文献   

4.
The distribution of phenylacetaldoxime-degrading and pyridine-3-aldoxime-degrading ability was examined with intact cells of 975 microorganisms, including 45 genera of bacteria, 11 genera of actinomyces, 22 genera of yeasts, and 37 genera of fungi, by monitoring the decrease of the aldoximes by high-pressure liquid chromatography. The abilities were found to be widely distributed in bacteria, actinomyces, fungi, and some yeasts: 98 and 107 strains degraded phenylacetaldoxime and pyridine-3-aldoxime, respectively. All of the active strains exhibited not only the aldoxime-dehydration activity to form nitrile but also nitrile-hydrolyzing activity. On the other hand, all of 19 nitrile-degrading microorganisms (13 species, 7 genera) were found to exhibit aldoxime dehydration activity. It is shown that aldoxime dehydratase and nitrile-hydrolyzing activities are widely distributed among 188 aldoxime and 19 nitrile degraders and that the enzymes were induced by aldoximes or nitriles.  相似文献   

5.
Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime–nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.  相似文献   

6.
We developed a molecular screening procedure using Southern hybridization and polymerase chain reaction (PCR) to identify aldoxime dehydratase (Oxd) encoding genes (oxds) among 14 aldoxime- or nitrile-degrading microorganisms. When an oxd gene of Rhodococcus erythropolis N-771 was used as a probe, positive hybridization signals were seen with the chromosomal DNA of eight strains, suggesting that these strains have similar oxd genes to R. erythoropolis N-771. By analyzing the PCR-amplified fragments with degenerate consensus primers, the occurrence of homologous Oxd coexisting with Fe-containing NHase in the active eight strains was demonstrated coinciding with the results of Southern hybridization. Whole length of oxd gene was cloned as an example from one of the positive strains, Pseudomonas sp. K-9, sequenced, and expressed in E. coli. Analysis of the primary structure of the protein (OxdK) encoded by the oxd gene of Pseudomonas sp. K-9 led to identify an Oxd having a new primary structure. Thus, the PCR-based analysis of oxd gene is a useful tool to detect and analyze the "aldoxime-nitrile pathway" in nature, since Oxd is the key enzyme for the pathway.  相似文献   

7.
8.
Phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1 (OxdB) catalyzes the dehydration of Z-phenylacetaldoxime (PAOx) to produce phenylacetonitrile. OxdB contains a protoheme that works as the active center of the dehydration reaction. The enzymatic activity of ferrous OxdB was 1150-fold higher than that of ferric OxdB, indicating that the ferrous heme was the active state in OxdB catalysis. Although ferric OxdB was inactive, the substrate was bound to the ferric heme iron. Electron paramagnetic resonance spectroscopy revealed that the oxygen atom of PAOx was bound to the ferric heme, whereas PAOx was bound to the ferrous heme in OxdB via the nitrogen atom of PAOx. These results show a novel mechanism by which the activity of a heme enzyme is regulated; that is, the oxidation state of the heme controls the coordination structure of a substrate-heme complex, which regulates enzymatic activity. Rapid scanning spectroscopy using stopped-flow apparatus revealed that a reaction intermediate (the PAOx-ferrous OxdB complex) showed Soret, alpha, and beta bands at 415, 555, and 524 nM, respectively. The formation of this intermediate complex was very fast, finishing within the dead time of the stopped-flow mixer (approximately 3 ms). Site-directed mutagenesis revealed that His-306 was the catalytic residue responsible for assisting the elimination of the hydrogen atom of PAOx. The pH dependence of OxdB activity suggested that another amino acid residue that assists the elimination of the OH group of PAOx would work as a catalytic residue along with His-306.  相似文献   

9.
The function of many biologically active molecules requires the presence of carbon-nitrogen bonds in strategic positions. The biosynthetic pathways leading to such bonds can be bypassed through chemical synthesis to synthesize natural products more efficiently and also to generate the molecular diversity unavailable in nature.  相似文献   

10.
11.
Isonitrile containing an N triple bond C triple bond was degraded by microorganism sp. N19-2, which was isolated from soil through a 2-month acclimatization culture in the presence of this compound. The isonitrile-degrading microorganism was identified as Pseudomonas putida. The microbial degradation was found to proceed through an enzymatic reaction, the isonitrile being hydrated to the corresponding N-substituted formamide. The enzyme, named isonitrile hydratase, was purified and characterized. The native enzyme had a molecular mass of about 59 kDa and consisted of two identical subunits. The enzyme stoichiometrically catalyzed the hydration of cyclohexyl isocyanide (an isonitrile) to N-cyclohexylformamide, but no formation of other compounds was detected. The apparent K(m) value for cyclohexyl isocyanide was 16.2 mm. Although the enzyme acted on various isonitriles, no nitriles or amides were accepted as substrates.  相似文献   

12.
13.
14.
Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Δ-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoA-Rha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharides into monosaccharides.  相似文献   

15.
[目的]I型聚酮合酶(Polyketide synthase,PKS)模块中不同的修饰是聚酮类化合物结构多样性的重要原因之一.抗癌药物安丝菌素化学结构中C11-C14区域存在特殊的双键迁移结构,可能与聚酮合酶模块2或者3中脱水酶结构域(Dehydratase,DH)的催化密切相关,本研究通过探究聚酮合酶模块2中DH结构...  相似文献   

16.
17.
18.
Heme-Fe is an important source of dietary iron in humans; however, the mechanism for heme-Fe uptake by enterocytes is poorly understood. Heme carrier protein 1 (HCP1) was originally identified as mediating heme-Fe transport although it later emerged that it was a folate transporter. We asked what happened to heme-Fe and folate uptake and the relative abundance of hcp1 and ho1 mRNA in Caco-2 cells after knockdown by transfection with HCP1-directed short hairpin (sh)RNA. Control Caco-2 cells were cultured in bicameral chambers with 0-80 μM heme-Fe for selected times. Intracellular Fe and heme concentration increased in Caco-2 cells reflecting higher external heme-Fe concentrations. Maximum Fe, heme, and heme oxygenase 1 (HO1) expression and activity were observed between 12 and 24 h of incubation. Quantitative RT-PCR for hcp1 revealed that its mRNA decreased at 20 μM heme-Fe while ho1 mRNA and activity increased. When shRNA knocked down hcp1 mRNA, heme-(55)Fe uptake and [(3)H]folate transport mirrored the mRNA decrease, ho1 mRNA increased, and flvcr mRNA was unchanged. These data argue that HCP1 is involved in low-affinity heme-Fe uptake not just in folate transport.  相似文献   

19.
20.
A soluble protein EF-P (elongation factor P) from Escherichia coli has been purified and shown to stimulate efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Based on the partial amino acid sequence of EF-P, 18- and 24-nucleotide DNA probes were synthesized and used to screen lambda phage clones from the Kohara Gene Bank. The entire EF-P gene was detected on lambda clone #650 which contains sequences from the 94 minute region of the E.coli genome. Two DNA fragments, 3.0 and 0.78 kilobases in length encompassing the gene, were isolated and cloned into pUC18 and pUC19. Partially purified extracts from cells transformed with these plasmids overrepresented a protein which co-migrates with EF-P upon SDS polyacrylamide gel electrophoresis, and also exhibited increased EF-P mediated peptide-bond synthetic activity. Based on DNA sequence analysis of this gene, the EF-P protein consists of 187 amino acids with a calculated molecular weight of 20,447. The sequence and chromosomal location of EF-P establishes it as a unique gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号