首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high molecular mass aminoacyl-tRNA synthetase complex has been isolated from a murine erythroleukemia cell line. This multienzyme complex contains activities for the arginyl-, aspartyl-, glutamyl-, glutaminyl-, isoleucyl,- leucyl-, lysyl-, methionyl-, and prolyl-tRNA synthetases. This enzyme composition, the polypeptide pattern observed upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the relative stoichiometry of the component polypeptides are characteristic of high molecular mass complexes of aminoacyl-tRNA synthetases isolated from a variety of mammalian tissues and cell types. Negatively stained preparations of native complex and of glutaraldehyde-treated material have been examined by electron microscopy. In both cases, a distinctive particle is observed which appears in several orientations. The most common views are of two different projections of a squarish particle that measures approximately 27 x 27 nm. Other commonly observed views are of a "U" shape, a rectangle, and a triangle. All of these views are seen in both gradient-purified samples and those prepared directly from material as isolated. These data are consistent with a model for the multienzyme aminoacyl-tRNA synthetase complex as a "cup" or elongated U structure. These studies demonstrate that the high molecular mass complex of eukaryotic aminoacyl-tRNA synthetases does have a coherent structure that can be visualized by electron microscopy.  相似文献   

2.
In eukaryotes, multienzyme complexes containing five to nine aminoacyl-tRNA synthetase activities have frequently been reported. In this study, we report the existence, in bovine liver cytoplasm, of a multienzyme complex containing at least 16 activities which can be disrupted by homogenization to give rise to smaller complexes and noncomplexed synthetases. Determination of the size and component activity of these complexes and of the molecular weights of all 20 free synthetases suggests that the smaller complexes and free activities normally identified arise from the larger complex by well-defined stages during homogenization. We also show that similar, though not identical, complexes are found in bovine liver mitochondria and give the molecular weights of 16 mitochondrial synthetases.  相似文献   

3.
Cultured Chinese hamster ovary cells were subjected to amino acid restriction to examine its effects on the level of expression of the nine aminoacyl-tRNA synthetase components of the multienzyme complex which was previously characterized (Mirande, M., Le Corre, D., and Waller, J.-P. (1985) Eur. J. Biochem. 147, 281-289). Lowering the methionine concentration in the medium from 100 to 1 microM led to growth arrest, rapid deacylation of tRNAMet, and progressive 2-fold elevation of the methionyl-tRNA synthetase level, as assessed by specific activity measurements and immunotitration. The levels of the other eight aminoacyl-tRNA synthetases were not affected. Total methionine deprivation led to the additional derepression of the leucyl- and isoleucyl-tRNA synthetase components, whereas the corresponding tRNAs remained fully acylated. These pleiotropic responses to total methionine restriction were abolished in the presence of 2 mM methioninol, suggesting that amino acid transport systems may play a role in the regulation of aminoacyl-tRNA synthetase expression. The effect of total deprivation of arginine, glutamine, isoleucine, leucine, lysine, or proline from the culture medium on the level of expression of the corresponding aminoacyl-tRNA synthetases was also examined. In all cases, no elevation of the level of the corresponding synthetase was observed. The behavior of methionyl-tRNA synthetase from Chinese hamster ovary cells displaying a 2-fold increased level of the enzyme due to methionine restriction was examined in detail. Failure to detect a free form of the enzyme by gel filtration, as well as the finding that the isolated complex displayed twice the amount of methionyl-tRNA synthetase relative to the other components, indicates that this multienzyme structure can accommodate at least one additional copy of one of its components.  相似文献   

4.
The functional interaction of Arg-, Ile-, Leu-, Lys- and Met-tRNA synthetases occurring within the same rat liver multienzyme complex are investigated by examining the enzymes catalytic activities and inactivation kinetics. The Michaelis constants for amino acids, ATP and tRNAs of the dissociated aminoacyl-tRNA synthetases are not significantly different from those of the high-Mr multienzyme complex, except in a few cases where the Km values of the dissociated enzymes are higher than those of the high-Mr form. The maximal aminoacylation velocities of the individual aminoacyl-tRNA synthetases are not affected by the presence of simultaneous aminoacylation by another synthetase occurring within the same multienzyme complex. Site-specific oxidative modification by ascorbate and nonspecific thermal inactivation of synthetases in the purified rat liver 18 S synthetase complex are examined. Lys- and Arg-tRNA synthetases show remarkably parallel time-courses in both inactivation processes. Leu- and Met-tRNA synthetases also show parallel kinetics in thermal inactivation and possibly oxidative inactivation. Ile-tRNA synthetase shows little inactivation in either process. The oxidative inactivation of Lys- and Arg-tRNA synthetases can be reversed by addition of dithiothreitol. These results suggest that synthetases within the same high-Mr complex catalyze aminoacylation reactions independently; however, the stabilities of some of the synthetases in the multienzyme complex are coupled. In particular, the stability of Arg-tRNA synthetase depends appreciably on its association with fully active Lys-tRNA synthetase.  相似文献   

5.
An 18 S multienzyme complex of aminoacyl-tRNA synthetases is found to be active in the synthesis of diadenosine-5',5'-P1,P4-tetraphosphate (AppppA). Most of the activity is attributed to lysyl-tRNA synthetase in the complex. Free lysyl-tRNA synthetase dissociated from the synthetase complex is about 6-fold more active than the complex in AppppA synthesis, while their apparent Michaelis constants for ATP and lysine are similar. AMP, which reportedly activates AppppA synthesis (Hilderman, R.H. (1983) Biochemistry 22, 4353-4357), has no effect on AppppA synthesis. The higher activity of free Lys-tRNA synthetase is in part due to the higher stimulation of AppppA synthesis by Zn2+. These results suggest that association of aminoacyl-tRNA synthetases may affect AppppA synthesis.  相似文献   

6.
The high molecular weight aminoacyl-tRNA synthetase complexes found in extracts of many eukaryotic cells often contain lipids and other non-protein components. Since hydrophobic interactions play an important role in maintaining synthetases in the complex, it has been suggested that the lipids present may also participate in its functional and structural integrity. In order to learn more about the role of lipids in the complex, we have compared the properties of the normal complex to one which has been delipidated by treatment with Triton X-114. Delipidation does not affect the size or activity of the aminoacyl-tRNA synthetase complex, but a variety of functional and structural properties of individual synthetases in the complex are altered dramatically. These include sensitivity to salts plus detergents, temperature inactivation, hydrophobicity, and sensitivity to protease digestion. In the latter case, removal of lipids also affects the low molecular weight products released by protease digestion. Purification of the synthetase complex by various chromatographic procedures can remove the lipids and lead to a structure that behaves like the delipidated complex prepared by detergent treatment. The significance of these findings for the intracellular location of aminoacyl-tRNA synthetases and for the study of purified complexes are discussed.  相似文献   

7.
The human glutaminyl-tRNA synthetase is three times larger than the corresponding bacterial and twice as large as the yeast enzyme. It is possible that the additional sequences of the human glutaminyl-tRNA synthetase are required for the formation of the multienzyme complex which is known to include several of aminoacyl-tRNA synthetases in mammalian cells. To address this point we prepared antibodies against three regions of the human glutaminyl-tRNA synthetase, namely against its enzymatically important core region, and against two sections in its large C-terminal extension. In intact multienzyme complexes the core region was accessible to specific antibody binding. However, the C-terminal sections became available to specific antibody binding only when certain components of the multienzyme complex were either absent or degraded. These findings allow first conclusions as to the relative position of some components in the mammalian aminoacyl-tRNA synthetase complex.  相似文献   

8.
Eukaryotic aminoacyl-tRNA synthetases are usually organized into high-molecular-weight complexes, the structure and function of which are poorly understood. We have previously described a yeast complex containing two aminoacyl-tRNA synthetases, methionyl-tRNA synthetase and glutamyl-tRNA synthetase, and one noncatalytic protein, Arc1p, which can stimulate the catalytic efficiency of the two synthetases. To understand the complex assembly mechanism and its relevance to the function of its components, we have generated specific mutations in residues predicted by a recent structural model to be located at the interaction interfaces of the N-terminal domains of all three proteins. Recombinant wild-type or mutant forms of the proteins, as well as the isolated N-terminal domains of the two synthetases, were overexpressed in bacteria, purified and used for complex formation in vitro and for determination of binding affinities using surface plasmon resonance. Moreover, mutant proteins were expressed as PtA or green fluorescent protein fusion polypeptides in yeast strains lacking the endogenous proteins in order to monitor in vivo complex assembly and their subcellular localization. Our results show that the assembly of the Arc1p-synthetase complex is mediated exclusively by the N-terminal domains of the synthetases and that the two enzymes bind to largely independent sites on Arc1p. Analysis of single-amino-acid substitutions identified residues that are directly involved in the formation of the complex in yeast cells and suggested that complex assembly is mediated predominantly by van der Waals and hydrophobic interactions, rather than by electrostatic forces. Furthermore, mutations that abolish the interaction of methionyl-tRNA synthetase with Arc1p cause entry of the enzyme into the nucleus, proving that complex association regulates its subcellular distribution. The relevance of these findings to the evolution and function of the multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases is discussed.  相似文献   

9.
A heterotypic multienzyme complex from sheep liver containing seven aminoacyl-tRNA synthetases specific for isoleucine, leucine, methionine, glutamine, glutamic acid, lysine and arginine was subjected to kinetic analyses to examine the possibility that association of these enzymes may impart kinetic properties which differ from those of their unassociated counterparts. The evidence obtained by two different approaches leads to the conclusion that the associated enzymes are functionally independent. Firstly, the kinetic constants of the methionyl-tRNA and lysyl-tRNA synthetase components of the complex do not differ significantly from those of their unassociated counterparts obtained after controlled proteolysis of the complex. Secondly, the methionyl-tRNA synthetase component of the complex displays identical kinetic constants, whether assayed in the presence of [14C]methionine, ATP and highly enriched tRNAMet alone, or in the additional presence of the substrates required for unlabeled aminoacyl-tRNA formation by each of the other six enzymes. Similarly, the initial rates of [14C]aminoacyl-tRNA formation catalyzed by any of the six other enzymes was unaffected by the concomitant functioning of the other aminoacyl-tRNA synthetases. The sedimentation behaviour of the aminoacyl-tRNA synthetase components of the complex under conditions prevailing in the tRNA aminoacylation assay indicates that they remain associated under these conditions. The implications of these findings on the structural organization of the enzymes within the complex are discussed.  相似文献   

10.
In higher eukaryotes, nine aminoacyl-tRNA synthetases are associated within a multienzyme complex which is composed of 11 polypeptides with molecular masses ranging from 18 to 150 kDa. We have cloned and sequenced a cDNA from Drosophila encoding the largest polypeptide of this complex. We demonstrate here that the corresponding protein is a multifunctional aminoacyl-tRNA synthetase. It is composed of three major domains, two of them specifying distinct synthetase activities. The amino and carboxy-terminal domains were expressed separately in Escherichia coli, and were found to catalyse the aminoacylation of glutamic acid and proline tRNA species, respectively. The central domain is made of six 46 amino acid repeats. In prokaryotes, these two aminoacyl-tRNA synthetases are encoded by distinct genes. The emergence of a multifunctional synthetase by a gene fusion event seems to be a specific, but general attribute of all higher eukaryotic cells. This type of structural organization, in relation to the occurrence of multisynthetase complexes, could be a mechanism to integrate several catalytic domains within the same particle. The involvement of the internal repeats in mediating complex assembly is discussed.  相似文献   

11.
The size distribution of lysyl- and arginyl-tRNA synthetases in crude extracts from rat liver was re-examined by gel filtration. It is shown that irrespective of the addition or not of several proteinase inhibitors, lysyl-tRNA synthetase was present exclusively as a high-Mr entity, while arginyl-tRNA synthetase occurred as high- and low-Mr forms, in the constant proportions of 2:1, respectively. The polypeptide molecular weights of the arginyl-tRNA synthetase in these two forms were 74000 and 60000, respectively. The high-Mr forms of lysyl- and arginyl-tRNA synthetases were co-purified to yield a multienzyme complex, the polypeptide composition of which was virtually identical to that of the complexes from rabbit liver and from cultured Chinese hamster ovary cells. Of the nine aminoacyl-tRNA synthetases, specific for lysine, arginine, methionine, leucine, isoleucine, glutamine, glutamic and aspartic acids and proline, which characterize the purified complex, each, except prolyl-tRNA synthetase, was assigned to the constituent polypeptides by the protein-blotting procedure, using the previously characterized antibodies to the aminoacyl-tRNA synthetase components of the corresponding complex from sheep liver.  相似文献   

12.
Lysyl-tRNA synthetase, dissociated from the multienzyme complexes of aminoacyl-tRNA synthetases from rat liver, was previously found to be 6-fold more active than the synthetase complex in the enzymatic synthesis of P1,P4-bis(5'-adenosyl)tetraphosphate. The bi-substrate and product inhibition kinetics of the reaction are analyzed. Free lysyl-tRNA synthetase exhibits distinctly different kinetic patterns from those of an 18 S synthetase complex containing lysyl-tRNA synthetase. The 18 S synthetase complex shows kinetic patterns which are consistent with an ordered Bi Uni Uni Bi ping-pong mechanism. Free lysyl-tRNA synthetase shows kinetic patterns consistent with a random mechanism. The differences in the enzymatic properties are attributed to the organization of the supramolecular structure of the synthetase complex. The results suggest that association of the synthetases may affect the mechanisms of the synthesis of AppppA.  相似文献   

13.
Small  Ian  Wintz  Henri  Akashi  Kinya  Mireau  Hakim 《Plant molecular biology》1998,38(1-2):265-277
Eukaryotic cells are divided into multiple membrane-bound compartments, all of which contain proteins. A large subset of these proteins perform functions that are required in more than one compartment. Although in most cases proteins carrying out the same function in different compartments are encoded by different genes, this is not always true. Numerous examples have now been found where a single gene encodes proteins (or RNAs) found in two (or more) cell organelles or membrane systems. Some particularly clear examples come from protein synthesis itself: plant cells contain three protein-synthesizing compartments, the cytosol, the mitochondrial matrix and the plastid stroma. All three compartments thus require tRNAs and aminoacyl-tRNA synthetases. Some mitochondrial tRNAs and their aminoacyl-tRNA synthetases are identical to their cytosolic counterparts and they are encoded by the same genes. Similarly, some mitochondrial and plastid aminoacyl-tRNA synthetases are encoded by the same nuclear genes. The various ways in which differentially targeted products can be generated from single genes is discussed.  相似文献   

14.
Multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases   总被引:1,自引:0,他引:1  
Eukaryotic aminoacyl-tRNA synthetases, unlike their prokaryotic counterparts, may occur as high-Mr multienzyme complexes. Recently, successful purification of synthetase complexes makes possible the elucidation of the structural organization of these high-Mr complexes. Although their physiological significance remains unknown, recent studies suggest some possible functional roles for these complexes.  相似文献   

15.
Lysyl-tRNA synthetase occurs in the high molecular weight form in rat liver. The high molecular weight lysyl-tRNA synthetase has been previously demonstrated to exist as multienzyme complexes of aminoacyl-tRNA synthetases. The multienzyme complexes can be dissociated by hydrophobic interaction chromatography and yield fully active, free lysyl-tRNA synthetase. The free form is found to be twice as active as the complexed form in lysylation. Bisubstrate and product inhibition kinetics of lysylation are systematically carried out for highly purified free lysyl-tRNA synthetase and the 18 S synthetase complex. Surprisingly, the two enzyme forms exhibit distinctly different kinetic patterns in bisubstrate and product inhibition kinetics under identical conditions. The 18 S synthetase complex shows kinetic patterns consistent with an ordered bi uni uni bi ping pong mechanism, while the results of free lysyl-tRNA synthetase do not. We conclude that structural organization of lysyl-tRNA synthetase beyond quaternary structure of proteins may alter the enzyme behavior.  相似文献   

16.
A subset of eukaryotic aminoacyl-tRNA synthetases (a-RS) are contained in a multienzyme complex for which little structural detail is known. Three reversible chemical crosslinking reagents have been used to investigate the arrangement of polypeptides within this particle as isolated from rabbit reticulocytes. Identification of the crosslinked protein pairs was accomplished by two-dimensional SDS diagonal gel electrophoresis. Seventeen neighboring protein pairs have been identified. Eight are seen with at least two reagents: K-RS:p38, D-RS:K-RS, R-RS dimer, K-RS dimer, K-RS:Q-RS, E/P-RS:K-RS, E/P-RS:I-RS, and Q-RS with one of the nonsynthetase proteins. Nine more are observed with one reagent: D-RS dimer, R-RS:p43, D-RS:Q-RS, D-RS:M-RS, K-RS:L-RS, I-RS:R-RS, D-RS:E/P-RS, I-RS:Q-RS, I-RS:L-RS. One trimeric association is seen: E/P-RS:I-RS:L-RS. The observed neighboring protein pairs suggest that the polypeptides within the aminoacyl-tRNA synthetase complex are distributed in three structural domains of similar mass. These can be arranged in a U-shaped particle in which each "arm" is considered a domain and the third forms the "base" of the structure. The arms have been termed domain I (D-RS, M-RS, Q-RS) and domain II (K-RS, R-RS), with domain III (E/P-RS, I-RS, L-RS) assigned to the base. The smaller proteins (p38, p43) may bridge the domains. This proposed spatial relationship of these domains, as well as their compositions, are consistent with earlier studies. Thus, this study provides an initial three-dimensional working model of the arrangement of polypeptides within the multienzyme aminoacyl-tRNA synthetase complex.  相似文献   

17.
Caspase-3 is thought to play an important role(s) in the nuclear morphological changes that occur in apoptotic cells and many nuclear substrates for caspase-3 have been identified despite the cytoplasmic localization of procaspase-3. Therefore, whether activated caspase-3 is localized in the nuclei and how active caspase-3 has access to its nuclear targets are important and unresolved questions. Here we confirmed nuclear localizations for both caspase-3-p17 and caspase-3-p12 subunits of active caspase in apoptotic cells using subcellular fractionation analysis. We also prepared polyclonal and monoclonal antibodies specific for active caspase-3 to define the subcellular localization of active caspase-3. Immunocytochemical observations using anti-active caspase-3 antibodies showed nuclear accumulation of active caspase-3 during apoptosis. In addition, caspase-3, but not caspase-7, translocated from the cytoplasm into the nucleus after induction of apoptosis. Mutations at the cleavage site between the p17 and p12 subunits and the substrate recognition site for the P3 amino acid of the DXXD substrate cleavage motif inhibited nuclear translocation of caspase-3, indicating that nuclear transport of active caspase-3 required proteolytic activation and substrate recognition. These results suggest that active caspase-3 is translocated in association with a substrate-like protein(s) from the cytoplasm into the nucleus during progression through apoptosis.  相似文献   

18.
Aspartyl-tRNA synthetase from higher eukaryotes is a component of a multienzyme complex comprising nine aminoacyl-tRNA synthetases. The cDNA encoding cytoplasmic rat liver aspartyl-tRNA synthetase was previously cloned and sequenced. This work reports the identification of structural features responsible for its association within the multisynthetase complex. Mutant and chimeric proteins have been expressed in mammalian cells and their structural behavior analyzed. A wild-type rat liver aspartyl-tRNA synthetase, expressed in Chinese hamster ovary (CHO) cells, associates within the complex from CHO cells, whereas a mutant enzyme with a deletion of 34 amino acids from its amino-terminal extremity does not. A chimeric enzyme, made of the amino-terminal moiety of rat liver aspartyl-tRNA synthetase fused to the catalytic domain of yeast lysyl-tRNA synthetase, has been expressed in Lys-101 cells, a CHO cell line with a temperature-sensitive lysyl-tRNA synthetase. The fusion protein is stable in vivo, does not associate within the multisynthetase complex and cannot restore normal growth of the mutant cells. These results establish that the 3.7-kDa amino-terminal moiety of mammalian aspartyl-tRNA synthetase mediates its association with the other components of the complex. In addition, the finding that yeast lysyl-tRNA synthetase cannot replace the aspartyl-tRNA synthetase component of the mammalian complex, indicates that interactions between neighbouring enzymes also play a prominent role in stabilization of this multienzyme structure and strengthened the view that the multisynthetase complex is a discrete entity with a well-defined structural organization.  相似文献   

19.
The size distribution of the 20 aminoacyl-tRNA synthetases from wild-type Chinese hamster ovary (CHO) cells and from the mutant cell line tsH1, containing a temperature-sensitive leucyl-tRNA synthetase, was determined by gel filtration. Nine aminoacyl-tRNA synthetases, specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine and proline, which coeluted as high-Mr entities (Mr approximately 1.2 X 10(6)), were further co-purified to yield a multienzyme complex, the polypeptide composition of which was identical to that previously determined for the complex from rabbit liver. Immunoprecipitates obtained from crude extracts of wild-type and tsH1 mutant cells, using specific antibodies directed to the lysyl-tRNA or methionyl-tRNA synthetase components of the complex, displayed the same polypeptide compositions as that of the purified complex, thereby establishing the heterotypic nature of this complex. Although the activity of leucyl-tRNA synthetase from the mutant cells, grown at a permissive temperature, was low compared to that from the wild-type, the polypeptide of Mr 129 000, corresponding to this enzyme, was present in similar amounts and occurred exclusively as a component of the high-Mr complex. Finally, we report that attempts to demonstrate phosphorylation of the components of the complex from cultured CHO, HeLa and C3 cells were unsuccessful.  相似文献   

20.
The major high molecular weight complex of aminoacyl-tRNA synthetases is purified about 1000-fold with 30% yield from rat liver. The synthetase complex sediments at 24 S with a molecular weight of 900,000 +/- 75,000 and contains aminoacylation activities for lysine, arginine, isoleucine, leucine, methionine, glutamine, glutamate, and proline. The 24 S synthetase complex dissociates into 21 S, 18 S, 13 S, 12 S, and 10 S complexes with specific enzymatic activities. Dissociation of the 24 S complex into active free synthetases is achieved by hydrophobic interaction chromatography. The disassembly of the synthetase complex is consistent with the structural model of a heterotypic multienzyme complex and suggests that the complex formation is due to the specific intermolecular interactions among the synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号