首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports on research toward a pragmatic and credible means for analyzing, mapping, and managing environmental impacts along supply chains. The results of this research include a management tool called "ecological supply chain analysis" (EcoSCAn) that is presented here for the first time. Its structure bears a passing resemblance to that used in some streamlined life-cycle assessments, but its operation and purpose are quite different. The EcoSCAn tool frames a comparative environmental analysis of products capable of performing broadly equivalent functions. The analysis occurs over complete extended supply chains and within defined supply chain stages at a product level and, to some extent, at a site level. The results are mapped with data confidence indicators. A range of tactical and, where data quality is sufficient, strategic supply chain actions are prompted. Actions to mitigate environmental stress are possible in the absence of good quality data across entire product life cycles, although the extent to which management actions are limited is made plain.  相似文献   

2.
Practitioners of life cycle assessment (LCA) have recently turned their attention to social issues in the supply chain. The United Nations life cycle initiative's social LCA task force has completed its guidelines for social life cycle assessment of products, and awareness of managing upstream corporate social responsibility (CSR) issues has risen due to the growing popularity of LCA. This article explores one approach to assessing social issues in the supply chain—life cycle attribute assessment (LCAA). The approach was originally proposed by Gregory Norris in 2006, and we present here a case study. LCAA builds on the theoretical structure of environmental LCA to construct a supply chain model. Instead of calculating quantitative impacts, however, it asks the question “What percentage of my supply chain has attribute X?” X may represent a certification from a CSR body or a self‐defined attribute, such as “is locally produced.” We believe LCAA may serve as an aid to discussions of how current and popular CSR indicators may be integrated into a supply chain model. The case study demonstrates the structure of LCAA, which is very similar to that of traditional environmental LCA. A labor hours data set was developed as a satellite matrix to determine number of worker hours in a greenhouse tomato supply. Data from the Quebec tomato producer were used to analyze how the company performed on eight sample LCAA indicators, and conclusions were drawn about where the company should focus CSR efforts.  相似文献   

3.
生命周期管理研究述评   总被引:3,自引:2,他引:3  
黄和平 《生态学报》2017,37(13):4587-4598
生命周期管理起源于生命周期思想,它是生命周期思想在实践中的具体应用,是面向可持续生产和消费,对产品、工艺和服务的全生命周期环境影响进行的综合管理,是解决复合生态系统中结构无序、效率不高和代谢冗余的有效途径,是基于生命周期评价原则与框架的一种环境管理手段或环境管理体系。全面回顾了生命周期管理的起源与内涵,阐述了生命周期管理与生命周期评价的区别与联系,梳理了生命周期管理与环境管理体系的关系。对生命周期管理在产品、企业、行业及城市等层次上的具体应用进行了总结与述评,并对其今后需深入研究的方向进行了展望。  相似文献   

4.
The implementation of global sustainability has gained worldwide attention in recent years. The Organization Environmental Footprint, which encompasses 14 impact categories, is a multicriteria measure of the environmental performance of goods and services provided by an organization from a life cycle perspective. In this article, the focus is on quantifying the Organization Environmental Footprint of a construction company in Spain. By applying an environmentally extended input‐output approach, its total footprint and impacts along the supply chain from two consecutive years were calculated. The results show that the environmental impacts from the second year of implementation were significantly higher than those from the first year. The impact category climate change was found to have experienced the greatest increase from one year to the other, with a 31% increase. This work provides an overview of 14 environmental impact categories of the company assessed, as well as recommendations for the implementation of this indicator in companies and public procurement. This approach could pave the way to shape organizations’ action plans and meet the European environmental challenges.  相似文献   

5.
Traditional life-cycle assessment begins with a product and examines its environmental impacts throughout its life cycle. An alternative approach is to proceed in reverse: to examine the need that the product is designed to fulfill, to determine the minimal environmental impacts that could be engendered by filling that need, and thereby to design the “ideal green product” for the purpose. This approach, termed reverse life-cycle assessment (RLCA), is demonstrated by examining the environmental impacts attributable to a generic washing machine of current design, and then by reviewing other ways in which the provisioning of clean clothing may be accomplished. RLCA, as used here, is shown to encourage systems thinking and to identify opportunities for innovation in design and in marketing of environmentally-responsible products in ways that would be unlikely to arise from a traditional LCA.  相似文献   

6.
This article discusses how eco‐design management standards have been adopted and the environmental and economic results that have been obtained by the Spanish furniture manufacturers. This is precisely the industry sector in Spain where the dissemination of eco‐design standards has been most important. Using multiple case‐study methodology, the research has shown that, in three companies, more than 90% of the environmental impact of the companies’ products occurs within the manufacturing phase. Companies have implemented tools for life cycle assessment with eco‐indicators values that allow them to assess complex products and evaluate their significant environmental impacts at each stage. The environmental strategies of these companies are based on the continuous improvement of the internal processes and the review and monitoring of their activities. In this approach, the proper choice of materials and the environmental management of the supply chain are the main problems for companies. The outcomes achieved by the companies included some improvements, such as a greater control of product management and a reduction in operating costs, that have allowed them to obtain competitive advantages. Moreover, the adoption of standard management has enabled the companies to drive innovation of products, improve the image of companies and their products, significantly reduce the environmental impact of their products, and adapt to new, more demanding environmental laws and regulations.  相似文献   

7.
The study fills the gap in existing literature by comparing the economic costs and environmental impacts of processes in four services companies in Europe and the United States. Process-based life cycle assessment (LCA) and the case study method are used to compare companies both on four global-scale impacts and on environmental intensity (impacts per unit cost). The study builds on prior publications on the environmental contribution of processes. The processes include all the activities of the companies that result in an entry into the bookkeeping records. The results show that despite the substantial differences in organizational characteristics and line of business, all the cases had similar environmental contributions and intensity profiles. Wages, which accounted for over half of the costs, were assumed not to cause any environmental impacts. By contrast, the office premises, which generated less than 10% of the costs, caused around 50% of the environmental impacts. At a more general level, the results suggest that both the high environmental impact and the high intensity are attributed mostly to a few premises-related processes in the services industry. The results also seem to imply that the companies could gain added value by using life cycle assessment in determining the significant environmental impacts of their operations.  相似文献   

8.
Sustainability-a term originating from silviculture, which was adopted by UNEP as the main political goal for the future development of humankind-is also the ultimate aim of product development. It comprises three components: environment, economy and social aspects which have to be properly assessed and balanced if a new product is to be designed or an existing one is to be improved. The responsibility of the researchers involved in the assessment is to provide appropriate and reliable instruments. For the environmental part there is already an internationally standardized tool: Life Cycle Assessment (LCA). Life Cycle Costing (LCC) is the logical counterpart of LCA for the economic assessment. LCC surpasses the purely economic cost calculation by taking into account hidden costs and potentially external costs over the life cycle of the product. It is a very important point that different life-cycle based methods (including Social Life Cycle Assessment) for sustainablity assessment use the same system boundaries.  相似文献   

9.
There is a strong need for methods within life cycle assessment (LCA) that enable the inclusion of all complex aspects related to land use and land use change (LULUC). This article presents a case study of the use of one hectare (ha) of forest managed for the production of wood for bioenergy production. Both permanent and temporary changes in above‐ground biomass are assessed together with the impact on biodiversity caused by LULUC as a result of forestry activities. The impact is measured as a product of time and area requirements, as well as by changes in carbon pools and impacts on biodiversity as a consequence of different management options. To elaborate the usefulness of the method as well as its dependency on assumptions, a range of scenarios are introduced in the study. The results show that the impact on climate change from LULUC dominates the results, compared to the impact from forestry operations. This clearly demonstrates the need to include LULUC in an LCA of forestry products. For impacts both on climate change and biodiversity, the results show large variability based on what assumptions are made; and impacts can be either positive or negative. Consequently, a mere measure of land used does not provide any meaning in LCA, as it is not possible to know whether this contributes a positive or negative impact.  相似文献   

10.
Life cycle assessment (LCA) methods and tools are increasingly being taught in university courses. Students are learning the concepts and applications of process-based LCA, input−output-based LCA, and hybrid methods. Here, we describe a classroom simulation to introduce students to an economic input−output life cycle assessment (EIO-LCA) method. The simulation uses a simplified four-industry economy with eight transactions among the industries. Production functions for the transactions and waste generation amounts are provided for each industry. Students represent an industry and receive and issue purchase orders for materials to simulate the actual purchases of materials within the economy. Students then compare the simulation to mathematical representations of the model. Finally, students view an online EIO-LCA tool ( http://www.eiolca.net ) and use the tool to compare different products. The simulation has been used successfully with a wide range of students to facilitate conceptual understanding of one EIO-LCA method.  相似文献   

11.
Life cycle thinking plays an important role in sustainable development in the building sector. However, the complexity of data collection and scope definition limits life cycle assessment (LCA) applications. Even if the inventory data have already been collected, tabulated, and indexed, the method is still time‐consuming, which may be discouraging for designers. This study demonstrates how the LCA of buildings can be robustly streamlined using structured underspecification of impact data combined with an effective and efficient triage of the data collection. Tests were conducted with a series of building typologies that were analyzed with a cradle‐to‐gate approach. The probabilistic triage approach was tested to identify selected activities requiring detailed specification because they contribute most to total impact, thereby reducing data gathering effort. Impacts such as global warming, acidification, eutrophication, and smog creation were assessed, and results showed that 40% to 46% of the bill of materials components represent 75% of total impacts of single‐family houses and multifamily buildings. By specifying only a prioritized subset of the bill of materials to the highest level of specificity, results proved to be reasonably accurate and obtainable with less effort.  相似文献   

12.
Commercial and research interest in nanotechnology has exploded in recent years, with nearly US$9 billion in investment from public and private sources in 2005. While the list of potential applications for nanotechnologies continues to grow, there is increasing pressure from governments and researchers alike to understand the implications of this new class of materials. The emerging field of green nano applies green chemistry and engineering principles to the synthesis of nanomaterials. Here we outline several strategies for the development of green nano and review past policy and research activities in understanding nanotechnology's environmental implications. By means of the green chemistry metric of E‐factor, an analysis is undertaken of the traditional syntheses of several specific nanomaterials, including carbon nanotubes, fullerenes, and metal nanoparticles. It was found that the E‐factors of these production processes vary over several orders of magnitude, making it difficult to comment generally about the resource use efficiencies of nanomaterials production. For gold nanoparticles specifically, E‐factors for six different production methods are found to range from 102 to 105, demonstrating that greener synthesis routes are possible and that environmental benefits can begin to be quantified. Expanding the analysis to include life‐cycle stages upstream and downstream of production and to incorporate environmental health effects is encouraged, though significant data gaps exist.  相似文献   

13.
This article presents an approach to estimate missing elements in hybrid life cycle inventories. Its development is motivated by a desire to rationalize inventory compilation while maintaining the quality of the data. The approach builds on a hybrid framework, that is, a combination of process‐ and input–output‐based life cycle assessment (LCA) methodology. The application of Leontief's price model is central in the proposed procedure. Through the application of this approach, an inventory with no cutoff with respect to costs can be obtained. The formal framework is presented and discussed. A numerical example is provided in Supplementary Appendix S1 on the Web.  相似文献   

14.
There is a growing concern over the security and sustainable supply of raw material among businesses and governments of developed, material‐intensive countries. This has led to the development of a systematic analysis of risk incorporated with raw materials usage, often referred as criticality assessment. In principle, this concept is based on the material flow approach. The potential role of life cycle assessment (LCA) to integrate resource criticality through broadening its scope into the life cycle sustainability assessment (LCSA) framework has been discussed within the LCA communities for some time. In this article, we aim at answering the question of how to proceed toward integration of the geopolitical aspect of resource criticality into the LCSA framework. The article focuses on the assessment of the geopolitical supply risk of 14 resources imported to the seven major advanced economies and the five most relevant emerging countries. Unlike a few previous studies, we propose a new method of calculation for the geopolitical supply risk, which is differentiated by countries based on the import patterns instead of a global production distribution. Our results suggest that rare earth elements, tungsten, antimony, and beryllium generally pose high geopolitical supply risk. Results from the Monte Carlo simulation allow consideration of data uncertainties for result interpretation. Issues concerning the consideration of the full supply chain are exemplarily discussed for cobalt. Our research broadens the scope of LCA from only environmental performance to a resource supply‐risk assessment tool that includes accessibility owing to political instability and market concentration under the LCSA framework.  相似文献   

15.
One of the most important problems today is the scarcity of fresh water safe enough for human, industrial, and agricultural use. Desalination is an alternative source of fresh water supply in areas with severe problems of water availability. Desalination plants generate a huge amount of brine as the main residual from the plant (about 55% of collected seawater). Because of that, it is important to determine the best environmental option for the brine disposal. This article makes a global environmental analysis, under Spanish conditions, of a desalination plant and an environmental assessment of different final brine disposals, representing a range of the most common alternatives: direct disposal, wastewater treatment plant (WWTP) outflow dilution, and dilution with seawater. The environmental profile of the plant operation and a comparison of the brine final disposal alternatives were established by means of the life cycle assessment (LCA) methodology. From an analysis of the whole plant we observed that the highest environmental impact was caused by energy consumption, especially at the reverse osmosis stage, while the most relevant waste was brine. From an analysis of brine final disposal we have elaborated a comparison of the advantages and detriments of the three alternatives. As all of them might be suitable in different specific situations, the results might be useful in decisions about final brine disposal.  相似文献   

16.
Life cycle assessment (LCA) is a widely accepted methodology to support decision‐making processes in which one compares alternatives, and that helps prevent shifting of environmental burdens along the value chain or among impact categories. According to regulation in the European Union (EU), the movement of waste needs to be reduced and, if unavoidable, the environmental gain from a specific waste treatment option requiring transport must be larger than the losses arising from transport. The EU explicitly recommends the use of LCA or life cycle thinking for the formulation of new waste management plans. In the last two revisions of the Industrial Waste Management Programme of Catalonia (PROGRIC), the use of a life cycle thinking approach to waste policy was mandated. In this article we explain the process developed to arrive at practical life cycle management (LCM) from what started as an LCA project. LCM principles we have labeled the “3/3” principle or the “good enough is best” principle were found to be essential to obtain simplified models that are easy to understand for legislators and industries, useful in waste management regulation, and, ultimately, feasible. In this article, we present the four models of options for the management of waste solvent to be addressed under Catalan industrial waste management regulation. All involved actors concluded that the models are sufficiently robust, are easy to apply, and accomplish the aim of limiting the transport of waste outside Catalonia, according to the principles of proximity and sufficiency.  相似文献   

17.
In this article, we first describe aspects of the environmental impact reduction strategy that was developed in conjunction with a life cycle assessment undertaken for the operations necessary to support Australia's largest Antarctic research station, Casey Station. The article then identifies future research and operational improvement opportunities for the Australian Antarctic Division, who is responsible for Australia's presence in Antarctica. These insights are mapped against knowledge, treaties, plans, and policies framing how the Australian Antarctic Division operates on the southern continent, making operational planning from the strategy relevant and actionable. The article concludes by posing recommendations, for future environmental management practice, that cover making improvements to data quality collection, undertaking a strategic approach, utilizing a new ice breaker, and facilitating behavior change via engagement and active support of staff.  相似文献   

18.
When software is used to facilitate life cycle assessments (LCAs), the implicit assumption is that the results obtained are not a function of the choice of software used. LCAs were done in both SimaPro and GaBi for simplified systems of creation and disposal of 1 kilogram each of four basic materials (aluminum, corrugated board, glass, and polyethylene terephthalate) to determine whether there were significant differences in the results. Data files and impact assessment methodologies (Impact 2002, ReCiPe, and TRACI 2) were ostensibly identical (although there were minor variations in the available ReCiPe version between the programs that were investigated). Differences in reported impacts of greater than 20% for at least one of the four materials were found for 9 of the 15 categories in Impact 2002+, 7 of the 18 categories in ReCiPe, and four of the nine categories in TRACI. In some cases, these differences resulted in changes in the relative rankings of the four materials. The causes of the differences for 14 combinations of materials and impact categories were examined by tracing the results back to the life cycle inventory data and the characterization factors in the life cycle impact assessment (LCIA) methods. In all cases examined, a difference in the characterization factors used by the two programs was the cause of the differing results. As a result, when these software programs are used to inform choices, the result can be different conclusions about relative environmental preference that are functions purely of the software implementation of LCIA methods, rather than of the underlying data.  相似文献   

19.
A key requirement for those in industry and elsewhere who wish to reduce the environmental impact of a product is to develop priorities for action. Life cycle assessment (LCA) is increasingly used to identify such priorities but can be misleading. This article draws attention to two effects that can occur when the system boundary for a product LCA is not defined correctly. We illustrate the washing machine effect by showing that in separate life cycle studies of clothing, detergents, and washing machines, the use of energy is dominated by operation of the washing machine. All three studies prioritize the use phase for action, but in an aggregated study, double counting of the use-phase impact occurs. We demonstrate the inverse washing machine effect with an example related to energy used in transport. We show that some activities that are significant on a cumulative basis consistently fall outside the chosen system boundary for individual products. A consequence is that when LCA studies are used for prioritization, they are in danger of overemphasizing the use-phase impacts and overlooking the impacts from indirect activities. These effects, which are broadly understood by LCA developers, appear not to be understood properly by those who use LCA to direct priorities for action. Therefore, practitioners should be wary of using LCA for prioritizing action, and LCA guidance documents should reflect this caution.  相似文献   

20.
Water footprints traditionally estimate water lost as a result of evapotranspiration (or otherwise unavailable for downstream uses) associated with producing a certain good, and the same embodied in trade across regions is used to estimate regional and national water footprints. These footprints, however, do not address risk posed to city energy supplies characterized by insufficient streamflow to support energy production, such as cooling water intake (e.g., withdrawals) at thermoelectric power plants. Water withdrawal intensity factors for producing goods and services are being developed at the national scale, but lack sufficient spatial resolution to address these types of water‐energy challenges facing cities. To address this need, this article presents a water withdrawal footprint for energy supply (WWFES) to cities and places it in the context of other water footprints defined in the literature. Analysis of electricity use versus electricity generation in 43 U.S. cities highlights the need for developing WWFES to estimate risks to transboundary city energy supplies resulting from water constraints. The magnitude of the WWFES is computed for Denver, Colorado, and compared to the city's direct use of water to offer perspective. The baseline WWFES for Denver is found to be 66% as large as all direct water uses in the city combined (mean estimate). Minimum, mean, and maximum estimates are computed to demonstrate sensitivity of the WWFES to selection of water withdrawal intensity factors. Finally, scenario analysis explores the effect of energy technology and energy policy choices in shaping the future water footprint of cities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号