首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Fuel economy has been an effective indicator of vehicle greenhouse gas (GHG) emissions for conventional gasoline‐powered vehicles due to the strong relationship between fuel economy and vehicle life cycle emissions. However, fuel economy is not as accurate an indicator of vehicle GHG emissions for plug‐in hybrid (PHEVs) and pure battery electric vehicles (EVs). Current vehicle labeling efforts by the U.S. Environmental Protection Agency (EPA) and Department of Transportation have been focused on providing energy and environmental information to consumers based on U.S. national average data. This article explores the effects of variations in regional grids and regional daily vehicle miles traveled (VMT) on the total vehicle life cycle energy and GHG emissions of electrified vehicles and compare these results with information reported on the label and on the EPA's fuel economy Web site. The model results suggest that only 25% of the life cycle emissions from a representative PHEV are reflected on current vehicle labeling. The results show great variation in total vehicle life cycle emissions due to regional grid differences, including an approximately 100 gram per mile life cycle GHG emissions difference between the lowest and highest electric grid regions and up to a 100% difference between the state‐specific emission values within the same electric grid regions. Unexpectedly, for two regional grids the life cycle GHG emissions were higher in electric mode than in gasoline mode. We recommend that labels include stronger language on their deficiencies and provide ranges for GHG emissions from vehicle charging in regional electricity grids to better inform consumers.  相似文献   

2.
The seasonal and hourly variation of electricity grid emissions and building operational energy use are generally not accounted for in carbon footprint analyses of buildings. This work presents a technique for and results of such an analysis and quantifies the errors that can be encountered when these variations are not appropriately addressed. The study consists of an hour‐by‐hour analysis of the energy used by four different variations of a five‐story condominium building, with a gross floor area of approximately 9,290 square meters (m2), planned for construction in Markham, Ontario, Canada. The results of the case studied indicate that failure to account for variation can, for example, cause a 4% error in the carbon footprint of a building where ground source heat pumps are used and a 6% and 8% error in accounting for the carbon savings of wind and photovoltaic systems, respectively. After the building envelope was enhanced and sources of alternative energy were incorporated, the embodied greenhouse gas (GHG) emissions were more than 50% of the building's operational emissions. This work illustrates the importance of short‐time‐scale GHG analysis for buildings.  相似文献   

3.
A life cycle assessment (LCA) of various end‐of‐life management options for construction and demolition (C&D) debris was conducted using the U.S. Environmental Protection Agency's Municipal Solid Waste Decision Support Tool. A comparative LCA evaluated seven different management scenarios using the annual production of C&D debris in New Hampshire as the functional unit. Each scenario encompassed C&D debris transport, processing, separation, and recycling, as well as varying end‐of‐life management options for the C&D debris (e.g., combustion to generate electricity versus landfilling for the wood debris stream and recycling versus landfilling for the nonwood debris stream) and different bases for the electricity generation offsets (e.g., the northeastern U.S. power grid versus coal‐fired power generation). A sensitivity analysis was also conducted by varying the energy content of the C&D wood debris and by examining the impact of basing the energy offsets on electricity generated from various fossil fuels. The results include impacts for greenhouse gas (GHG) emissions, criteria air pollutants, ancillary solid waste production, and organic and inorganic constituents in water emissions. Scenarios with nonwood C&D debris recycling coupled with combustion of C&D wood debris to generate electricity had lower impacts than other scenarios. The nonwood C&D debris recycling scenarios where C&D wood debris was landfilled resulted in less overall impact than the scenarios where all C&D debris was landfilled. The lowest impact scenario included nonwood C&D debris recycling with local combustion of the C&D wood debris to generate electricity, providing a net gain in energy production of more than 7 trillion British thermal units (BTU) per year and a 130,000 tons per year reduction in GHG emissions. The sensitivity analysis revealed that for energy consumption, the model is sensitive to the energy content of the C&D wood debris but insensitive to the basis for the energy offset, and the opposite is true for GHG emissions.  相似文献   

4.
Representing the greenhouse gas (GHG) emissions attributable to plug‐in electric vehicles (PEV) in vehicle GHG emissions regulations is complex because of spatial and temporal variation in fueling sources and vehicle use. Previous work has shown that the environmental performance of PEVs significantly varies depending on the characteristics of the electricity grid and how the vehicle is driven. This article evaluates the U.S. Environmental Protection Agency's (EPA's) GHG emissions accounting methodology in current and future standards for new electrified vehicles. The current approach employed by the EPA in their 2017–2025 model year light‐duty vehicle GHG regulation is compared with an accounting mechanism where the actual regional sales of PEVs, and the regional electricity emission factor in the year sold, are used to determine vehicle compliance value. Changes to the electricity grid over time and regional vehicle sales are included in the modeling efforts. A projection of a future GHG regulation past the 2017–2025 rule is used to observe the effect of such a regional regulation. The results showed that the complexity involved in tracking and accounting for regional PEV sales will not dramatically increase the effectiveness of the regulations to capture PEV electricity‐related GHG emissions in the absence of a major policy shift. A discussion of the feasibility and effectiveness of a regional standard for PEVs, and notable examples of region‐specific regulations instated in past energy policies, is also addressed.  相似文献   

5.
Norway, like many countries, has realized the need to extensively plan its renewable energy future sooner rather than later. Combined heat and power (CHP) through gasification of forest residues is one technology that is expected to aid Norway in achieving a desired doubling of bioenergy production by 2020. To assess the environmental impacts to determine the most suitable CHP size, we performed a unit process‐based attributional life cycle assessment (LCA), in which we compared three scales of CHP over ten environmental impact categories—micro (0.1 megawatts electricity [MWe]), small (1 MWe), and medium (50 MWe) scale. The functional units used were 1 megajoule (MJ) of electricity and 1 MJ of district heating delivered to the end user (two functional units), and therefore, the environmental impacts from distribution of electricity and hot water to the consumer were also considered. This study focuses on a regional perspective situated in middle‐Norway's Nord‐ and Sør‐Trøndelag counties. Overall, the unit‐based environmental impacts between the scales of CHP were quite mixed and within the same magnitude. The results indicated that energy distribution from CHP plant to end user creates from less than 1% to nearly 90% of the total system impacts, depending on impact category and energy product. Also, an optimal small‐scale CHP plant may be the best environmental option. The CHP systems had a global warming potential ranging from 2.4 to 2.8 grams of carbon dioxide equivalent per megajoule of thermal (g CO2‐eq/MJth) district heating and from 8.8 to 10.5 grams carbon dioxide equivalent per megajoule of electricity (g CO2‐eq/MJel) to the end user.  相似文献   

6.
This first article of a two‐article series describes a framework and life cycle–based model for typical almond orchard production systems for California, where more than 80% of commercial almonds on the world market are produced. The comprehensive, multiyear, life cycle–based model includes orchard establishment and removal; field operations and inputs; emissions from orchard soils; and transport and utilization of co‐products. These processes are analyzed to yield a life cycle inventory of energy use, greenhouse gas (GHG) emissions, criteria air pollutants, and direct water use from field to factory gate. Results show that 1 kilogram (kg) of raw almonds and associated co‐products of hulls, shells, and woody biomass require 35 megajoules (MJ) of energy and result in 1.6 kg carbon dioxide equivalent (CO2‐eq) of GHG emissions. Nitrogen fertilizer and irrigation water are the dominant causes of both energy use and GHG emissions. Co‐product credits play an important role in estimating the life cycle environmental impacts attributable to almonds alone; using displacement methods results in net energy and emissions of 29 MJ and 0.9 kg CO2‐eq/kg. The largest sources of credits are from orchard biomass and shells used in electricity generation, which are modeled as displacing average California electricity. Using economic allocation methods produces significantly different results; 1 kg of almonds is responsible for 33 MJ of energy and 1.5 kg CO2‐eq emissions. Uncertainty analysis of important parameters and assumptions, as well as temporary carbon storage in orchard trees and soils, are explored in the second article of this two‐part article series.  相似文献   

7.
For many companies, the greenhouse gas (GHG) emissions associated with their purchased and consumed electricity form one of the largest contributions to the GHG emissions that result from their activities. Currently, hourly variations in electricity grid emissions are not considered by standard GHG accounting protocols, which apply a national grid emission factor (EF), potentially resulting in erred estimates for the GHG emissions. In this study, a method is developed that calculates GHG emissions based on real‐time data, and it is shown that the use of hourly electricity grid EFs can significantly improve the accuracy of the GHG emissions that are attributed to the purchased and consumed electricity of a company. A model analysis for the electricity delivered to the Spanish grid in 2012 reveals that, for companies operating during the day, GHG emissions calculated by the real‐time method are estimated to be up to 5% higher (and in some special cases up to 9% higher) than the emissions calculated by the conventional method in which a national grid EF is applied, whereas for companies operating during nightly hours, GHG emissions are estimated to be as low as 3% below the GHG emissions determined by the conventional method. A significant error can therefore occur in the organizational carbon footprint (CF) of a company and, consequently, also in the product CF. It is recommended that hourly EFs be developed for other countries and power grids.  相似文献   

8.
The current or “conventional” paradigm for producing process energy in a biorefinery processing cellulosic biomass is on‐site energy recovery through combustion of residual solids and biogas generated by the process. Excess electricity is then exported, resulting in large greenhouse gas (GHG) credits. However, this approach will cause lifecycle GHG emissions of biofuels to increase as more renewable energy sources (wind, solar, etc.) participate in grid‐electricity generation, and the GHG credits from displacing fossil fuel decrease. To overcome this drawback, a decentralized (depot‐based) biorefinery can be integrated with a coal‐fired power plant near a large urban area. In an integrated, decentralized, depot‐based biorefinery (IDB), the residual solids are co‐fired with coal either in the adjacent power plant or in coal‐fired boilers elsewhere to displace coal. An IDB system does not rely on indirect GHG credits through grid‐electricity displacement. In an IDB system, biogas from the wastewater treatment facility is also upgraded to biomethane and used as a transportation biofuel. The GHG savings per unit of cropland in the IDB systems (2.7–2.9 MgCO2/ha) are 1.5–1.6 fold greater than those in a conventional centralized system (1.7–1.8 MgCO2/ha). Importantly, the biofuel selling price in the IDBs is lower by 28–30 cents per gasoline‐equivalent liter than in the conventional centralized system. Furthermore, the total capital investment per annual biofuel volume in the IDB is much lower (by ~80%) than that in the conventional centralized system. Therefore, utilization of biomethane and residual solids in the IDB systems leads to much lower biofuel selling prices and significantly greater GHG savings per unit of cropland participating in the biorefinery system compared to the conventional centralized biorefineries.  相似文献   

9.
China has more than 1,500 industrial parks, which, collectively, play a crucial role in facilitating industrialization and urbanization. A key characteristic of these parks is that most rely on shareable energy infrastructure, an efficient configuration that can also deliver substantial and sustainable reductions in greenhouse gas (GHG) emissions. This study offers strategies for mitigating GHG emissions from Chinese industrial parks. We focus on extensive data collection for the 106 industrial parks listed in the national demonstration eco‐industrial park (EIP) program. In doing so, we carefully examine the evolution of 608 serviceable energy infrastructure units by vintage year, fuel type, energy output, and technologies of combined heat and power units. We assess direct GHG emissions from both energy infrastructure and the parks, and then identify the features and driving forces of energy infrastructure development in the EIPs. We also offer recommendations for ways to mitigate the GHG emissions from these industrial parks. The energy infrastructure stocks in Chinese EIPs are characterized by heavy coal dependence (87% of capacity) and high ratios of direct GHG emissions versus the total direct emissions of the park (median value: 75.2%). These findings establish a baseline from which both technology and policy decisions can then be made in an informed way.  相似文献   

10.
Greenhouse gas (GHG) intensity is frequently used to assess the mitigation potential of biofuels; however, failure to quantify other environmental impacts may result in unintended consequences, effectively shifting the environmental burden of fuel production rather than reducing it. We modeled production of E85, a gasoline/ethanol blend, from forage sorghum (Sorghum bicolor cv. photoperiod LS) grown, processed, and consumed in California's Imperial Valley in order to evaluate the influence of nitrogen (N) management on well‐to‐wheel (WTW) environmental impacts from cellulosic ethanol. We simulated 25 N management scenarios varying application rate, application method, and N source. Life cycle environmental impacts were characterized using the EPA's criteria for emissions affecting the environment and human health. Our results suggest efficient use of N is an important pathway for minimizing WTW emissions on an energy yield basis. Simulations in which N was injected had the highest nitrogen use efficiency. Even at rates as high as 450 kg N ha?1, injected N simulations generated a yield response sufficient to outweigh accompanying increases in most N‐induced emissions on an energy yield basis. Thus, within the biofuel life cycle, trade‐offs across productivity, GHG intensity, and pollutant loads may be possible to avoid at regional to global scales. However, trade‐offs were seemingly unavoidable when impacts from E85 were compared to those of conventional gasoline. The GHG intensity of sorghum‐derived E85 ranged from 29 to 44 g CO2 eq MJ?1, roughly 1/3 to 1/2 that of gasoline. Conversely, emissions contributing to local air and water pollution tended to be substantially higher in the E85 life cycle. These adverse impacts were strongly influenced by N management and could be partially mitigated by efficient application of N fertilizers. Together, our results emphasize the importance of minimizing on‐farm emissions in maximizing both the environmental benefits and profitability of biofuels.  相似文献   

11.
Economic input‐output life cycle assessment (IO‐LCA) models allow for quick estimation of economy‐wide greenhouse gas (GHG) emissions associated with goods and services. IO‐LCA models are usually built using economic accounts and differ from most process‐based models in their use of economic transactions, rather than physical flows, as the drivers of supply‐chain GHG emissions. GHG emissions estimates associated with input supply chains are influenced by the price paid by consumers when the relative prices between individual consumers are different. We investigate the significance of the allocation of GHG emissions based on monetary versus physical units by carrying out a case study of the U.S. electricity sector. We create parallel monetary and mixed‐unit IO‐LCA models using the 2007 Benchmark Accounts of the U.S. economy and sector specific prices for different end users of electricity. This approach is well suited for electricity generation because electricity consumption contributes a significant share of emissions for most processes, and the range of prices paid by electricity consumers allows us to explore the effects of price on allocation of emissions. We find that, in general, monetary input‐output models assign fewer emissions per kilowatt to electricity used by industrial sectors than to electricity used by households and service sectors, attributable to the relatively higher prices paid by households and service sectors. This fact introduces a challenging question of what is the best basis for allocating the emissions from electricity generation given the different uses of electricity by consumers and the wide variability of electricity pricing.  相似文献   

12.
Renewable energy (RE) technologies are looked upon favorably to provide for future energy demands and reduce greenhouse gas (GHG) emissions. However, the installation of these technologies requires large quantities of finite material resources. We apply life cycle assessment to 100 years of electricity generation from three stand‐alone RE technologies—solar photovoltaics, run‐of‐river hydro, and wind—to evaluate environmental burden profiles against baseline electricity generation from fossil fuels. We then devised scenarios to incorporate circular economy (CE) improvements targeting hotspots in systems’ life cycle, specifically (1) improved recycling rates for raw materials and (ii) the application of eco‐design. Hydro presented the lowest environmental burdens per kilowatt‐hour of electricity generation compared with other RE technologies, owing to its higher efficiency and longer life spans for main components. Distinct results were observed in the environmental performance of each system based on the consideration of improved recycling rates and eco‐design. CE measures produced similar modest savings in already low GHG emissions burdens for each technology, while eco‐design specifically had the potential to provide significant savings in abiotic resource depletion. Further research to explore the full potential of CE measures for RE technologies will curtail the resource intensity of RE technologies required to mitigate climate change.  相似文献   

13.
This research reports on a multivariate analysis that examined the relationship between direct greenhouse gas (GHG) emissions and socioeconomic and well‐being variables for 1,920 respondents living in Halifax Regional Municipality, Nova Scotia, Canada, using results from the Halifax Space‐Time Activity Research Project. The unique data set allows us to estimate direct GHG emissions with an unprecedented level of specificity based on household energy use survey data and geographic positioning system–verified personal travel data. Of the variables analyzed, household size, income, community zone, age, and marital status are all statistically significant predictors of direct GHG emissions. Birthplace, ethnicity, educational attainment, perceptions of health, life satisfaction, job satisfaction, happiness, volunteering, or community belonging did not seem to matter. In addition, we examined whether those reporting energy‐efficient behaviors had lower GHG emissions. No significant differences were discovered among the groups analyzed, supporting a growing body of research indicating a disconnect between environmental attitudes and behaviors and environmental impact. Among the predictor variables, those reporting to be married, young, low income, and living in households with more people have correspondingly lower direct GHG emissions than other categories in respective groupings. Our finding that respondents with lifestyles that generate higher GHG emissions did not report to be healthier, happier, or more connected to their communities suggest that individuals can experience similar degrees of well‐being regardless of the amount of GHG emissions associated with his or her respective lifestyle.  相似文献   

14.
The heating of buildings currently produces 6% of global greenhouse gas emissions. Sustainable heating technologies can reduce heating‐related CO2 emissions by up to 90%. We present a Python‐based GIS model to analyze the environmental and financial impact of strategies to reduce heating‐related CO2 emissions of residential buildings. The city‐wide implementation of three alternatives to natural gas are evaluated: high‐temperature heating networks, low‐temperature heating networks, and heat pumps. We find that both lowering the demand for heat and providing more sustainable sources of heat will be necessary to achieve significant CO2‐emission reductions. Of the studied alternatives, only low‐temperature heating networks and heat pumps have the potential to reduce CO2 emissions by 90%. A CO2 tax and an increase in tax on the use of natural gas are potent policy tools to accelerate the adoption of low‐carbon heating technologies.  相似文献   

15.
The life cycle greenhouse gas (GHG) reduction benefits of vehicle lightweighting (LW) were evaluated in a companion article. This article provides an economic assessment of vehicle LW with aluminum and high‐strength steel. Relevant cost information taken from the literature is synthesized, compiled, and formed into estimates of GHG reduction costs through LW. GHG emissions associated with vehicle LW scenarios between 6% and 23% are analyzed alongside vehicle life cycle costs to achieve these LW levels. We use this information to estimate the cost to remove GHG emissions per metric ton by LW, and we further calculate the difference between added manufacturing cost and fuel cost savings from LW. The results show greater GHG savings derived from greater LW and added manufacturing costs as expected. The associated production costs are, however, disproportionately higher than the fuel cost savings associated with higher LW options. A sensitivity analysis of different vehicle classes confirms that vehicle LW is more cost‐effective for larger vehicles. Also, the cost of GHG emissions reductions through lightweighting is compared with alternative GHG emissions reduction technologies for passenger vehicles, such as diesel, hybrid, and plug‐in hybrid electric powertrains. The results find intensive LW to be a competitive and complementary approach relative to the technological alternatives within the automotive industry but more costly than GHG mitigation strategies available to other industries.  相似文献   

16.
Short‐rotation woody crops (SRWC) such as poplar and willow are an important source of renewable energy. They can be converted into electricity and/or heat using conventional or modern biomass technologies. In recent years many studies have examined the energy and greenhouse gas (GHG) balance of bioenergy production from poplar and willow using various approaches. The outcomes of these studies have, however, generated controversy among scientists, policy makers, and the society. This paper reviews 26 studies on energy and GHG balance of bioenergy production from poplar and willow published between 1990 and 2009. The data published in the reviewed literature gave energy ratios (ER) between 13 and 79 for the cradle‐to‐farm gate and between 3 and 16 for cradle‐to‐plant assessments, whereas the intensity of GHG emissions ranged from 0.6 to 10.6 g CO2 Eq MJbiomass?1 and 39 to 132 g CO2 Eq kWh?1. These values vary substantially among the reviewed studies depending on the system boundaries and methodological assumptions. The lack of transparency hampers meaningful comparisons among studies. Although specific numerical results differ, our review revealed a general consensus on two points: SRWC yielded 14.1–85.9 times more energy than coal (ERcoal~0.9) per unit of fossil energy input, and GHG emissions were 9–161 times lower than those of coal (GHGcoal~96.8). To help to reduce the substantial variability in results, this review suggests a standardization of the assumptions about methodological issues. Likewise, the development of a widely accepted framework toward a reliable analysis of energy in bioenergy production systems is most needed.  相似文献   

17.
Bioethanol production from sugarcane is discussed as an alternative energy source to reduce dependencies of regional economies on fossil fuels. Even though bioethanol production from sugarcane is considered to be a beneficial and cost‐effective greenhouse gas (GHG) mitigation strategy, it is still a matter of controversy due to insufficient information on the total GHG balance of this system. Aside from the necessity to account for the impact of land use change (LUC), soil N2O emissions during sugarcane production and emissions of GHG due to preharvest burning may significantly impact the GHG balance. Based on a thorough literature review, we show that direct N2O emissions from sugarcane fields due to nitrogen (N) fertilization result in an emission factor of 3.87±1.16% which is much higher than suggested by IPCC (1%). N2O emissions from N fertilization accounted for 40% of the total GHG emissions from ethanol–sugarcane production, with an additional 17% from trash burning. If LUC‐related GHG emissions are considered, the total GHG balance turns negative mainly due to vegetation carbon losses. Our study also shows that major gaps in knowledge still exist about GHG sources related to agricultural management during sugarcane production, e.g. effects of irrigation, vinasse and filter cake application. Therefore, more studies are needed to assess if bioethanol from sugarcane is a viable option to reduce energy‐related GHG emissions.  相似文献   

18.
In this study, we analyze the impact of fertilizer‐ and manure‐induced N2O emissions due to energy crop production on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first‐generation biofuels (also taking account of other GHG emissions during the entire life cycle). We calculate the nitrous oxide (N2O) emissions by applying a statistical model that uses spatial data on climate and soil. For the land use that is assumed to be replaced by energy crop production (the ‘reference land‐use system’), we explore a variety of options, the most important of which are cropland for food production, grassland, and natural vegetation. Calculations are also done in the case that emissions due to energy crop production are fully additional and thus no reference is considered. The results are combined with data on other emissions due to biofuels production that are derived from existing studies, resulting in total GHG emission reduction potentials for major biofuels compared with conventional fuels. The results show that N2O emissions can have an important impact on the overall GHG balance of biofuels, though there are large uncertainties. The most important ones are those in the statistical model and the GHG emissions not related to land use. Ethanol produced from sugar cane and sugar beet are relatively robust GHG savers: these biofuels change the GHG emissions by −103% to −60% (sugar cane) and −58% to −17% (sugar beet), compared with conventional transportation fuels and depending on the reference land‐use system that is considered. The use of diesel from palm fruit also results in a relatively constant and substantial change of the GHG emissions by −75% to −39%. For corn and wheat ethanol, the figures are −38% to 11% and −107% to 53%, respectively. Rapeseed diesel changes the GHG emissions by −81% to 72% and soybean diesel by −111% to 44%. Optimized crop management, which involves the use of state‐of‐the‐art agricultural technologies combined with an optimized fertilization regime and the use of nitrification inhibitors, can reduce N2O emissions substantially and change the GHG emissions by up to −135 percent points (pp) compared with conventional management. However, the uncertainties in the statistical N2O emission model and in the data on non‐land‐use GHG emissions due to biofuels production are large; they can change the GHG emission reduction by between −152 and 87 pp.  相似文献   

19.
We combined economic and life‐cycle analyses in an integrated framework to ascertain greenhouse gas (GHG) intensities, production costs, and abatement costs of GHG emissions for ethanol and electricity derived from three woody feedstocks (logging residues only, pulpwood only, and pulpwood and logging residues combined) across two forest management choices (intensive and nonintensive) and 31 harvest ages (year 10–year 40 in steps of 1 year) on reforested and afforested lands at the production level for slash pine (Pinus elliottii) in the Southern United States. We assumed that wood chips and wood pellets will be used to produce ethanol and generate electricity, respectively. Production costs and GHG intensities of ethanol and electricity were lowest for logging residues at the optimal rotation age for both forest management choices. Opportunity cost related with the change in rotation age was a significant determinant of the variability in the overall production cost. GHG intensity of feedstocks obtained from afforested land was lower than reforested land. Relative savings in GHG emissions were higher for ethanol than electricity. Abatement cost of GHG emissions for ethanol was lower than electricity, especially when feedstocks were obtained from a plantation whose rotation age was close to the optimal rotation age. A carbon tax of at least $25 and $38 Mg?1 CO2e will be needed to promote production of ethanol from wood chips and electricity from wood pellets in the US, respectively.  相似文献   

20.
Conventional cost‐effectiveness calculations ignore the implications of greenhouse gas (GHG) emissions timing and thus may not properly inform decision‐makers in the efficient allocation of resources to mitigate climate change. To begin to address this disconnect with climate change science, we modify the conventional cost‐effectiveness approach to account for emissions timing. GHG emissions flows occurring over time are translated into an ‘Equivalent Present Emission’ based on radiative forcing, enabling a comparison of system costs and emissions on a consistent present time basis. We apply this ‘Present Cost‐Effectiveness’ method to case studies of biomass‐based electricity generation (biomass co‐firing with coal, biomass cogeneration) to evaluate implications of forest carbon trade‐offs on the cost‐effectiveness of emission reductions. Bioenergy production from forest biomass can reduce forest carbon stocks, an immediate emissions source that contributes to atmospheric greenhouse gases. Forest carbon impacts thereby lessen emission reductions in the near‐term relative to the assumption of biomass ‘carbon neutrality’, resulting in higher costs of emission reductions when emissions timing is considered. In contrast, conventional cost‐effectiveness approaches implicitly evaluate strategies over an infinite analytical time horizon, underestimating nearer term emissions reduction costs and failing to identify pathways that can most efficiently contribute to climate change mitigation objectives over shorter time spans (e.g. up to 100 years). While providing only a simple representation of the climate change implications of emissions timing, the Present Cost‐Effectiveness method provides a straightforward approach to assessing the cost‐effectiveness of emission reductions associated with any climate change mitigation strategy where future GHG reductions require significant initial capital investment or increase near‐term emissions. Timing is a critical factor in determining the attractiveness of any investment; accounting for emissions timing can better inform decisions related to the merit of alternative resource uses to meet near‐, mid‐, and long‐term climate change mitigation objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号