首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miscanthus lutarioriparius is an endemic species that grows along the middle and lower reaches of the Yangtze River and is a valuable source of germplasm for the development of second‐generation energy crops. The plant that propagates via seeds, stem nodes, and rhizomes shows high phenotypic variation and strong local adaptation. Here, we examined the magnitude and spatial distribution of genetic variation in M. lutarioriparius across its entire distributional range and tested underlying factors that shaped its genetic variation. Population genetic analyses were conducted on 644 individuals from 25 populations using 16 microsatellite markers. M. lutarioriparius exhibited a high level of genetic variation (HE = 0.682–0.786; A= 4.74–8.06) and a low differentiation (FST = 0.063; Dest = 0.153). Of the total genetic variation, 10% was attributed to the differences among populations (df = 24, < 0.0001), whereas 90% was attributed to the differences among individuals (df = 619, ≤ 0.0001). Genetic diversity did not differ significantly across longitudes and did not increase in the populations growing downstream of the Yangtze River. However, significant associations were found between genetic differentiation and spatial distance. Six genetic discontinuities were identified, which mostly distributed among downstream populations. We conclude that anthropogenic factors and landscape features both contributed to shaping the pattern of gene flow in M. lutarioriparius, including long‐distance bidirectional dispersal. Our results explain the genetic basis of the high degree of adaptability in M. lutarioriparius and identify potential sources of new germplasm for the domestication of this potential second‐generation energy crop.  相似文献   

2.
A growing body of evidence indicates that second‐generation energy crops can play an important role in the development of renewable energy and the mitigation of climate change. However, dedicated energy crops have yet to be domesticated in order to fully realize their productive potential under unfavorable soil and climatic conditions. To explore the possibility of domesticating Miscanthus crops in northern China where marginal and degraded land is abundant, we conducted common garden experiments at multiple locations to evaluate variation and adaptation of three Miscanthus species that are likely to serve as the wild progenitors of the energy crops. A total of 93 populations of Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus lutarioriparius were collected across their natural distributional ranges in China and grown in three locations that represent temperate grassland with cold winter, the semiarid Loess Plateau, and relatively warm and wet central China. Evaluated with growth traits such as plant height, tiller number, tiller diameter, and flowering time, the Miscanthus species showed high levels of genetic variation within and between species. There were significant site × population interactions for almost all traits of M. sacchariflorus and M. sinensis, but not M. lutarioriparius. The northern populations of M. sacchariflorus had the highest establishment rates at the most northern site owing to their strong cold tolerance. An endemic species in central China, M. lutarioriparius, produced not only the highest biomass of the three species but also higher biomass at the Loess Plateau than the southern site near its native habitats. These results demonstrated that the wild species harbored a high level of genetic variation underlying traits important for crop establishment and production at sites that are colder and drier than their native habitats. The natural variation and adaptive plasticity found in the Miscanthus species indicated that they could provide valuable resources for the development of second‐generation energy crops.  相似文献   

3.
4.
5.
6.
7.
Bottom‐up evolutionary approaches, including geographically explicit population genomic analyses, have the power to reveal the mechanistic basis of adaptation. Here, we conduct a population genomic analysis in the model legume, Medicago truncatula, to characterize population genetic structure and identify symbiosis‐related genes showing evidence of spatially variable selection. Using RAD‐seq, we generated over 26,000 SNPs from 191 accessions from within three regions of the native range in Europe. Results from STRUCTURE analysis identify five distinct genetic clusters with divisions that separate east and west regions in the Mediterranean basin. Much of the genetic variation is maintained within sampling sites, and there is evidence for isolation by distance. Extensive linkage disequilibrium was identified, particularly within populations. We conducted genetic outlier analysis with FST‐based genome scans and a Bayesian modeling approach (PCAdapt). There were 70 core outlier loci shared between these distinct methods with one clear candidate symbiosis related gene, DMI1. This work sets that stage for functional experiments to determine the important phenotypes that selection has acted upon and complementary efforts in rhizobium populations.  相似文献   

8.
Microsatellite markers (N = 5) were developed for analysis of genetic variation in 15 populations of the columnar cactus Stenocereus stellatus, managed under traditional agriculture practices in central Mexico. Microsatellite diversity was analyzed within and among populations, between geographic regions, and among population management types to provide detailed insight into historical gene flow rates and population dynamics associated with domestication. Our results corroborate a greater diversity in populations managed by farmers compared with wild ones (HE = 0.64 vs. 0.55), but with regional variation between populations among regions. Although farmers propagated S. stellatus vegetatively in home gardens to diversify their stock, asexual recruitment also occurred naturally in populations where more marginal conditions have limited sexual recruitment, resulting in lower genetic diversity. Therefore, a clear‐cut relationship between the occurrence of asexual recruitment and genetic diversity was not evident. Two managed populations adjacent to towns were identified as major sources of gene movement in each sampled region, with significant migration to distant as well as nearby populations. Coupled with the absence of significant bottlenecks, this suggests a mechanism for promoting genetic diversity in managed populations through long distance gene exchange. Cultivation of S. stellatus in close proximity to wild populations has led to complex patterns of genetic variation across the landscape that reflects the interaction of natural and cultural processes. As molecular markers become available for nontraditional crops and novel analysis techniques allow us to detect and evaluate patterns of genetic diversity, genetic studies provide valuable insights into managing crop genetic resources into the future against a backdrop of global change. Traditional agriculture systems play an important role in maintaining genetic diversity for plant species.  相似文献   

9.
10.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

11.
Genomewide screens of genetic variation within and between populations can reveal signatures of selection implicated in adaptation and speciation. Genomic regions with low genetic diversity and elevated differentiation reflective of locally reduced effective population sizes (Ne) are candidates for barrier loci contributing to population divergence. Yet, such candidate genomic regions need not arise as a result of selection promoting adaptation or advancing reproductive isolation. Linked selection unrelated to lineage‐specific adaptation or population divergence can generate comparable signatures. It is challenging to distinguish between these processes, particularly when diverging populations share ancestral genetic variation. In this study, we took a comparative approach using population assemblages from distant clades assessing genomic parallelism of variation in Ne. Utilizing population‐level polymorphism data from 444 resequenced genomes of three avian clades spanning 50 million years of evolution, we tested whether population genetic summary statistics reflecting genomewide variation in Ne would covary among populations within clades, and importantly, also among clades where lineage sorting has been completed. All statistics including population‐scaled recombination rate (ρ), nucleotide diversity (π) and measures of genetic differentiation between populations (FST, PBS, dxy) were significantly correlated across all phylogenetic distances. Moreover, genomic regions with elevated levels of genetic differentiation were associated with inferred pericentromeric and subtelomeric regions. The phylogenetic stability of diversity landscapes and stable association with genomic features support a role of linked selection not necessarily associated with adaptation and speciation in shaping patterns of genomewide heterogeneity in genetic diversity.  相似文献   

12.
Habitat fragmentation weakens the connection between populations and is accompanied with isolation by distance (IBD) and local adaptation (isolation by adaptation, IBA), both leading to genetic divergence between populations. To understand the evolutionary potential of a population and to formulate proper conservation strategies, information on the roles of IBD and IBA in driving population divergence is critical. The putative ancestor of Asian cultivated rice (Oryza sativa) is endangered in China due to habitat loss and fragmentation. We investigated the genetic variation in 11 Chinese Oryza rufipogon populations using 79 microsatellite loci to infer the effects of habitat fragmentation, IBD and IBA on genetic structure. Historical and current gene flows were found to be rare (mh = 0.0002–0.0013, mc = 0.007–0.029), indicating IBD and resulting in a high level of population divergence (FST = 0.343). High within‐population genetic variation (HE = 0.377–0.515), relatively large effective population sizes (Ne = 96–158), absence of bottlenecks and limited gene flow were found, demonstrating little impact of recent habitat fragmentation on these populations. Eleven gene‐linked microsatellite loci were identified as outliers, indicating local adaptation. Hierarchical AMOVA and partial Mantel tests indicated that population divergence of Chinese O. rufipogon was significantly correlated with environmental factors, especially habitat temperature. Common garden trials detected a significant adaptive population divergence associated with latitude. Collectively, these findings imply that IBD due to historical rather than recent fragmentation, followed by local adaptation, has driven population divergence in O. rufipogon.  相似文献   

13.
Colonization events like range expansion or biological invasions can be associated with population bottlenecks. Small population size may lead to loss of genetic diversity due to random genetic drift, to loss of heterozygosity due to increased inbreeding and should leave a signature on the genetic polymorphism and genetic structure of populations. The mating system might additionally influence the outcome of such a process. Here, we compare invasive and native populations of the hermaphroditic freshwater snail Lymnaea stagnalis. In the native range we included populations that were ice-free during the last glaciation period and populations that were glaciated and are located at the edge of the species’ native distribution range. The microsatellite data show substantial loss of genetic variation in the introduced range and no signs of high propagule pressure or admixture. The expressed polymorphism was so low that mating system analysis was not possible. In the native region, all populations display strong levels of differentiation (global F ST: 0.341) independent of colonization history and exhibit no significant pattern of inbreeding. However, the populations in more recently colonized habitats show diminished genetic diversity. Overall, these results illustrate how dramatic the reduction in genetic diversity can be for hermaphroditic animals and that gene flow in the native range can be surprisingly low despite short distances.  相似文献   

14.
Understanding the environmental parameters that drive adaptation among populations is important in predicting how species may respond to global climatic changes and how gene pools might be managed to conserve adaptive genetic diversity. Here, we used Bayesian FST outlier tests and allele–climate association analyses to reveal two Eucalyptus EST‐SSR loci as strong candidates for diversifying selection in natural populations of a southwestern Australian forest tree, Eucalyptus gomphocephala (Myrtaceae). The Eucalyptus homolog of a CONSTANS‐like gene was an FST outlier, and allelic variation showed significant latitudinal clinal associations with annual and winter solar radiation, potential evaporation, summer precipitation and aridity. A second FST outlier locus, homologous to quinone oxidoreductase, was significantly associated with measures of temperature range, high summer temperature and summer solar radiation, with important implications for predicting the effect of temperature on natural populations in the context of climate change. We complemented these data with investigations into neutral population genetic structure and diversity throughout the species range. This study provides an investigation into selection signatures at gene‐homologous EST‐SSRs in natural Eucalyptus populations, and contributes to our understanding of the relationship between climate and adaptive genetic variation, informing the conservation of both putatively neutral and adaptive components of genetic diversity.  相似文献   

15.
Western white pine (Pinus monticola) is an economically and ecologically important species in western North America that has declined in prominence over the past several decades, mainly due to the introduction of Cronartium ribicola (cause of white pine blister rust) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity and structure among populations at 15 sites (e.g., provenances) across the native range of western white pine. The level of genetic diversity was different among 15 populations tested using 66 polymorphic AFLP loci. Nei’s gene diversity (H E) at the population level ranged from 0.187 to 0.316. Genetic differentiation (G ST) indicated that 20.1% of detected genetic variation was explained by differences among populations. In general, populations below 45oN latitude exhibited a higher level of genetic diversity than higher latitude populations. Genetic distance analysis revealed two major clades between northern and southern populations, but other well-supported relationships are also apparent within each of the two clades. The complex relationships among populations are likely derived from multiple factors including migration, adaptation, and multiple glacial refugia, especially in higher latitudes. Genetic diversity and structure revealed by this study will aid recognition and selection of western white pine populations for species management and conservation programs, especially in consideration of current and future climate changes.  相似文献   

16.
The development of second‐generation energy crops on marginal land relies on the identification of plants with suitable physiological properties. In this study, we measured and compared leaf photosynthesis and water use efficiency of 22 populations from three Miscanthus species, M. lutarioriparius, M. sacchariflorus, and M. sinensis, planted in two experimental fields located in Qingyang of the Gansu Province (QG) and Jiangxia of the Hubei Province (JH) in China. QG is located in the Loess Plateau, one of the world's most seriously eroded regions particularly abundant in semiarid marginal land. At both locations, M. lutarioriparius produced the highest biomass and had the highest photosynthetic rates (A), with the growing‐season average of A reaching nearly 20 μmol m?2 s?1. Native to JH, M. lutarioriparius maintained a relatively high photosynthetic rate into the late growing stage in QG, for example, 15 μmol m?2 s?1 at temperature as low as 11.6 °C in October. All three species had higher water use efficiency (WUE) in semiarid QG than in warmer and wetter JH. In the late growing stage of M. lutarioriparius, instantaneous WUE (A/E) of the species nearly tripled in QG comparing to JH. Being able to maintain remarkably high photosynthetic rates when transplanted to a colder and drier location, these M. lutarioriparius populations serve as suitable wild progenitors for energy crop domestication in the Loess Plateau and other areas with the similar climates.  相似文献   

17.
While many introduced invasive species can increase genetic diversity through multiple introductions and/or hybridization to colonize successfully in new environments, others with low genetic diversity have to persist by alternative mechanisms such as epigenetic variation. Given that Phragmites australis is a cosmopolitan reed growing in a wide range of habitats and its invasion history, especially in North America, has been relatively well studied, it provides an ideal system for studying the role and relationship of genetic and epigenetic variation in biological invasions. We used amplified fragment length polymorphism (AFLP) and methylation‐sensitive (MS) AFLP methods to evaluate genetic and epigenetic diversity and structure in groups of the common reed across its range in the world. Evidence from analysis of molecular variance (AMOVA) based on AFLP and MS‐AFLP data supported the previous conclusion that the invasive introduced populations of P. australis in North America were from European and Mediterranean regions. In the Gulf Coast region, the introduced group harbored a high level of genetic variation relative to originating group from its native location, and it showed epigenetic diversity equal to that of the native group, if not higher, while the introduced group held lower genetic diversity than the native. In the Great Lakes region, the native group displayed very low genetic and epigenetic variation, and the introduced one showed slightly lower genetic and epigenetic diversity than the original one. Unexpectedly, AMOVA and principal component analysis did not demonstrate any epigenetic convergence between native and introduced groups before genetic convergence. Our results suggested that intertwined changes in genetic and epigenetic variation were involved in the invasion success in North America. Although our study did not provide strong evidence proving the importance of epigenetic variation prior to genetic, it implied the similar role of stable epigenetic diversity to genetic diversity in the adaptation of P. australis to local environment.  相似文献   

18.
The sheep (Ovis aries L.) has been an important farm animal species since its domestication. A wide array of indigenous sheep breeds with abundant phenotypic diversity exists for domestication and selection. Therefore, assessing the genetic diversity of a local sheep resource using a multi-molecular system is helpful for maintaining and conserving those breeds. This study aimed to investigate the genetic diversity of three native Chinese sheep breeds (Tibetan sheep, Sishui Fur sheep, and Small-tailed Han sheep) using 15 microsatellite markers and the second exon of the DRA gene. In regards to the microsatellites, on average, 19 alleles per loci were observed among all individuals. Across loci, the HO within the population was 0.652 ± 0.022 in Tibetan sheep, 0.603 ± 0.023 in Small-tailed Han sheep and 0.635 ± 0.022 in SFS, and for most populations, the H E and H O were inconsistent. In addition, affluent private alleles within the breed indicated that the breeds have different domestication histories or sites. In regards to the 2 exon of the DRA gene, three haplotypes were constructed by seven single-nucleotide polymorphisms (SNPs), which were identified in the second DRA exon and inferred the potential for phenotypic variety in these Chinese native sheep. In summary, the current study reveals the importance of implementing effective conservation strategies for these three native Chinese sheep.  相似文献   

19.
Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat‐tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7–22) and by the high within‐breed expected heterozygosity (average 0.75, range 0.72–0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between‐population component, and by the small fixation index (FST = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within‐breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed.  相似文献   

20.
Local adaptation is a key process for the maintenance of genetic diversity and population diversification. A better understanding of the mechanisms that allow (or prevent) local adaptation constitutes a key in apprehending how and at what spatial scale it occurs. The production of resting stages is found in many taxa and reflects an adaptation to outlast adverse environmental conditions. Daphnia magna (Crustacea) can alternate between asexual and sexual reproduction, the latter being linked to dormancy, as resting stages can only be produced sexually. In this species, on a continental scale, resting‐stage production is locally adapted—that is, it is induced when the photoperiod indicates the imminence of habitat deterioration. Here, we aimed to explore whether selection is strong enough to maintain local adaptation at a scale of a few kilometers. We assessed life‐history traits of 64 D. magna clones originating from 11 populations of a metapopulation with permanent and intermittent pool habitats. We found large within‐ and between‐population variation for all dormancy‐related traits, but no evidence for the hypothesized higher resting‐stage production in animals from intermittent habitats. We discuss how gene flow, founder events, or other forms of selection might interfere with the process of local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号