首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
It is vital to find reasons for differences in the results of environmental input‐output (EIO), physical input‐output (PIO), and hybrid input‐output (HIO) models for industrial and environmental policy analysis. Using EIO, PIO, and HIO models, China's industrial metabolism is calculated. Four reasons were found to account for differences in the results of analysis using EIO, PIO, and HIO models: the manner in which they deal with residential consumption, service sectors, and waste recycling, and the assumption of unique sector prices. The HIO model, which treats residential consumption as sectors of the intermediate delivery matrix, is preferred to the EIO and PIO models for analyzing industrial and environmental policies. Moreover, waste recycling in five sectors—agriculture; the manufacture of paper, printing, and articles for culture, education, and sports activities; the manufacture of nonmetallic mineral products; smelting and pressing of metals; and construction—should be comprehensively considered when using the HIO model to study problems related to these five sectors. Improvements in the EIO, PIO, and HIO models and future work are also discussed.  相似文献   

2.
Modern society depends on the use of many diverse materials. Effectively managing these materials is becoming increasingly important and complex, from the analysis of supply chains, to quantifying their environmental impacts, to understanding future resource availability. Material stocks and flows data enable such analyses, but currently exist mainly as discrete packages, with highly varied type, scope, and structure. These factors constitute a powerful barrier to holistic integration and thus universal analysis of existing and yet to be published material stocks and flows data. We present the Unified Materials Information System (UMIS) to overcome this barrier by enabling material stocks and flows data to be comprehensively integrated across space, time, materials, and data type independent of their disaggregation, without loss of information, and avoiding double counting. UMIS can therefore be applied to structure diverse material stocks and flows data and their metadata across material systems analysis methods such as material flow analysis (MFA), input‐output analysis, and life cycle assessment. UMIS uniquely labels and visualizes processes and flows in UMIS diagrams; therefore, material stocks and flows data visualized in UMIS diagrams can be individually referenced in databases and computational models. Applications of UMIS to restructure existing material stocks and flows data represented by block flow diagrams, system dynamics diagrams, Sankey diagrams, matrices, and derived using the economy‐wide MFA classification system are presented to exemplify use. UMIS advances the capabilities with which complex quantitative material systems analysis, archiving, and computation of material stocks and flows data can be performed.  相似文献   

3.
The physical input‐output table (PIOT) is a useful tool for analyzing the environmental sustainability of cities. Taking Chinese statistical sources as an example in this study, we discuss data acquisition methods for applying the PIOT to cities. We propose several methods and present a case study of Suzhou City to illustrate the proposed methods. These methods can provide foundations for constructing the PIOT of cities in other countries.  相似文献   

4.
The identification of potential by‐product exchanges is important for fostering industrial symbiosis. To discover these potential exchanges, this article extends the analysis of local industrial symbiosis to a national scale. A waste input‐output table, which is a material flow accounting tool, was compiled and used as a database to examine the existing exchanges of by‐products. The supplies and demands of industrial wastes or by‐products were compared to highlight their potential use for promoting higher exchange flows. The analysis of the linkages indicated that the majority of each of the by‐products were reused by the few industries that had the technology and operational capacity for reuse. This finding is useful for determining which industries are good candidates for promoting further industrial symbiosis (IS). Based on a nation‐wide analysis that considered the industrial characteristics of Taiwan comprehensively, 23 types of major by‐products with greater reuse flows and 216 potential exchange patterns were identified between the industries. In addition, three types of eco‐industrial networks were characterized as follows according to their dominant types: (1) fossil fuel, metal, and mineral‐dominated; (2) agricultural and synthetic material‐dominated; and (3) information and communications technology (ICT) and chemical industry‐dominated eco‐industrial networks. This analysis highlights the resource exchange potentials and provides information to new firms for networking with existing businesses.  相似文献   

5.
A probability‐based method is presented for assessing the reliability of synergistic systems and their ability to cope with the uncertainties often associated with two of a company's main types of activities: those carried out by the manufacturing department, and those carried out by the storage department. This method is based on a model focusing on the dynamic simulation of synergistic flows in terms of the mass balance. It differs from previous material flow analysis tools, which do not take into account the temporary failures occurring at the companies involved and the resulting loss of production capacity. The failure events occurring at any of the companies in a synergistic system may result in various levels of synergy failure and a short supply of resources for other companies. We therefore propose to identify the main factors responsible for a lack of synergy. We developed a dynamic stock simulation model for assessing the reliability of synergistic systems as well as that of the individual companies of a system before and after a synergy is set up. We first confirm the validity of this model by comparing the results with those based on the binomial theorem in system reliability analysis, and we then apply the model to the case of an industrial system. We conclude that companies involved in a synergistic system will inevitably be exposed to a higher risk of resource shortage because of the unsteady synergistic and outsourcing flows on which they depend. More efficient stock management methods would prevent the occurrence of the risks often associated with synergistic flows.  相似文献   

6.
A dynamic substance‐flow model is developed to characterize the stocks and flows of cement utilized during the 20th century in the United States, using the generic cement life cycle as a systems boundary. The motivation for estimating historical inventories of cement stocks and flows is to provide accurate estimates of contemporary cement in‐use stocks in U.S. infrastructure and future discards to relevant stakeholders in U.S. infrastructure, such as the federal and state highway administrators, departments of transportation, public and private utilities, and the construction and cement industries. Such information will assist in planning future rehabilitation projects and better life cycle management of infrastructure systems. In the present policy environment of climate negotiations, estimates of in‐use cement infrastructure can provide insights about to what extent built environment can act as a carbon sink over its lifetime. The rate of addition of new stock, its composition, and the repair of existing stock are key determinants of infrastructure sustainability. Based upon a probability of failure approach, a dynamic stock and flow model was developed utilizing three statistical lifetime distributions—Weibull, gamma, and lognormal—for each cement end‐use. The model‐derived estimate of the “in‐use” cement stocks in the United States is in the range of 4.2 to 4.4 billion metric tons (gigatonnes, Gt). This indicates that 82% to 87% of cement utilized during the last century is still in use. On a per capita basis, this is equivalent to 14.3 to 15.0 tonnes of in‐use cement stock per person. The in‐use cement stock per capita has doubled over the last 50 years, although the rate of growth has slowed.  相似文献   

7.
We conducted a decomposition analysis of material flows in a dynamic system, focusing on factors in the generation of waste consumer durables. A methodology for the analysis of consumer durables was developed and applied to three common consumer durables: cathode ray tube TVs, refrigerators, and passenger cars. The methodology decomposed changes in the numbers of waste products into three factors: changes in lifespan distribution, past trends in replacement sales, and past trends in sales for additional purchases. The decomposed equation clearly showed that the number of waste products would not necessarily be reduced by lifespan extension alone. This is because the number of waste products generated is affected not only by current lifespan distribution but also by past trends in sales for replacement and in additional purchases. The results show that changes in past replacement sales influence the current generation of waste, even if current replacement sales are declining. To reduce the generation of waste products on a short‐term basis, lifespan must be extended until the waste‐reducing effect of lifespan extension exceeds the waste‐increasing effect of the other two factors. From a long‐term perspective, controlling current replacement and additional purchases can be used to prevent future waste product generation.  相似文献   

8.
The aim of this article is to quantify the drivers for the changes in raw material consumption (domestic material consumption expressed in the form of all materials extracted and used in the production phase) in terms of technology, which refers to the concept of sustainable production; the product structure of final demand, which refers to the concept of sustainable consumption; and the volume of final demand, which is related to economic growth. We also aim to determine to what extent the technological development and a shift in product structure of the final demand compensate for the growth in final consumption volume. Therefore, we apply structural decomposition analysis (SDA) to the change in raw material consumption (RMC) of the Czech Republic between 2000 and 2007. To present the study in a broader context, we also show other material flow indicators for the Czech Republic for 2000 and 2007. Our findings of SDA show that final demand structure has a very limited effect on the change in material flows. The rapid change in final demand volume was not compensated for crude oil, metal ores, construction materials, food crops, and timber. For the material category of non‐iron metal ores, even the change in technology contributes to an increase in material flows. The largest relative increases are reported for non‐iron metal ores (38%) and construction materials (30%). The main changes in material flows related to the Czech Republic are driven by exports and enabled by imports, the main source of these increased material flows. This emphasizes the increasing role of international trade.  相似文献   

9.
The Australian stocks and flows framework (ASFF) is a tool for establishing a coherent historical picture of the Australian physical economy and for testing long-term future scenarios (up to 2050 or even 2100). These scenarios can be used to investigate the long-term physical consequences of current and future choices affecting the physical dimensions of sustainability. In this article we describe the methodology for and construction of a key component of ASFF: a dynamic physical input-output model of material flows in the basic industries.
The materials model in ASFF describes physical flows and their transformation by industrial processes. The model's structure permits scenario analysis of long-term technological change by permitting time-varying input-output coefficients and vintage models of capital stocks. As a consequence, the model contains a large number of parameters, which can be left at default settings or adjusted as the modeler sees fit, in order to simulate the widest possible range of physically realizable scenarios. The materials model is built using a methodology that integrates bottom-up process analysis with top-down statistics on material and energy flows. We present some examples showing how the materials model has been implemented to model Australian heavy industries. Several possibilities for further developing the materials model are also described.  相似文献   

10.
Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in‐use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business‐as‐usual scenario for 2020. Thereby, we assess the potential impacts of the European Waste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals.  相似文献   

11.
This work aims to contribute to the number of urban metabolism case studies using a standardized methodology. An economy‐wide material flow analysis (EW‐MFA) was conducted on the Metropolitan Municipality of Cape Town (South Africa) for the year 2013, using the Eurostat framework. The study provides insights into the city's metabolism through various indicators including direct material input (DMI), domestic material consumption (DMC), and direct material output (DMO), among others. In order to report on the uncertainty of the data, a set of data quality indicators originating from the life cycle assessment literature was used. The results show that domestic extraction involves significant quantities of non‐metallic minerals, and that imports consist primarily of biomass and fossil fuels. The role of the city as a regional hub is also made clear from this study and illustrated by large quantities of food and other materials flowing through the city on their way to or from international markets. The results are compared with indicators from other cities and with previous metabolism work done on Cape Town. To fully grasp the impacts of the city's metabolism, more work needs to be done. It will be necessary to understand the upstream impact of local consumption, and consumption patterns should be differentiated on a more nuanced level (taking into account large differences between household income levels as well as separating the metabolism of industry and commerce from residential consumption).  相似文献   

12.
To support effective urban policies aimed at decreasing the environmental impacts of cities, it is important to develop robust tools for accounting those impacts. Environmentally extended input‐output analysis (EEIOA) is among the most used tools for this purpose, allowing the quantification of both direct and indirect impacts. Life cycle assessment (LCA) is also a holistic and comprehensive tool that accounts for direct and indirect impacts—but its application to cities is still very recent. This study aims at applying EEIOA and LCA to the municipality of Aveiro (Portugal) in order to compare the outcomes of the two tools in terms of total impacts (climate change and fossil fuel depletion) and hotspots (sectors/products contributing most to the impacts), to identify limitations and advantages of the tools when applied to Aveiro, and to illustrate how LCA can be applied to cities. The total impacts estimated with LCA and EEIOA were similar and the hotspots were also the same: transports, food, construction, and electricity. However, the relative contribution of some sectors was very different in the two tools due to methodological differences mainly in system boundaries, type of activities or products considered in each sector, and geographical coverage of impact data. This study concludes that the analyzed tools can provide complementary results to support decision making concerning urban planning and management.  相似文献   

13.
Alloying elements in steel add a wide range of valuable properties to steel materials that are indispensable for the global economy. However, they are likely to be effectively irretrievably blended into the steel when recycled because of (among other issues) the lack of information about the composition of the scrap. This results in the alloying elements dissipating in slag during steelmaking and/or becoming contaminants in secondary steel. We used the waste input‐output material flow analysis model to quantify the unintentional flows of alloying elements (i.e., chromium, nickel, and molybdenum) that occur in steel materials and that result from mixing during end‐of‐life (EOL) processes. The model can be used to predict in detail the flows of ferrous materials in various phases, including the recycling phase by extending steel, alloying element source, and iron and steel scrap sectors. Application of the model to Japanese data indicates the critical importance of the recycling of EOL vehicles (ELVs) in Japan because passenger cars are the final destination of the largest share of these alloying elements. However, the contents of alloying elements are rarely considered in current ELV recycling. Consequently, the present study demonstrates that considerable amounts of alloying elements, which correspond to 7% to 8% of the annual consumption in electric arc furnace (EAF) steelmaking, are unintentionally introduced into EAFs. This result suggests the importance of quality‐based scrap recycling for efficient management of alloying elements.  相似文献   

14.
Human activity has quadrupled the mobilization of phosphorus (P), a nonrenewable resource that is not fully recycled biologically or industrially. P is accumulated in both water and solid waste due to fertilizer application and industrial, agricultural, and animal P consumption. This paper characterizes the industrial flows, which, although smaller than the agricultural and animal flows, are an important phosphorus source contributing to the pollution of surface waters. We present the quantification of the network of flows as constrained by mass balances of the global annual metabolism of phosphorus, based on global consumption for 2004, all of which eventually ends up as waste and in the soil and water systems. We find that on a yearly basis, 18.9 million metric tons (MMT) of P is produced, of which close to 75% goes to fertilizer and the rest to industrial and others uses. Phosphoric acid is the precursor for many of the intermediate and end uses of phosphate compounds described in this study and accounts for almost 80% of all P consumed. Eventually, all of the P goes to waste: 18.5 MMT ends up in the soil as solid waste, and 1.32 MMT is emissions to air and water. Besides quantifying P flows through our economy, we also consider some possible measures that could be taken to increase the degree of recovery and optimization of this resource and others that are closely related, such as the recovery of sulfur from gypsum and wastewater (sludge), and fluorine from wet phosphoric acid production.  相似文献   

15.
This contribution presents the state of the art of economy‐wide material flow accounting. Starting from a brief recollection of the intellectual and policy history of this approach, we outline system definition, key methodological assumptions, and derived indicators. The next section makes an effort to establish data reliability and uncertainty for a number of existing multinational (European and global) material flow accounting (MFA) data compilations and discusses sources of inconsistencies and variations for some indicators and trends. The results show that the methodology has reached a certain maturity: Coefficients of variation between databases lie in the range of 10% to 20%, and correlations between databases across countries amount to an average R2 of 0.95. After discussing some of the research frontiers for further methodological development, we conclude that the material flow accounting framework and the data generated have reached a maturity that warrants material flow indicators to complement traditional economic and demographic information in providing a sound basis for discussing national and international policies for sustainable resource use.  相似文献   

16.
Construction material plays an increasingly important role in the environmental impacts of buildings. In order to investigate impacts of materials on a building level, we present a bottom‐up building stock model that uses three‐dimensional and geo‐referenced building data to determine volumetric information of material stocks in Swiss residential buildings. We used a probabilistic modeling approach to calculate future material flows for the individual buildings. We investigated six scenarios with different assumptions concerning per‐capita floor area, building stock turnover, and construction material. The Swiss building stock will undergo important structural changes by 2035. While this will lead to a reduced number in new constructions, material flows will increase. Total material inflow decreases by almost half while outflows double. In 2055, the total amount of material in‐ and outflows are almost equal, which represents an important opportunity to close construction material cycles. Total environmental impacts due to production and disposal of construction material remain relatively stable over time. The cumulated impact is slightly reduced for the wood‐based scenario. The scenario with more insulation material leads to slightly higher material‐related emissions. An increase in per‐capita floor area or material turnover will lead to a considerable increase in impacts. The new modeling approach overcomes the limitations of previous bottom‐up building models and allows for investigating building material flows and stocks in space and time. This supports the development of tailored strategies to reduce the material footprint and environmental impacts of buildings and settlements.  相似文献   

17.
Industrial ecology (IE) is a maturing scientific discipline. The field is becoming more data and computation intensive, which requires IE researchers to develop scientific software to tackle novel research questions. We review the current state of software programming and use in our field and find challenges regarding transparency, reproducibility, reusability, and ease of collaboration. Our response to that problem is fourfold: First, we propose how existing general principles for the development of good scientific software could be implemented in IE and related fields. Second, we argue that collaborating on open source software could make IE research more productive and increase its quality, and we present guidelines for the development and distribution of such software. Third, we call for stricter requirements regarding general access to the source code used to produce research results and scientific claims published in the IE literature. Fourth, we describe a set of open source modules for standard IE modeling tasks that represent our first attempt at turning our recommendations into practice. We introduce a Python toolbox for IE that includes the life cycle assessment (LCA) framework Brightway2, the ecospold2matrix module that parses unallocated data in ecospold format, the pySUT and pymrio modules for building and analyzing multiregion input‐output models and supply and use tables, and the dynamic_stock_model class for dynamic stock modeling. Widespread use of open access software can, at the same time, increase quality, transparency, and reproducibility of IE research.  相似文献   

18.
With the rapid growth of highway mileage and vehicles, the Chinese highway traffic system (HTS) has become one of the great resource consumers. This article attempts to evaluate the material metabolism of China's HTS during 2001–2005 using the approach of material flow analysis (MFA) and to explore possible measures to promote circular economy throughout HTS. We measured a set of indicators to illustrate the whole material metabolism of China's HTS. The results indicated that the direct material input (DMI) of China's HTS increased from 1181.26 million tonnes (Mt) in 2001 to 1,874.57 Mt in 2005, and about 80% of DMI was accumulated in the system as infrastructure and vehicles. The domestic processed output (DPO) increased by 59.0% from 2001 to 2005. Carbon dioxide and solid waste accounted for 80.5% and 10.4% of DPO, respectively. The increase of resource consumption and pollutant emissions kept pace with the growth of transportation turnover. All these suggest that China's HTS still followed an extensive linear developing pattern with large resource consumption and heavy pollution emissions during the study period, which brought great challenges to the resources and the environment. Therefore, it's high time for China to implement a circular economy throughout the HTS by instituting resource and energy savings, by reducing emissions in the field of infrastructure construction and maintenance, by reducing vehicles’ energy and materials consumption, and by recycling waste materials.  相似文献   

19.
The focus of urban water system metabolism studies has, by and large, been restricted to what comes under the domain of the urban water utilities: water treatment and supply, and wastewater collection, treatment, and disposal. The material and energy flows both necessitated and facilitated by the supply of treated water to households—the water demand subsystem—are by no means negligible. This article studies the key flows into households associated with water consumption and the environmental impacts related to the same for India as a whole. Electricity consumption in washing machines and water heaters contributes the most to almost all the 13 environmental impact categories considered. This is easily explained by the fossil fuel heaviness of the Indian mix (>60%). Soaps contribute the most to terrestrial eco‐toxicity and malodorous air. In India, on a national scale, all the environmental impact categories deserve attention. The absolute consumption of electricity, soaps, and detergents, and the demand for home appliances will increase in the years to come.  相似文献   

20.
The food industry in Australia (agriculture and manufacturing) plays a fundamental role in contributing to socioeconomic sectors nationally. However, alongside the benefits, the industry also produces environmental burdens associated with the production of food. Sectorally, agriculture is the largest consumer of water. Additionally, land degradation, greenhouse gas emissions, energy consumption, and waste generation are considered the main environmental impacts caused by the industry. The research project aims to evaluate the eco‐efficiency performance of various subsectors in the Australian agri‐food systems through the use of input‐output–oriented approaches of data envelopment analysis and material flow analysis. This helps in establishing environmental and economic indicators for the industry. The results have shown inefficiencies during the life cycle of food production in Australia. Following the principles of industrial ecology, the study recommends the implementation of sustainable processes to increase efficiency, diminish undesirable outputs, and decrease the use of nonrenewable inputs within the production cycle. Broadly, the research outcomes are useful to inform decision makers about the advantages of moving from a traditional linear system to a circular production system, where a sustainable and efficient circular economy could be created in the Australian food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号