首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations have been carried out on the influence of membrane lipid composition and physical state on acyl-CoA: 1-acyl-glycerol-3-phosphoethanolamine O-acyltransferase activity in rat liver plasma membranes. The lipid composition of the membranes was modified either by way of lipid transfer proteins or by partial delipidation with exogenous phospholipases and subsequent enrichment of the membranes with different phospholipids. The results indicated that membrane rigidification by enrichment of the membranes with DPPC or SM reduced the transfer of oleic and palmitic acid to lysophosphatidylethanolamine, whereas all phospholipids inducing membrane fluidization lead to acyltransferase activation. The eventual role of membrane fluidity in the deacylation-reacylation cycle is discussed.  相似文献   

2.
Summary Investigations were performed on the influence of the phospholipid composition and physicochemical properties of the rat liver microsomal membranes on acyl-CoA synthetase and acyl-CoA : 1-acyl-sn-glycero-3-phosphocholine O-acyltransferase activities. The phospholipid composition of the membranes was modified by incubation with different phospholipids in the presence of lipid transfer proteins or by partial delipidation with exogenous phospholipase C and subsequent enrichment with phospholipids. The results indicated that the incorporation of phosphatidylglycerol, phosphatidylserine and phosphatidylethanolamine induced a marked activation of acyl-CoA synthetase for both substrates used—palmitic and oleic acids. Sphingomyelin occurred as specific inhibitor for this activity especially for palmitic acid. Palmitoyl-CoA: and oleoyl-CoA : lacyl-sn-glycero-3-phosphocholine acyltransferase activities were found to depend on the physical state of the membrane lipids. The alterations in the membrane physical state were estimated using two different fluorescent probes—1,6-diphenyl-1,3,5-hexatriene and pyrene. In all cases of membrane fluidization this activity was elevated. On the contrary, in more rigid membranes obtained by incorporation of sphingomyelin and dipalmitoylphosphatidylcholine, acyltransferase activity was reduced for both palmitoyl-CoA and oleoyl-CoA. We suggest a certain similarity in the way of regulation of membrane-bound acyltransferase and phospholipase A2 which both participate in the deacylation-reacylation cycle.  相似文献   

3.
The activity of antimicrobial peptides has been shown to depend on the composition of the target cell membrane. The bacterial selectivity of most antimicrobial peptides has been attributed to the presence of abundant acidic phospholipids and the absence of cholesterol in bacterial membranes. The high amount of cholesterol present in eukaryotic cell membranes is thought to prevent peptide-induced membrane disruption by increasing the cohesion and stiffness of the lipid bilayer membrane. While the role of cholesterol on an antimicrobial peptide-induced membrane disrupting activity has been reported for simple, homogeneous lipid bilayer systems, it is not well understood for complex, heterogeneous lipid bilayers exhibiting phase separation (or "lipid rafts"). In this study, we show that cholesterol does not inhibit the disruption of raft-containing 1,2-dioleoyl-sn-glycero-3-phosphocholine:1,2-dipalmitoyol-sn-glycero-3-phosphocholine model membranes by four different cationic antimicrobial peptides, MSI-78, MSI-594, MSI-367 and MSI-843 which permeabilize membranes. Conversely, the presence of cholesterol effectively inhibits the disruption of non-raft containing 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyol-sn-glycero-3-phosphocholine lipid bilayers, even for antimicrobial peptides that do not show a clear preference between the ordered gel and disordered liquid-crystalline phases. Our results show that the peptide selectivity is not only dependent on the lipid phase but also on the presence of phase separation in heterogeneous lipid systems.  相似文献   

4.
The influence of the phospholipid composition and the physico-chemical properties of rat liver plasma membranes on the activity of membrane-bound phospholipase A2 has been investigated. The plasma membrane composition was modified by the aid of exogenous phospholipases A2, C and D, and by butanol treatment. The partially delipidated membranes thus obtained were enriched with different phospholipids. The steady-state fluorescent anisotropy of 1,6-diphenyl-1,3,5-hexatriene and the lipid order parameter-SDPH in the modified membranes were calculated. It was established that the activity of the membrane-bound phospholipase A2 was higher in rigid membranes and was decreased when the membrane lipid bilayer was fluidized.  相似文献   

5.
During prolonged fasting in lizard and rat, plasma levels of unesterified cholesterol (UC) and phospholipids (TPL) decreased and there were reductions and increases, respectively, in the molar ratios of lecithin (PC) to sphingomyelin (SPH) and UC to TPL. Plasma lecithin: cholesterol acyltransferase (LCATase) activity in lizard and rat plasma was reduced during prolonged fasting. Erythrocyte lipid composition for fasted animals was also characterized by a reduction in the molar ratio PC/SPH and an increase in UC/TPL, and in both species there were positive correlations between these molar ratios in red cells and those in plasma. In both species these were changes in the morphology of the erythrocytes, and those from fasted rats showed alterations in osmotic fragility and permeability which correlated with alterations in lipid composition. These results suggest that changes in plasma lipoprotein lipid composition, linked to reduced LCATase activity, may cause similar alterations in the lipid composition of red cell membranes leading to altered membrane properties.  相似文献   

6.
Investigations have been carried out on the influence of the phospholipid composition and the physicochemical properties of rat liver plasma membranes on the endogenous activity of membrane-bound phospholipase A2. The membrane phospholipid composition was modified by the incorporation of different phospholipids in the lipid bilayer by the aid of lipid transfer proteins. The results indicate that the endogenous activity of phospholipase A2 in liver plasma membranes depends upon membrane fluidity and not upon the presence of a specific phospholipid in the enzyme's microenvironment.  相似文献   

7.
D H Petkova  A B Momchilova  K S Koumanov 《Biochimie》1986,68(10-11):1195-1200
Investigations have been carried out on the influence of the phospholipid composition of rat liver plasma membranes and of their physico-chemical properties on the activity of membrane-bound neutral sphingomyelinase. The membrane phospholipid composition was modified by the incorporation of different phospholipids into the membrane bilayer by means of lipid transfer proteins, n-butanol delipidation or exogenous sphingomyelinase (Staphylococcus aureus) treatment. The results indicate that the activity of neutral sphingomyelinase in liver plasma membranes depends upon phosphatidyl choline presence in the membrane bilayer and not upon membrane fluidity.  相似文献   

8.
Lantibiotics, a group of lanthionine-containing peptides, display their antibiotic activity by combining different killing mechanisms within one molecule. The prototype lantibiotic nisin was shown to possess both inhibition of peptidoglycan synthesis and pore formation in bacterial membranes by interacting with lipid II. Gallidermin, which shares the lipid II binding motif with nisin but has a shorter molecular length, differed from nisin in pore formation in several strains of bacteria. To simulate the mode of action, we applied cyclic voltammetry and quartz crystal microbalance to correlate pore formation with lipid II binding kinetics of gallidermin in model membranes. The inability of gallidermin to form pores in DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) (C18/1) and DPoPC (1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine) (C16/1) membranes was related to the membrane thickness. For a better simulation of bacterial membrane characteristics, two different phospholipids with branched fatty acids were incorporated into the DPoPC matrix. Phospholipids with methyl branches in the middle of the fatty acid chains favored a lipid II–independent DPoPC permeabilization by gallidermin, while long-branched phospholipids in which the branch is placed near the hydrophilic region induced an identical lipid II–dependent pore formation of gallidermin and nisin. Obviously, the branched lipids altered lipid packing and reduced the membrane thickness. Therefore, the duality of gallidermin activity (pore formation and inhibition of the cell wall synthesis) seems to be balanced by the bacterial membrane composition.  相似文献   

9.
The effect of chronic administration of lithium salts on the lipid composition and physical properties of the synaptosomal plasma membrane was examined in rat brain. The effect of lithium treatment has been studied on the fluorescence polarization of synaptosomal plasma membrane and artificial lipid vesicles and on the lipid composition of the membranes. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from lithium-treated animals. Altered DPH polarization was due to a decrease in the order parameter of the probe. The lithium-treatment also changed the fluorescence of 1-anilino-8-naphthalene sulfonate (ANS), a probe that binds to the polar head group of the phospholipids and to proteins on the membrane surface. Synaptic plasma membranes from treated rats presented no significant changes on the cholesterol-to-phospholipid ratio, although the phospholipid class distribution was altered and the membrane phospholipid unsaturation increased. In summary, the neural plasma membranes became disorder after chronic lithium administration at therapeutic levels. This structural change may be due to changes in plasma membrane phospholipid distribution and to the degree of unsaturation of phospholipid fatty acids.  相似文献   

10.
The importance of the deacylation-reacylation pathway for attaining the desired fatty acid composition in microsomal phospholipids has been well established. It is not clear, however, whether this mechanism is of equal importance in mitochondria. The absence of acyltransferase activity in mammalian heart mitochondria has been reported in a number of studies. In the present study we report the presence of acyltransferase activities for lysophosphoradylglycerocholines in guinea-pig heart mitochondria. This enzyme showed properties that were considerably different from those of the microsomal enzymes. Of all the acyl-CoAs tested (C18:0, C18:1, C18:2 and C20:4) the mitochondrial enzyme utilized only linoleoyl-CoA as fatty acyl donor and utilized both 1-acyl-sn-glycero-3-phosphocholine and 1-alkenyl-sn-glycero-3-phosphocholine as fatty acyl acceptors. The presence of significant quantities of fatty acids other than linoleate at the C-2 position of mitochondrial acylglycerophosphocholines, coupled with the specificity of the enzyme for linoleoyl-CoA, suggest that, in addition to reacylation, other mechanisms play a significant role in producing the molecular composition of these phospholipids found in the mitochondria.  相似文献   

11.
The phospholipid composition of ram spermatozoa plasma membranes has been investigated. An exclusively high participation of the choline- and ethanolamine-plasmalogens in the phosphatidylcholine and phosphatidylethanolamine fractions has been established. Phosphatidylcholine of ram spermatozoa plasma membranes contains a great amount of polyunsaturated fatty acids. The phospholipid distribution in spermatozoa plasma membrane was investigated. It was established that the choline containing phospholipids are situated mainly in the outer membrane lipid monolayer, whereas diphosphatidylglycerol and phosphatidylserine are localized predominantly in the inner monolayer. The rest of the phospholipids are evenly distributed among the two monolayers. Ram spermal plasma membranes exhibit high phospholipase A2 activity.  相似文献   

12.
It has been shown for the first time that lysosomal (tritosomal) membranes of rat liver contain enzymes that are responsible for the deacylation-reacylation of phospholipids; their activity optimum lies at pH 7.0. Deacylation of lysosomal membrane phospholipids is controlled by a cascade of enzymatic reactions involving Ca2(+)-dependent phospholipase A1 which exhibits the maximal activity at 2.5 mM Ca2+ and at neutral values of pH, as well as lysophospholipase. Reacylation of lyso-derivatives of phospholipids is catalyzed by Mg2(+)-activated oleoyl-CoA:lysophosphatidylcholine acyltransferase having an activity optimum at pH 7.2.  相似文献   

13.
Subcellular membranes of Saccharomyces cerevisiae, including mitochondria, microsomes, plasma membranes, secretory vesicles, vacuoles, nuclear membranes, peroxisomes, and lipid particles, were isolated by improved procedures and analyzed for their lipid composition and their capacity to synthesize phospholipids and to catalyze sterol delta 24-methylation. The microsomal fraction is heterogeneous in terms of density and classical microsomal marker proteins and also with respect to the distribution of phospholipid-synthesizing enzymes. The specific activity of phosphatidylserine synthase was highest in a microsomal subfraction which was distinct from heavier microsomes harboring phosphatidylinositol synthase and the phospholipid N-methyltransferases. The exclusive location of phosphatidylserine decarboxylase in mitochondria was confirmed. CDO-diacylglycerol synthase activity was found both in mitochondria and in microsomal membranes. Highest specific activities of glycerol-3-phosphate acyltransferase and sterol delta 24-methyltransferase were observed in the lipid particle fraction. Nuclear and plasma membranes, vacuoles, and peroxisomes contain only marginal activities of the lipid-synthesizing enzymes analyzed. The plasma membrane and secretory vesicles are enriched in ergosterol and in phosphatidylserine. Lipid particles are characterized by their high content of ergosteryl esters. The rigidity of the plasma membrane and of secretory vesicles, determined by measuring fluorescence anisotropy by using trimethylammonium diphenylhexatriene as a probe, can be attributed to the high content of ergosterol.  相似文献   

14.
1. The influence of insulin on rat liver membrane lipid composition, fluidity, some enzyme activities and asymmetry of microsomal phospholipids were investigated. 2. The total phospholipids and cholesterol were increased in microsomes and reduced in plasma membranes from insulin-treated rats. 3. Of all the investigated enzymes participating in the lipid metabolism, only the neutral sphingomyelinase activity was observed to be enhanced, whereas the ceramide-phosphatidylethanolamine (PE) synthetase and phospholipase A2 activities remained unchanged. 4. Insulin administration caused translocation of phosphatidylserine (PS) and PE to the outer leaflet and of phosphatidylinositol (PI) to the inner leaflet of microsomal membranes.  相似文献   

15.
16.
An analog of lysophosphatidylcholine (1-dodecyl-propanediol-3-phosphocholine) which does not impair membrane-bound enzymes was used for the induction of shedding of membrane vesicles from intact calf thymocytes. Without liberation of intracellular enzymes such as lactate dehydrogenase (EC 1.1.1.27) the shedded membranes contained 15--25% of the total activity of the plasma membrane enzymes alkaline phosphatase (EC 3.1.3.1), nucleotide pyrophosphatase (EC 3.1.4.1) and gamma-glutamyl transferase (EC 2.3.2.2). Membrane-free supernatants only exhibited trace activities of these enzymes. Without further purification, the specific enzyme activities in shedded membranes were of the same order of magnitude as in purified plasma membranes prepared after nitrogen cavitation of thymocytes. Small amounts of membrane vesicles which showed a different composition could be removed without detergent. These membranes exhibited a 3-fold lower specific activity of the gamma-glutamyl transferase while that of the alkaline phosphatase and nucleotide pyrophosphatase was similar as in detergent induced membrane vesicles. Distinct differences also were found in the protein pattern. The content of total cholesterol and phospholipid in vesicles shed spontaneously or after detergent treatment was nearly identical, however, significant differences were found in the fatty acid composition of the main phospholipids. The content of polyunsaturated fatty acids (linoleic and arachidonic acid) increased in the order: spontaneously shedded membranes, detergent induced vesicles, conventional purified plasma membranes. These results are discussed in terms of the heterogeneous composition of areas of the thymocyte plasma membrane.  相似文献   

17.
The influence of D-galactosamine administration on rat liver plasma membranes lipid composition, fluidity and some enzyme activities was investigated. D-Galactosamine was found to induce an increase of the total phospholipids, the cholesterol level and membrane rigidity. In liver plasma membranes of D-galactosamine-treated rats the exogenous phospholipase A2 activity was enhanced about 2 fold, whereas the endogenous activity was slightly decreased. No alteration of the neutral sphingomyelinase activity was observed.  相似文献   

18.
Magic angle spinning (MAS) NMR has been used to investigate the location and orientation of five serotonin receptor 1a agonists (serotonin, buspirone, quipazine, 8-OH-DPAT, and LY-163,165) in single component model lipid and brain lipid membranes. The agonist locations are probed by monitoring changes in the lipid proton chemical shifts and by MAS-assisted nuclear Overhauser enhancement spectroscopy, which indicates the orientation of the agonists with respect to the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids. In the single component bilayer, the membrane agonists are found predominantly in the top of the hydrophobic chain or in the glycerol region of the membrane. Most of the agonists orient approximately parallel to the membrane plane, with the exception of quipazine, whose piperazine ring is found in the glycerol region, whereas its benzene ring is located within the lipid hydrophobic chain. The location of the agonist in brain lipid membranes is similar to the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers; however, many of the agonists appear to locate close to the cholesterol in the membrane in preference to the phospholipids.  相似文献   

19.
The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis.  相似文献   

20.
The results of research conducted on the cardiomyocytes plasma membranes structural and functional state under the experimental stress and atherosclerosis are displayed in this article. These experimental pathology is determined to be accompanied by some stereotypic quantitative and qualitative modifications occurred in the lipid matrix of the cardiomyocytes plasma membranes--increase of cholesterol content, decrease of phospholipids, accumulation of lisophospholipids and fatty acid. There are demonstrated results that the experimental stress has an atherogenic effect on the plasma membranes of cells by imputting the cholesterol into the membrane even in the intact animals with normal lipid metabolism. All these modifications are also accompanied by the activation of free-radical oxidation. All these changes are capable to lie in the basis of physical and chemical properties mechanism modification of membranes: modification of lipid matrix, change of viscosity, ion-transport properties of cardiomyocytes membranes, oppression of Na+, K(+)-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号