首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The residual dry weight of the thoracic cuticle of tsetse has been found to increase durint maturation and this finding affects the estimates of mitochondrial and contractile protein made by Bursell. The thoracic proline reserve was also found to increase during maturation, following much the same time course as that of the increases in contractile protein. The results are discussed with reference to the relevant published work on other insects.  相似文献   

2.
Late embryogenesis abundant (LEA) proteins are a highly diverse group of polypeptides expected to play important roles in desiccation tolerance of plant seeds. They are also found in other plant tissues and in some anhydrobotic invertebrates, fungi, protists and prokaryotes. The LEA protein LEAM accumulates in the matrix space of pea (Pisum sativum) mitochondria during late seed maturation. LEAM is an intrinsically disordered protein folding into amphipathic α-helix upon desiccation. This suggests that it could interact with the inner mitochondrial membrane, providing structural protection in dry seeds. Here, we have used Fourier-transform infrared and fluorescence spectroscopy to gain insight into the molecular details of interactions of LEAM with phospholipid bilayers in the dry state and their effects on liposome stability. LEAM interacted specifically with negatively charged phosphate groups in dry phospholipids, increasing fatty acyl chain mobility. This led to an enhanced stability of liposomes during drying and rehydration, but also upon freezing. Protection depended on phospholipid composition and was strongly enhanced in membranes containing the mitochondrial phospholipid cardiolipin. Collectively, the results provide strong evidence for a function of LEAM as a mitochondrial membrane protectant during desiccation and highlight the role of lipid composition in the interactions between LEA proteins and membranes.  相似文献   

3.
The effect of osmotic stress on wheat (Triticum aestivum L.) mitochondrial activity and phospholipid composition was investigated. Preliminary growth measurements showed that osmotic stress (−0.25 or −0.5 megapascal external water potential) inhibited the rate of shoot dry matter accumulation while root dry matter accumulation was less sensitive. We have determined that differences in sensitivity to osmotic stress existed between tissues at the mitochondrial level. Mitochondria isolated from roots or shoots of stressed seedlings showed respiratory control and ADP/O ratios similar to control seedlings which indicates that stressed mitochondria were well coupled. However, under passive swelling conditions in a KCl reaction mixture, the rate and extent of valinomycin-induced swelling of shoot mitochondria were increased by osmotic stress while root mitochondria were largely unaffected. Active ion transport studies showed efflux transport by stressed-shoot mitochondria to be partially inhibited since mitochondrial contraction required the addition of N-ethylmaleimide or nigericin. Efflux ion transport by root mitochondria was not inhibited by osmotic stress which indicates that stress-induced changes in ion transport were largely limited to shoot mitochondria. Characterization of mitochondrial fatty acid and phospholipid composition showed an increase in the percentage of phosphatidylcholine in stressed shoot mitochondria compared to the control. Mitochondrial fatty acid composition was not markedly altered by stress. No significant changes in either the phospholipid or fatty acid composition of stressed root mitochondria were observed. Hence, these results suggest that a tissue-specific response to osmotic stress exists at the mitochondrial level.  相似文献   

4.
Nawa Y  Asahi T 《Plant physiology》1971,48(6):671-674
Rapid increases in activities and components of mitochondrial particles isolated from cotyledons of Pisum sativum var. Alaska during the early stage of germination are described. Respiratory rate of the cotyledons increased rapidly as hydration proceeded. A similar but slightly delayed increase in respiratory activity of the isolated mitochondrial fraction was observed. The respiratory control ratio and adenosine 5′-pyrophosphate/oxygen ratio rose during imbibition. Cytochrome oxidase and malate dehydrogenase activities in the mitochondrial fraction increased during the initial phase of imbibition. The increase seemed to precede that in respiratory activity. A significant activity of cytochrome oxidase and most of the malate dehydrogenase activity in the cotyledons were present in the postmitochondrial fraction in the case of the dry seeds. Mitochondrial protein and phospholipid also increased during imbibition, and the rise in the components seemed to concur with that in respiratory activity. The mechanism of mitochondrial development during imbibition is discussed.  相似文献   

5.
The growth conditions known to influence the occurrence of mitochondrial profiles and other cell membrane systems in anaerobic cells of S. cerevisiae have been examined, and the effect of the several growth media on the lipid composition of the organism has been determined. The anaerobic cell type containing neither detectable mitochondrial profiles nor the large cell vacuole may be obtained by the culture of the organism on growth-limiting levels of the lipids, ergosterol, and unsaturated fatty acids. Under these conditions, the organism has a high content of short-chain saturated fatty acids (10:0, 12:0), phosphatidyl choline, and squalene, compared with aerobically grown cells, and it is especially low in phosphatidyl ethanolamine and the glycerol phosphatides (phosphatidyl glycerol + cardiolipin). The high levels of unsaturated fatty acids normally found in the phospholipids of the aerobic cells are largely replaced by the short-chain saturated acids, even though the phospholipid fraction contains virtually all of the small amounts of unsaturated fatty acid present in the anaerobic cells. Such anaerobic cells may contain as little as 0.12 mg of ergosterol per g dry weight of cells while the aerobic cells contain about 6 mg of ergosterol per g dry weight. Anaerobic cell types containing mitochondrial profiles can be obtained by the culture of the organism in the presence of excess quantities of ergosterol and unsaturated fatty acids. Such cells have increased levels of total phospholipid, ergosterol, and unsaturated fatty acids, although these compounds do not reach the levels found in aerobic cells. The level of ergosterol in anaerobic cells is markedly influenced by the nature of the carbohydrate in the medium; those cells grown on galactose media supplemented with ergosterol and unsaturated fatty acids have well defined mitochondrial profiles and an ergosterol content (2 mg per g dry weight of cells) three times that of equivalent glucose-grown cells which have poorly defined organelle profiles. Anaerobic cells which are low in ergosterol synthesize increased amounts of squalene.  相似文献   

6.
Here we describe for the first time isolation and biochemical characterization of highly purified mitochondrial inner and outer membranes from Pichia pastoris and systematic lipid analysis of submitochondrial fractions. Mitochondria of this yeast are best developed during growth on glycerol or sorbitol, but also on methanol or fatty acids. To obtain organelle membranes at high quality, methods of isolation and subfractionation of mitochondria originally developed for Saccharomyces cerevisiae were adapted and employed. A characteristic feature of the outer mitochondrial membrane of P. pastoris is the higher phospholipid to protein ratio and the lower ergosterol to phospholipid ratio compared to the inner membrane. Another marked difference between the two mitochondrial membranes is the phospholipid composition. Phosphatidylcholine and phosphatidylethanolamine are major phospholipids of both membranes, but the inner membrane is enriched in cardiolipin, whereas the outer membrane contains a high amount of phosphatidylinositol. The fatty acid composition of both mitochondrial membranes is similar. Variation of the carbon source, however, leads to marked changes of the fatty acid pattern both in total and mitochondrial membranes. In summary, our data are the first step to understand the P. pastoris lipidome which will be prerequisite to manipulate membrane components of this yeast for biotechnological purposes.  相似文献   

7.
Seventy per cent of the phospholipid in mitochondria from sweet potato roots was removed by aqueous acetone treatment. The amount of phospholipid that could be rebound to these lipid-depleted mitochondria roughly corresponded to the amount of phospholipid in untreated mitochondria. The activities of NADH-cytochrome c oxidoreductase, succinate-cytochrome c oxidoreductase, cytochrome oxidase, and succinoxidase in lipid-depleted mitochondria were restored by addition of mitochondrial phospholipid to about 60, 50, 15, and 35%, respectively, in comparison to untreated mitochondria. The capacity of lipid-depleted mitochondria from 14-day cold-stored tissue to bind mitochondrial phospholipid from healthy tissue was lower than that from healthy tissue. However, there was no large difference in activities of NADH-cytochrome c oxidoreductase and succinate-cytochrome c oxidoreductase between both phospholipid rebound lipid-depleted mitochondria from healthy and 14-day cold-stored tissues. On the other hand, activity of succinoxidase in phospholipid rebound lipid-depleted mitochondria from 14-day cold-stored tissue was decreased by about 50% of that from healthy tissue. Furthermore, the capacity of lipid-depleted mitochondria from 2-day cold-stored tissue to bind mitochondrial phospholipid from healthy tissue was higher than that from healthy tissue.  相似文献   

8.
Diameters of the circular profiles of spherical mitochondria in parenchymal cells of the zona fasciculata in rat adrenal cortex were measured for intact controls and for the regenerating adrenal cortex on electron micrographs recorded at random. The diameter data were then processed by Bach's method which deals with the sphere size distribution. The structural parameters of the mitochondria were computed with the aid of an electronic computer. The total number of mitochondria in all the parenchymal cells of the zona fasciculata were calculated. The surface area of the inner mitochondrial membrane was then determined stereologically. Biochemical parameters were obtained for the protein, the phospholipid, and the cytochrome P-450 content, per averaged mitochondrion. The number of cytochrome P-450 molecules contained in the inner membrane was determined in terms of the unit surface area and of the unit amount of phospholipid. These correlated biochemical and stereological parameters have led to the following conclusions. (a) The genesis of the mitochondria after the adrenal enucleation is almost completed within 10 days. (b) During the period of mitochondrial proliferation, the mitochondria are small in size and also immature both in the structure and in the function of their inner membrane, (c) These small and immature mitochondria grow through an increase of the phospholipid and protein, and this increase is accompanied by expansion of the area of the membrane surface, (d) An enrichment of the inner membrane with cytochrome P-450 molecules occurs, thus indicating the differentiation of adrenocortical mitochondria. The process of membrane differentiation is not tightly coupled with that of membrane growth.  相似文献   

9.
In ethanol-fed baboons, hepatic mitochondrial cytochrome oxidase activity and cytochrome aa3 content were significantly decreased by 58.3 and 50.5%, respectively, compared to their pair-fed controls. However, there was no significant correlation between the two, suggesting that other factors in addition to cytochrome aa3 may be responsible for the depression in cytochrome oxidase activity. The total phospholipid content of the mitochondrial membranes was significantly decreased (0.24 ± 0.03 μmol of phospholipid phosphorus/mg of protein vs. 0.32 ± 0.04 in controls). This change was accounted for, in part, by the significant decrease in the levels of phosphatidylcholine and cardiolipin. In addition, the fatty acid pattern of the phospholipids was changed. There was a marked increase in the relative amounts of oleic and linoleic acid and a decrease in arachidonic acid. These changes were associated with an increase in the activity of phospholipase A2. The reactivation rate of phospholipid-depleted cytochrome oxidase by endogenous phospholipids from ethanol-fed baboons was significantly lower than that by phospholipid from pair-fed controls, when measured at an optimal phospholipid to protein ratio. Thus, it appears that alterations in the phospholipid composition of the mitochondrial membranes are responsible, at least in part, for the depression of cytochrome oxidase activity produced by chronic ethanol consumption.  相似文献   

10.
The synthesis of cellular lipids of Neurospora crassa was measured during growth on low (2% sucrose)- and high (15% glucose)-carbohydrate supplementation. The amount of lipid per dry weight of cells does not change during the germination and early logarithmic growth periods, but the percentage of phospholipid in the lipid does increase, reaching a maximal value of 90% at 4 to 5 h after inoculation, at which time the phospholipid content of the cells is approximately 60 mumol/g (dry weight). The content of the anionic phospholipids, as a percentage of the lipid fraction, is relatively constant during the growth period, but the contents of the zwitterionic phospholipids phosphatidylcholine and phosphatidylethanolamine change in a reciprocal fashion. During the first 8 h of growth, phosphatidylcholine falls from 53% of the phospholipid to 43%, whereas phosphatidylethanolamine rises from 29 to 38%. The total of these two phospholipids is approximately 83% during the growth period studied. The synthesis of cellular phospholipids, measured either by [32P]H3PO4 or [14C]glucose incorporation, reached maximal levels between 3 and 5 h of growth. The effect of the high-carbohydrate supplement on cellular lipids was minimal. Inclusion of 15% glucose decreased the labeling of phospholipid by [32P]H3PO4, but did not affect lipid composition. This observation is in contrast to the effects of high glucose on mitochondrial phospholipid synthesis.  相似文献   

11.
Vital fluctuations of cell body sizes and of the amount of cytoplasmic protein were studied in the cultured glial cells obtained after dissociation of nervous tissue. Isolated glial cells restore their ability of contractile activity and unidirectional fluctuations of dry weight. After the glial cells are aggregated they retain contractile activity.  相似文献   

12.
1. In the present study a correlation has been sought between aging, flight muscle mitochrondria (sarcosomes), cytochrome c, and flight ability in the blowfly, Phormia regina. 2. During the 1st week of adult life, individual sarcosomes increase in mass from 2.7 x 10–7 µg. dry weight at the time of emergence, to 8.5 x 10–7 µg. by the 7th day. During this period of growth, the number of sarcosomes per fly (6.7 x 108) remains constant. When mature, the sarcosomes account for 32.6 per cent of the total muscle dry weight, or close to 40 per cent on a wet weight basis. 3. It appears probable that the high content of flight muscle cytochromes is entirely localized in the sarcosomes. The cytochromes continue to be synthesized and increase in titer within the sarcosomes for 7 days after adult emergence. 4. As determined spectroscopically, the various cytochrome components at all times maintain a constant ratio both to one another and to the sarcosomal dry weight. This suggests the possibility that the cytochrome system may be synthesized as a single entity. 5. The wing-beat frequency of Drosophila funebris and Phormia varies with the age of these flies, being lowest at the time of emergence and maximum after the 6th day. 6. The relations between wing-beat frequency, respiration during flight, and sarcosomal cytochrome c content are discussed. On the basis of some likely assumptions it is calculated that the cytrochrome c turnover number is over 5,000, and that the cytochrome c turns over once for every two wing-beat cycles.  相似文献   

13.
Homogenates of mung bean cotyledons were subjected to equilibrium density centrifugation on linear sucrose gradients and the positions of the various organelles determined by assay of marker enzymes. Measurement of phospholipid distribution on such gradients showed that the major peak of phospholipid at a density of 1.11 to 1.13 grams per cubic centimeter coincided with the position of the endoplasmic reticulum (ER), confirming ultrastructural evidence that storage parenchyma cells are rich in ER. Germination and seedling growth were accompanied by a rapid decline in ER-associated phospholipid but a marked increase in the ER marker enzyme NADH cytochrome c reductase. Similar experiments with developing seeds indicated that the amount of ER-associated phospholipid increases during cotyledon expansion reaching a maximum during seed maturation. There was no subsequent decline during seed desiccation, instead ER-associated phospholipid levels were maintained in the dry seed until germination when catabolism was initiated 12 to 24 hours after the start of imbibition. This timing indicates that the observed ER breakdown is not an expression of the overall senescence of the cotyledons, but may represent the dismantling of the extensive rough ER used for reserve protein synthesis during cotyledon development.  相似文献   

14.
The chemical composition of mitochondria obtained from exponentially growing Neurospora can be varied by addition of choline or amino acids to the culture medium. The variation affects the phospholipid to protein ratio, and the density of mitochondria as determined by isopycnic centrifugation in sucrose gradients. These variations have been observed in biochemical mutant strains as well as wild type cultures. In a choline-requiring strain, two levels of choline supplementation to the medium have been defined: a low choline concentration just adequate to support maximal logarithmic growth, and a high choline concentration which permits maximal incorporation of radioactive choline into cellular lipids. Mitochondria isolated from cultures growing at the low choline concentration have one-half the phospholipid to protein ratio of those from high choline cultures, and their density is significantly higher. Artificial mixtures of the two types of mitochondria can be resolved into two populations by isopycnic centrifugation. The concentration of cytochromes (measured by mitochondrial difference spectra) and of malate and succinate dehydrogenases (measured by enzyme activity) were the same in both types of mitochondria, on a protein basis. The results suggest that during growth of the mitochondrial mass, the incorporation of phospholipid and protein components can vary independently. Direct kinetic measurements did indeed show that choline, added to a culture growing at low choline concentration, was incorporated into mitochondrial lipids at a rate faster than the incorporation of protein. The mitochondrial phospholipid to protein ratio can also be influenced by the level of leucine supplementation to a leucine-requiring mutant, so that with leucine concentrations above those required for maximal exponential growth, mitochondria of increasing density and decreasing phospholipid to protein ratio are produced. Additions of choline or amino acids to the minimal medium of wild type cultures influence mitochondrial composition in a manner directly comparable to that observed in biochemical mutant strains. The results suggest that mitochondrial composition, in general, is determined by rates of incorporation of the two major components, phospholipid and protein; that these rates can vary independently in response to precursor concentration in the culture medium; and that they normally operate at a precursor (substrate) concentration below saturation level.  相似文献   

15.
Sato S  Asahi T 《Plant physiology》1975,56(6):816-820
An attempt to isolate intact mitochondria from dry pea seeds (Pisum sativum var. Alaska) ended in failure. Cytochrome oxidase in crude mitochondrial fraction from dry seeds was separated into three fractions by sucrose density gradient centrifugation. Two of the fractions contained malate dehydrogenase, whereas the other did not. Equilibrium centrifugation of mitochondrial membrane on sucrose gradients revealed that the membrane from the fraction without malate dehydrogenase was lighter than that from the others. Differences were observed in relative content of phospholipid to protein and in polypeptide composition analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis among the membranes from three fractions and imbibed cotyledons. Membrane from the fraction without malate dehydrogenase was rich in phospholipid and lacking in polypeptides with relatively high molecular weights as compared with that from others. During imbibition, the fraction without malate dehydrogenase and one of the other two disappeared rapidly after a lag phase lasting for at least 1 hour. Concomitantly, active and stable mitochondria increased in the cotyledons. The results were interpreted to indicate that there were at least three types of mitochondria in dry seeds, the membranes of which differed in their biochemical properties, and that the mitochondria became active and stable through assembly of protein into the membranes during imbibition.  相似文献   

16.
(1) The effects of cold adaptation upon the brown adipose tissue have been studied in rats, hamsters, mice, and guinea pigs. (2) Striking effects were found for total tissue as well as at the mitochondrial level, e.g., increases in protein and phospholipid contents, changes in phospholipid fatty acid composition (a decrease in the percentage of palmitic and palmitoleic acids and an increase in stearic and linoleic acids), and a change in the mitochondrial polypeptide composition (a marked increase in a 32000 molecular weight polypeptide, except for hamsters). (3) In situations where animals exhibit a greatly enhanced capacity for nonshivering thermogenesis (cold adaptation for rats, mice, and guinea pigs, birth for guinea pigs, and hibernation ability for hamsters, dormice, and garden dormice), brown fat mitochondria are characterized by the occurrence of large amounts of the 32000 molecular weight polypeptide characteristic of these mitochondria.  相似文献   

17.
The catabolism of protein from organs and muscles during migratory flight is necessary to produce glucose, key metabolic intermediates, and water, but may have negative effects on flight range and refueling at stopovers. We tested the hypothesis, suggested by previous studies, that birds that eat high‐protein insect diets use more protein for fuel in flight than those that eat high‐carbohydrate fruits. First, we fed migratory yellow‐rumped warblers synthetic fruit or mixed insect/fruit diets, and measured metabolic rates and fuel mixture under basal conditions and during exercise in a hop/hover wheel respirometer. Birds eating the fruit diet had greater plasma triglyceride and non‐esterified fatty acid concentrations, and the higher protein mixed diet increased plasma uric acid only during feeding. Diet did not affect metabolic rates or the fuel mixture under resting or exercise conditions. We then fed yellow‐rumped warblers synthetic diets that differed only in the relative proportion of carbohydrate and protein (60:15 versus 15:60 as % dry mass) and tested them in wind tunnel flights lasting up to six hours. Birds fed the high carbohydrate diet became heavier and fatter than when fed the high protein diet. Plasma uric acid concentration was increased and plasma phospholipid concentration was decreased by the high protein diet in the pre‐flight state (after a 3 h fast), but diet only affected plasma phospholipids during flight (lower in high protein birds). Neither diet nor amount of body fat affected the rate of loss of lean mass or fat during flight. Inter‐individual or seasonal differences in diet do not appear to influence the amount of protein catabolized during endurance flight. However, birds fed the high carbohydrate diet had greater voluntary flight duration, independent of body fatness, suggesting that there may be other performance benefits of high carbohydrate diets for migratory birds.  相似文献   

18.
Isolation and characterization of peanut spherosomes   总被引:17,自引:9,他引:8       下载免费PDF全文
Spherosomes of cotyledons of germinating peanuts (Arachis hypogea L.) were examined by electron microscopy and found to be particles about 1.0 to 2.0 μ in diameter bounded by a limiting membrane. Isolated spherosomes appear similar to spherosomes in situ. The isolated spherosomes are composed of 98.1% total lipids, 0.77% phospholipid and 1.27% protein by dry weight. The amounts of protein and phospholipid associated with the isolated spherosomes are sufficient to account for limiting membranes. Spherosomes amply account for the lipid in a peanut cotyledon. The activity of lipase and fatty acyl-Coenzyme A synthetase is not associated with the isolated spherosomes. This suggests that peanut spherosomes are principal sites of lipid storage but not of lipid degradation.  相似文献   

19.
Nucleoside diphosphate kinases (NDPKs/Nm23), responsible for intracellular di- and tri-phosphonucleoside homeostasis, play multi-faceted roles in cellular energetic, signaling, proliferation, differentiation and tumor invasion. The mitochondrial NDPK-D, the NME4 gene product, is a peripheral protein of the inner membrane. Several new aspects of the interaction of NDPK-D with the inner mitochondrial membrane have been recently characterized. Surface plasmon resonance analysis using recombinant NDPK-D and different phospholipid liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin, a phospholipid located mostly in the mitochondrial inner membrane. Mutation of the central arginine (R90) in a surface exposed cationic RRK motif unique to NDPK-D strongly reduced phospholipid interaction in vitro and in vivo. Stable expression of NDPK-D proteins in HeLa cells naturally almost devoid of this isoform revealed a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on the membrane-bound state of the enzyme. Owing to its symmetrical hexameric structure exposing membrane binding motifs on two opposite sides, NDPK-D could bridge liposomes containing anionic phospholipids and promote lipid transfer between them. In vivo, NDPK-D could induce intermembrane contacts and facilitate lipid movements between mitochondrial membranes. Most of these properties are reminiscent to those of the mitochondrial creatine kinase. We review here the common properties of both kinases and we discuss their potential roles in mitochondrial functions such as energy production, apoptosis and mitochondrial dynamics.  相似文献   

20.
Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号